Strongly Coupled Plasmas

Strongly-coupled plasmas and warm dense matter

Self diffusion
Viscosity Graph

These figures show predictions of the effective potential theory (EPT) from [S2,S4,S6] for self-diffusion (left) and shear viscosity (right) of the one-component plasma. Traditional plasma theory (dashed lines) breaks down when the coupling strength approaches 1. EPT is capable of extending plasma theory well into the strongly coupled regime. Circles show results of molecular dynamics simulations, which provide an accurate (though computationally expensive) solution for these transport properties.

In traditional weakly coupled plasmas, the kinetic energy of individual particles greatly exceeds the potential energy of their interaction. Strongly coupled plasmas occur in the opposite limit. Strong coupling can be achieved in three ways:

(1) High ion charge numbers, as found in dusty plasmas
(2) High density, as found in inertial confinement fusion as well as dense astrophysical objects such as white dwarf stars, neutron star crusts and giant planet interiors
(3) Low temperature, as found in non-neutral plasmas, ultracold neutral plasmas and antimatter plasmas.

In addition, electrons in the dense plasma examples are typically described by quantum statistics, rather than the classical statistics found in conventional plasmas. The regime where ions are strongly coupled and electrons are quantum degenerate is often called warm dense matter. The fundamental physical properties of warm dense matter are substantially different than others (liquid, gas, plasma or solid) that it may be considered a different state of matter.

In our group, we develop theories intended to provide a predictive description of various fundamental processes in these exotic plasma states. A major focus is to develop theoretical models for transport properties, such as electrical resistivity, thermal conductivity, viscosity, etc., that can be evaluated efficiently enough to be implemented in the large hydrodynamics simulations that are used to simulate macroscopic behavior of the experiments and astrophysical objects. A typical research program consists of first developing an approximate transport theory using methods from plasma kinetic theory, liquid theory, and statistical mechanics. The second stage is a verification procedure, where the theory is tested against predictions of ab inito particle simulations, which is usually some form of molecular dynamics simulation. When data is available, the theory is tested against experiments. Finally, verified transport coefficients are implemented in various hydrodynamics simulations, and the influence of coupling and/or quantum effects on macroscopic behavior of the experimentally-relevant plasma can be quantified.

Applications

The primary application of this work is fusion energy research. Specifically, plasmas in inertial confinement fusion (ICF) experiments evolve through an enormous range of density and temperature, including the warm dense matter regime. Our work is motivated, in part, by the need for more accurate descriptions of the materials properties at these conditions in order to model the evolution of the plasma in ICF experiments. There are several other related applications, including modeling of dense astrophysical objects (such as white dwarfs and the interior of giant planets), dense plasmas created by the interaction of intense lasers with matter, dusty plasmas, ultracold plasmas, and nonneutral plasmas. Part of the excitement of basic physics research is that new physics discoveries often lead to new applications! 

Links

Theory:
Los Alamos Dense Plasma Theory: Daligault’s Group (our primary collaborator)
Michael Bonitz’s Group

Warm Dense Matter:
Matter in Extreme Conditions at SLAC

Ultracold Neutral Plasmas:
Ultracold Atoms and Plasmas: Killian’s Group
U. Maryland: Rolston Group
Colorado State: Roberts Group
Auburn: Robicheaux Group
Brigham Young University: Bergeson Group

Nonneutral Plasmas:
UCSD Nonneutral Plasma Group

Strongly Coupled Dusty Plasmas:
Goree Dusty Plasma Group

Cavitation/Sonoluminescence:
UCLA: Putterman Group

Publications related to this topic

[34]Bulk Viscosity of the Rigid Rotor One-Component Plasma
  J. LeVan, M. D. Acciarri, and S. D. Baalrud
  Physical Review E 110, 015208 (2024)
[33]Review of the Second Charged-Particle Transport Coefficient Code Comparison Workshop
L. J. Stanek, A. Kononov, S. B. Hansen, B. M. Haines, S. X. Hu, P. F. Knapp, M. S. Murillo, L. G. Stanton, H. D. Whitley, S. D. Baalrud, L. Babati, A. D. Baczewski, M. Bethkenhagen, A. Blanchet, R. C. Clay III, K. R. Cochrane, L. A. Collins, A. Dumi, G. Faussurier, M. French, Z. A. Johnson, V. V. Karasiev, S. Kumar, M. K. Lentz, C. A. Melton, K. A. Nichols, G. M. Petrov, V. Recoules, R. Redmer, G. Ropke, M. Sch ̈ orner, N. R. Shaffer, V. Sharma, L. G. Silvestri, F. Soubiran, P. Suryanarayana, M. Tacu, J. P. Townsend, and A. J. White
Physics of Plasmas 31, 052104 (2024)
[32]Mean Force Emission Theory for Classical Bremsstrahlung in Strongly Coupled Plasmas
  J. Kinney, H. J. LeFevre, C. C. Kuranz, and S. D. Baalrud
  Physics of Plasmas, 31 053302 (2024)
[31]Disorder-Induced Heating in Molecular Atmospheric Pressure Plasmas
  J. LeVan, M. D. Acciarri, and S. D. Baalrud
  Plasma Sources Science and Technology, 33 045014 (2024)
[30]When Should PIC Simulations be Applied to Atmospheric Pressure Plasmas? Impact of Correlation Heating
  M. D. Acciarri, C. Moore, L.P. Beving, and S. D. Baalrud
  Plasma Sources Science and Technology, 33 035009 (2024)
[29]Disorder-Induced Heating as a Mechanism for Fast Neutral Gas Heating in Atmospheric Pressure Plasmas
  M. D. Acciarri, C. Moore, and S. D. Baalrud
  Plasma Sources Science and Technology, 33 02LT02 (2024)
[28]Influence of Strong Coulomb Coupling on Diffusion in Atmospheric Pressure Plasmas
  M. D. Acciarri, C. Moore, and S. D. Baalrud
  Plasma Sources Science and Technology 32 115004 (2023)
[27]Strong Coulomb Coupling Influences Ion and Neutral Temperatures in Atmospheric Pressure Plasmas
M. D. Acciarri, C. Moore, and S. D. Baalrud
 Plasma Sources Science and Technology 31 125005 (2022)
[26]Electron-Ion Temperature Relaxation in Warm Dense Hydrogen Observed with Picosecond Resolved X-ray Scattering
  L. B. Fletcher, J. Vorberger, W. Schumaker, C. Ruyer, S. Goede, E. Galtier, U. Zastrau, E. P. Alves, S. D. Baalrud, R. A. Baggott, B. Barbrel, Z. Chen, T. Doppner, M. Gauthier, E. Granados, J. B. Kim, D. Kraus, H. J. Lee, M. J. MacDonald, R. Mishra, A. Pelka, A. Ravasio, C. Roedel, A. R. Fry, R. Redmer, F. Fiuza, D. O. Gericke, and S. H. Glenzer
  Frontiers in Physics 10 838524 (2022)
[25]Kinetic Model for Electron-Ion Transport in Warm Dense Matter
  S. Rightley and S. D. Baalrud
  Physical Review E 103 063206 (2021)
[24]Review of the First Charged-Particle Transport Coefficient Comparison Workshop
  P. E. Grabowski, S. B. Hansen, M. S. Murillo, L. G. Stanton, F. R. Graziani, A. B. Zylstra, S. D. Baalrud, A. D. Baczewski, L. X. Benedict, O. Certik, J. Clerouin, L. A. Collins, S. Copeland, A. A. Correa, J. Dai, J. Daligault, M. P. Desjarlais, M. W. C. Dharma-wardana, G. Faussurier, J. Jungman, G. Kagan, J. Haack, S. W. Haan, T. Haxhimali, A. Hayes-Sterbenz, Y. Hou, S. X. Hu, D. Jensen, D. Kang, J. D. Kress, Q. Ma, M. Marciante, E. Meyer, R. E. Rudd, D. Saumon, L. Shulenburger, R. L. Singleton Jr., T. Sjostrom, C. E. Starrett, C. Ticknor
  High Energy Density Physics 37 100905 (2020)
[23]Diffusion Coefficients in the Envelopes of White Dwarfs
  R. A. Heinonen, D. Saumon, J. Daligault, C. E. Starrett, S. D. Baalrud and G. Fontaine
  Astrophysical Journal 896, 2 (2020)
[22]Mean Force Kinetic Theory Applied to Self-Diffusion in Supercritical Lennard-Jones Fluids
  B. Scheiner and S. D. Baalrud
  Journal of Chemical Physics 152, 174102 (2020)
[21]Exploring the Crossover Between High-Energy-Density Plasma and Ultracold Neutral Plasma Physics
  S. D. Bergeson, S. D. Baalrud, C. L. Ellison, E. Grant, F. R. Graziani, T. C. Killian, M. S. Murillo, J. Roberts and L. G. Stanton
  Physics of Plasmas 26, 100501 (2019)
[20]Testing Thermal Conductivity Models with Equilibrium Molecular Dynamics Simulations of the One Component Plasma
  B. Scheiner and S. D. Baalrud
  Physical Review E 100, 043206 (2019)
[19]Effects of Coulomb Coupling on Stopping Power and a Link to Macroscopic Transport
  D. J. Bernstein, S. D. Baalrud and J. Daligault
  Physics of Plasmas 26, 082705 (2019)
[18]Mean Force Kinetic Theory: a Convergent Kinetic Theory for Weakly and Strongly Coupled Plasmas
  S. D. Baalrud, and J. Daligault
  Physics of Plasmas 26, 082106 (2019)
[17]The Barkas Effect in Plasma Transport
  N. Shaffer and S. D. Baalrud
  Physics of Plasmas 26, 032110 (2019)
[16]Reduction of Electron Heating by Magnetizing Ultracold Neutral Plasma
  S. K. Tiwari and S. D. Baalrud
  Physics of Plasmas 25, 013511 (2018)
[15]Transport Regimes Spanning Magnetization-Coupling Phase Space
  S. D. Baalrud and J. Daligault
  Physical Review E 96, 043202 (2017)
[14]Temperature Anisotropy Relaxation of the One-Component Plasma
  S. D. Baalrud, and J. Daligault
  Contributions to Plasma Physics 57, 238 (2017)
[13]Pair Correlation Functions of Strongly Coupled Two-Temperature Plasma
  N. R. Shaffer, S. K. Tiwari, and S. D. Baalrud
  Physics of Plasmas 24, 092703 (2017)
[12]Influence of Coupling on Thermal Forces and Dynamic Friction in Plasmas with Multiple Ion Species
  G. Kagan, S. D. Baalrud, and J. Daligault
  Physics of Plasmas 24, 072705 (2017)
[11]Thermodynamic State Variables In Quasi-Equilibrium Ultracold Neutral Plasmas
  S. K. Tiwari, N. R. Shaffer, and S. D. Baalrud
  Physical Review E 95, 043204 (2017)
[10]Effective Potential Theory for Diffusion in Binary Ionic Mixtures
  N. R. Shaffer, S. D. Baalrud and J. Daligault
  Physical Review E 95, 013206 (2017)
[9]Effective Potential Kinetic Theory for Strongly Coupled Plasmas
  S. D. Baalrud and J. Daligault
  AIP Conference Proceedings 1786, 130001 (2016)
[8]Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics
  J. Daligault, S. D. Baalrud C. E. Starrett, D. Saumon and T. Sjostrom
  Physical Review Letters 116, 075002 (2016)
[7]Plasma Transport Theory Spanning Weak to Strong Coupling
  J. Daligault and S. D. Baalrud
  American Institute of Physics Conference Proceedings 1668, 040002 (2015)
[6]Modified Enskog kinetic theory for strongly coupled plasmas
  S. D. Baalrud and J. Daligault
  Physical Review E 91, 063107 (2015)
[5]Effective Potential Theory: A Practical Way to Extend Plasma Transport Theory to Strong Coupling
  S. D. Baalrud, K. O. Rasmussen and J. Daligault
  Contributions to Plasma Physics 55, 209 (2015)
[4]Determination of the shear viscosity of the one-component plasma
  J. Daligault, K. O. Rasmussen and S. D. Baalrud
  Physical Review E 90, 033105 (2014)
[3]Extending plasma transport theory to strong coupling through the concept of an effective interaction potential
  S. D. Baalrud and J. Daligault
  Physics of Plasmas 21, 055707 (2014)
[2]Effective Potential Theory for Transport Coefficients across Coupling Regimes
  S. D. Baalrud and J. Daligault
  Physical Review Letters 110, 235001 (2013)
[1]Transport Coefficients in Strongly Coupled Plasmas
  S. D. Baalrud
  Physics of Plasmas 19, 030701 (2012)