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A generalization of the Lenard–Balescu equation is derived that includes wave-particle scattering by
collective instabilities in finite space-time domain plasmas. It is shown that wave-particle
interactions can dominate conventional particle-particle Coulomb scattering when finite times are
considered or convective instabilities are present in a medium of finite spatial extent before the
instabilities grow to nonlinear or turbulent amplitudes. The modified Lenard–Balescu operator
retains important physical properties including particle, momentum, and energy conservation laws
and the Boltzmann H-theorem. To demonstrate its utility, the theory is applied to the simple
example of convectively growing ion-acoustic instabilities in a finite spatial domain. © 2008
American Institute of Physics. �DOI: 10.1063/1.2979689�

I. INTRODUCTION

A collision operator for the linearized plasma kinetic
equation that describes nonequilibrium behavior in the pres-
ence of a class of collective instabilities is developed. Most
previous theories either describe the stable plasma limit of
these linear equations, e.g., the Lenard–Balescu equation,1,2

or resort to solving the nonlinear problem, cf. Ref. 3. How-
ever, if convective instabilities are present in a finite plasma,
or simply for a finite time in an absolutely unstable plasma,
instabilities may be virulent enough to enhance scattering but
not reach a nonlinear level where turbulence theories are
required. In this “quasiclassical” regime,4 a linear analysis is
warranted.

Plasma fluctuations and convective modes have been
studied previously by Kent and Taylor5 for an inhomoge-
neous plasma with a magnetic field using the “dressed par-
ticle method.” Enhanced electron scattering due to convec-
tive modes excited by the loss-cone instability in magnetic
mirror machines was explored by Baldwin and Callen.6 In
this work we use the “dressed particle method” to derive a
collision operator for unmagnetized plasmas and emphasize
generality before applying the theory to a specific problem
where the ion-acoustic instability is present. We show that
the presence of instabilities gives rise to a long range corre-
lation between particles that extends well beyond the con-
ventional Debye sphere to which Coulomb interactions are
confined in stable plasmas. The analysis is shown to be valid
over a finite time or space domain depending on what type of
instabilities, i.e., absolute or convective, are present.

Amplification of the scattering rate, similar to that de-
rived in Ref. 6, is found for virulent convective instabilities.
This work emphasizes similarities between the resultant col-
lision operator and the conventional Lenard–Balescu colli-
sion operator. Recognition of this similarity aids in deriving
properties a physically meaningful collision operator should
possess such as conservation laws and the Boltzmann
H-theorem. By doing so, we generalize the Lenard–Balescu

equation, which is typically referred to as a highly accurate
correction of the Landau collision operator,7,8 to describe
scattering by a fundamentally different physical mechanism
that can be applied to an entirely new class of problems.
Problems of interest involving convective instabilities in-
clude collisions in the presence of the ion-acoustic
instability,9 non-Maxwellian plasmas,10 and anomalous
resistivity.11,12 Previous studies have relied largely on nu-
merical methods or quasilinear theory. In this work, the role
of a finite-domain �time or space� is emphasized.

This paper is organized as follows: Sec. II contains a
derivation of a collision operator for stable, as well as un-
stable, plasmas. Amplification of scattering by unstable
modes is interpreted for a finite time or space domain de-
pending on the type of instability in Sec. II B. The validity of
the linear model is discussed in Sec. III. Section IV lists
important physical properties of the collision operator with
proofs where relevant. As an example, the ion-acoustic insta-
bility is considered in Sec. V to illustrate enhanced scattering
by convective instabilities. Section VI summarizes the pa-
per’s conclusions.

II. KINETIC EQUATION

The plasma kinetic equation can be derived from the
Klimontovich equation, dF /dt=0, by an appropriate average
of the “exact” distribution function

F � �
i

N

��x − xi�t����v − vi�t�� . �1�

Here x and v are the phase space coordinates while xi and vi

represent the position of particle i in phase space. The quan-
tity d /dt is the convective derivative in the six-dimensional
phase space �x ,v�. The plasma kinetic equation then follows
from separating the smoothed and discrete particle compo-
nents of F, F= f +�f , and the electromagnetic fields, where
f ��F� and ��f�=0. Here, the bracket denotes an ensemble
average. The desired plasma kinetic equation is obtained
from an ensemble average of the Klimontovich equation us-a�Electronic mail: sdbaalrud@wisc.edu.
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ing a linear closure scheme to determine the particle-
discreteness distribution �f .13,14

In this paper we assume there is no “ensemble aver-
aged,” i.e., equilibrium, electric or magnetic fields, �E�=0
and �B�=0, and only electrostatic perturbations are present
so �B=0. With these assumptions the plasma kinetic equa-
tion is

df

dt
=

�f

�t
+ v ·

�f

�x
= C�f� , �2�

where the collision operator is13,14

C�f� � −
�

�v
· Jv and Jv �

q

m
��E�f� �3�

is the collisional current induced by particle-discreteness
effects.

An equation for �f is obtained by subtracting Eq. �2�
from the Klimontovich equation,

d�f

dt
= −

q

m
	�E ·

�f

�v
+ �E ·

��f

�v
− 
�E ·

��f

�v
�� . �4�

A linearized form of Eq. �4�, which neglects the last two
terms, is used to derive the conventional Lenard–Balescu
collision operator for a stable plasma. For a stable plasma,
the last two terms of Eq. �4� can be rigorously shown to be
smaller than the linear terms by O�1 /n�De

3 ��1.15

The linearized form of Eq. �4� can also be applied to
unstable plasmas in a finite space-time domain as long as the
fluctuation level in the unstable region of the plasma remains
small enough. Formally the requirement is


�E ·
��f

�v
− 
�E ·

��f

�v
�
 � 
�E ·

�f

�v

 , �5�

to justify the linear theory. In Sec. III we show that for �
�kvTe this is equivalent to q�� /Te�1. Absolute instabilities
must be confined to a finite time domain and convective
instabilities to a finite space domain. If instabilities are al-
lowed to grow over a long enough domain to violate Eq. �5�,
then nonlinear or turbulence methods must be used.3

In the following, the linear form of Eq. �4�,

d�f

dt
= −

q

m
�E ·

�f

�v
�6�

is used for each species s along with Gauss’ law,

�

�x
· �E = 4��

s

qs� d3v�f , �7�

to derive a collision operator, C�f�, that is valid for unmag-
netized plasmas that are either stable or unstable in a finite
space-time domain.

A. Collision operator

To solve for the collision operator, we employ the
method of characteristics along with a combined Fourier
transform in space and Laplace transform in time. In the
absence of equilibrium electric and magnetic fields, the char-
acteristics are the free particle trajectories v�=v and x�=x

+v�t�− t� with initial conditions x��t�= t�=x and v��t�= t�=v.
Integrating Eq. �6� along the characteristics gives

�f�x,v,t� = �f�t� = 0� −
q

m
�

0

t

dt��E ·
�f

�v�
, �8�

where �f�t�=0� is the initial condition of the “exact” distri-
bution �f =F− f . Fourier and Laplace transforming Eq. �8�
and inserting the characteristic equations yields an expres-
sion for the transformed distribution perturbation

� f̂�k,v,�� =
i� f̃�k,v,t� = 0�

� − k · v
−

q

m
k ·

�f

�v

��̂

� − k · v
, �9�

where the “hat” denotes Fourier and Laplace transformed
variables and the “tilde” denotes only Fourier transformed
variables. We have also written �E in terms of the electric
potential, �E�x , t�=−����x , t� /�x.

Substituting Eq. �9� into the Fourier–Laplace transform
of Gauss’s law, Eq. �7�, leads to

��̂ = �
s

4�qs

k2�̂
� d3v

i� f̃�t� = 0�
� − k · v

, �10�

where

�̂ = 1 + �
s

4�qs
2

k2ms
� d3v

k · �fs/�v

� − k · v
�11�

is the familiar dielectric function for an equilibrium-field-
free plasma. Equation �10� can be simplified by substituting
in

� f̃�t� = 0� = �
i=1

N

e−ik·xio��v − vio� − �2��3��k�f , �12�

where vio�v�t=0�, to give

��̂ = �
s,i=1

N
4�qs

k2�̂

ie−ik·xio

� − k · vio
. �13�

Here we have used for the initial conditions that F satisfies
F�t=0�=�i��x−xio���v−vio� and that the Fourier terms of f
are given by �2��3��k�f; f is essentially uniform in space
relative to spatial scales of �f . The term involving f produces
no contribution to �� due to quasineutrality,

�
s

qs� d3v
��k�f

� − k · v
=

��k�
�

�
s

nsqs = 0. �14�

Using Eqs. �12� and �13�, we find an expression for

� f̂�k ,v ,�� from Eq. �9�,

� f̂ = �
s,i=1

N � ie−ik·xio��v − vio�
� − k · v

−
i�2��3��k�f

� − k · v

−
4�qqs

mk2�̂

ik · �f/�v

� − k · v

e−ik·xio

� − k · vio
� , �15�

which along with Eq. �13� determines the transform of the
collision operator.
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Since the transform of the collisional current, Ĵv, is the
ensemble average of the convolution of electric field and
distribution perturbations, it is convenient to define different

transform variables for �Ê and � f̂ . Keeping the notation of
Eq. �15� the same and changing that of Eq. �13�, we write

�Ê�k�,��� = �
s,l=1

N
4�qs

k�2�̂�k�,���
k�e−ik�·xlo

�� − k� · vlo
. �16�

Then the transformed collisional current is defined by

Ĵv�k,k�,v,�,��� =
q

m
��Ê���,k��� f̂��,k,v�� , �17�

where the ensemble average is16

�. . .� � �
l=1

N � d3xlod3vlo
f�vlo�
nV

�. . .� , �18�

in which n denotes density and V denotes volume.
Taking the ensemble average of the product of Eqs. �15�

and �16� gives an array of terms,

Ĵv =
q

m
�
l=1

N � d	l�
i=1

N

�Êl�gi −
i�2��3��k�f

� − k · v
� , �19�

where

d	l �
d3xlod3vlo

nV
f�vlo� �20�

and gi is the first and last terms of Eq. �15�. For unlike
particle terms, i� l, the xlo integral yields �2��3��k��. Since
the rest of these terms tend to zero in the limit that k�→0,
the “unlike” particle terms vanish upon inverse Fourier
transforming.17 By the same argument the last term vanishes
as well. We are then left with only “like” particle correlations
after the ensemble average. For these i= l terms the xlo inte-
gral yields

� d3xio exp�− i�k + k�� · xio� = �2��3��k + k�� . �21�

Since only “like” particles remain, vio is a dummy variable
of integration in the resulting equation and the sum over all
particles becomes simply the total number of particles in the
volume, �i=1

N /V=N /V=n. Labeling vio=v�, the transformed
collisional current is found to be

Ĵv =
4�q2

mk2 � d3v�f�v��
ik��2��3��k + k��

�̂�k�,������ − k� · v��


 ���v − v��
� − k · v

−
4�

k2m
k

·
�f�v�

�v

qs
2

�� − k · v��� − k · v���̂�k,��
� . �22�

Symmetry between the two terms in this expression becomes
explicit by evaluating the trivial v� integral in the first term,
then multiplying this term by �̂ / �̂ where the numerator is
written in terms of Eq. �11� with v↔v�,

Ĵv =
�4��2q2qs

2

mk4 � d3v�
ik��2��3��k + k��

�̂�k�,����̂�k,���� − k · v��� − k · v��


� f�v�k · �f�v��/�v�

ms��� − k� · v�
−

f�v��k · �f�v�/�v

m��� − k� · v��
�

+
4�q2

mk2 f�v�
ik���k + k���2��3

�̂�k�,������ − k� · v��� − k · v��̂�k,��
.

�23�

The last term in Eq. �23� vanishes upon inverse Fourier
transforming because it has odd parity in k after the k� inte-
gral. Further manipulations allow one to write the remaining
expression for the collisional current in the “Landau” form19

Jv =� d3v�QJ�v,v�� · 	 1

ms�

�

�v�
−

1

ms

�

�v� fs�v�fs��v�� ,

�24�

where QJ is the tensor kernel

QJ�v,v�� �
�4��2qs

2qs�
2

ms
� d3k

�2��3

− ikk

k4 p1�k�p2�k� , �25�

in which p1 and p2 are defined by

p1�k� � �
−�+i�

�+i� d�

2�

e−i�t

�̂�k,���� − k · v��� − k · v��
�26�

and

p2�k� � �
−�+i�

�+i� d��

2�

��e−i��t

�̂�− k,������ + k · v���� + k · v��
.

�27�

We have also introduced notation denoting the field particle
species explicitly with s�. Writing Jv in the Landau form of
Eq. �24� will be convenient for illuminating the physics em-
bedded in the collision operator as well as for proving
important physical properties of the collision operator in
Sec. IV.

The integrals in p1 and p2 can be evaluated along the
Landau contour using Cauchy’s integral theorem to give
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p1 = i��j

e−i�jt


 ��̂�k,��
��



�j

�� j − k · v��� j − k · v��

−
i���k · �v − v���

�̂�k,k · v�
e−ik·v�t� , �28�

where j denotes each mode, i.e., the dispersion relations,
which are the roots of the dielectric function �̂�k ,��=0 from
Eq. �11�. In Eq. �28� we have combined the last two terms
which come from the inverse Laplace transform by using the
fact that exp�−ik · �v−v��t� is rapidly oscillating for large t
except at v=v�, so �̂�k ,k ·v��� �̂�k ,k ·v�. Furthermore, we
have identified the relation

−
e−ik·v�t

�̂�k,k · v��
�1 − e−ik·�v−v��t

k · �v − v��
� � −

i���k · �v − v���
�̂�k,k · v�

e−ik·v�t,

�29�

where the Dirac delta function definition is strictly correct
only in the limit t→�. By similar arguments, Eq. �27� be-
comes

p2 = i��
j

� j�e
−i�j�t


 ��̂�− k,���
���



�j�

�� j� + k · v��� j� + k · v��

+
eik·vt

�̂�− k,− k · v�
+

i�k · v���k · �v − v���eik·vt

�̂�− k,− k · v� � ,

�30�

where � j� solves �̂�−k ,���=0.
Putting the product of Eqs. �28� and �30� into Eq. �25�

gives an integral expression with six terms in the integrand.
One term, which is the product of the last terms from Eqs.
�28� and �30�, is an odd function of k and therefore vanishes
after integration. Three of the terms are rapidly oscillating in
time �exp�
ik ·vt� and provide negligible contributions af-
ter integration compared to the remaining two terms which
survive. We are then left with the following expression:

QJ =
2qs

2qs�
2

ms
� d3k

kk

k4 � ��k · �v − v���
�̂�k,k · v��̂�− k,− k · v�

+ i�
j

� j�e
−i�j�t


 ��̂�− k,���
���



�j�

�� j� + k · v��� j� + k · v��



e−i�jt


 ��̂�k,��
��



�j

�� j − k · v��� j − k · v��� . �31�

Equation �31� can be further simplified by applying the real-
ity conditions, �̂�−k ,−k ·v�= �̂*�k ,k ·v�, where � denotes the
complex conjugate, and � j =�R,j + i� j �where �R,j and � j are
the real and imaginary parts of the jth solution of the disper-
sion relation� obey the properties that �R,j is an odd function
of k while � j is an even function of k. It follows then that
� j�=−�

j
*, and


 ��̂�− k,���
���



�j�

= − 
 ��̂*�k,��
��



�j

. �32�

Writing � j� in terms of its real and imaginary parts in the last
term of Eq. �31�, the real part is then odd in k and hence
vanishes upon integrating. The second term in Eq. �31� is
thus only due to the imaginary part and can be written as

�
j

e2�jt

� j
 ��̂�k,��
��



�j

2 � � j

��R,j − k · v�2 + � j
2�


� � j

��R,j − k · v��2 + � j
2� . �33�

For � j � ��R,j −k ·v� we can approximate the expressions in
square brackets using the Lorentzian representation for a
Dirac delta function

�

x2 + �2 � ���x� if
�

x
� 1. �34�

Thus, we find a compact expression for QJ that captures
the physics of both stable and unstable plasmas in a finite
space-time domain,

QJ =
2qs

2qs�
2

ms
� d3k

kk

k4 ��k · �v − v���� 1

��̂�k,k · v��2
+ �

j

����R,j − k · v�e2�jt

� j
 ��̂�k,��
��



�j

2 � . �35�

092111-4 Baalrud, Callen, and Hegna Phys. Plasmas 15, 092111 �2008�

Downloaded 15 Jul 2010 to 128.104.1.219. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



The first term is the conventional Lenard–Balescu term that
describes Coulomb interactions between particles in the
plasma that are Debye shielded due to the plasma polariza-
tion. The second term represents a longer range interaction
that arises from the nature of the plasma dielectric and is due
to unstable modes that are excited from the thermal fluctua-
tions of individual particles interacting with the Coulomb
fields of other charged particles. In the stable plasma limit,
� j �0, the wave-particle interaction term rapidly decays and
is entirely negligible, thus returning the Lenard–Balescu
equation. The linear plasma kinetic equation is then dfs /dt
=�s�C�fs , fs��, where

C�fs, fs�� = −
�

�v
·� d3v�QJ · 	 1

ms�

�

�v�
−

1

ms

�

�v� fs�v�fs��v�� ,

�36�

with QJ given by Eq. �35�. However, the exp�2� jt� term needs
further consideration in the context of unstable plasmas.

The small k integration limit in Eq. �35� is resolved by
accounting for plasma polarization and is a main result of the
generalization of Landau’s collision operator provided by
Lenard and Balescu’s form. However, the integral logarith-
mically diverges for the first term in the large k limit because
we have not properly accounted for large-angle scattering
when two point particles are in very close proximity to one
another. To resolve this limit, the integral is typically cutoff
at 1 /bmin, where bmin is the minimum impact parameter, cf.
Ref. 14. The same cutoff is appropriate for this term whether
the plasma is stable or unstable because in either case it
describes the interaction between individual particles which
is limited in closeness by bmin. The second term describing
wave-particle interactions does not diverge in either the large
or small k limit, so no cutoff is required. Additionally, wave
damping mechanisms may exist for large k that effectively
truncate the upper limit of integration.

An alternative, but equivalent, form for the kernel QJ in
Eq. �35� is

QJ =
qs

2

ms
� d3k

�2��3 ��iẼ�k,t��2��k · �v − v��� , �37�

where �iẼ is the inverse Laplace transform of Eq. �16�. The
equivalence of Eqs. �35� and �37� can be checked by an
analysis similar to that above, including the neglect of rap-
idly oscillating “cross” terms in k space, but without the

ensemble average. This alternative form for QJ shows explic-
itly that it is the “discrete particle” electric fields around
individual particles that causes scattering. When instabilities
are not present, these fields are the usual Coulomb fields of
the charged particles, which are Debye shielded due to
plasma polarization. In this case, scattering is effectively lim-
ited to particles within a Debye sphere of each other. The
presence of instabilities, however, gives rise to a longer
range interaction between particles mediated by waves ex-
cited through the plasma dielectric. In this manner scattering
between two particles can reach well beyond a Debye sphere.

B. Interpretation of e2�t

A proper interpretation of time, t, in Eq. �35� requires
consideration of the nature of instabilities present in the
plasma. If the instabilities are absolute, i.e., the modes grow
continually in time at a fixed spatial location with a vanish-
ing group velocity, one can consider the collision operator at
a fixed location to be dependent on time and hence f would
evolve in time at that location. For example, if an absolute
instability were to be turned on at some time to, the time t in
Eq. �35� would simply refer to the progression of time, at
some location, after the instability is present. In this case the
above analysis will hold only for a few growth times, �
�1 /�, before nonlinear effects become important. The linear
theory, however, would be valid for the short time scale evo-
lution of plasmas with absolute instabilities.

Convective modes, on the other hand, propagate through
the plasma with a finite group velocity vg. For these insta-
bilities the fluctuation level at a fixed location in space does
not grow or decay in time; rather, the waves grow as they
propagate and thus the fluctuation amplitude changes for dif-
ferent spatial locations. In this case, time t in Eq. �35� is the
time it takes a growing mode to travel from its origin to the
spatial location of interest. For convective modes, f does not
evolve in time at a fixed spatial location; rather, it evolves in
space along the direction of propagation of the convective
modes. Time is thus interpreted in a frame of reference mov-
ing with the group velocity of the wave to yield

2�t = 2�
xo�k�

x

dx� ·
vg�

�vg�2
�38�

in which xo�k� is the location where the mode with wave-
number k becomes unstable, x is the measurement location,
and x� is the path between xo and x that the mode with
wavenumber k follows.

For convective instabilities in a homogeneous finite do-
main, the same k are unstable throughout the region since the
plasma dielectric function is uniform. In this case the coor-
dinate system can be chosen such that xo�k�=0. However, if
small anisotropies are present, or if scattering by either the
convective instabilities or Coulomb interactions alters the
plasma dielectric, different k may be unstable at different
locations in the domain and care has to be taken in determin-
ing the spatial integration limits.

III. VALIDITY OF THE LINEAR MODEL

To estimate the domain length over which instabilities
can grow �either in time for absolute instabilities or space for
convective instabilities� before nonlinear effects become im-
portant we need to consider Eq. �5�. A conservative estimate
for the maximum domain length can be obtained by consid-
ering just a single term from the left-hand side which implies
the requirement ��f � / f �1. Equations �13� and �15� lead to
the scaling relationship
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� f̂ �
q

m

k · �f/�v

� − k · v
��̂ . �39�

Typically for electrons �−k ·v�kvTe for a characteristic
thermal electron speed vTe. Using this, one finds the validity
condition for the linear model reduces to the intuitive re-
quirement that the Coulombic potential energy level of the
fluctuations cannot exceed the ambient thermal energy of the
plasma, q�� /Te�1. The more general condition is

4�e2

m

1

f

�f

�v
·� d3k

k

k2���k · �v − v���
�̂�k,k · v�

+ �
j

e�jt

�� j − k · v��� j − k · v��
 ��̂

��



�j

� � 1. �40�

It is difficult to extract any more information from Eq.
�40� without specifying the nature of particular instabilities.
A specific example is evaluated in Sec. V. To check that Eq.
�40� is consistent with that of previous models when the
plasma is stable, consider a typical illustrative example of
the Lenard–Balescu equation when Debye shielding is in-
cluded, �̂=1+1 /k2�De

2 . In this case, Eq. �40� reduces to
ln � /n�De

3 �1, which is consistent with previous analyses
which used the BBGKY hierarchy to justify the derivation of
the Lenard–Balescu equation using the test particle
method.20 Here ���D /bmin, where bmin is the minimum im-
pact parameter.

IV. PHYSICAL PROPERTIES
OF THE COLLISION OPERATOR

A physically meaningful collision operator should obey
certain properties, such as, conservation laws and the Boltz-
mann H-theorem. In particular, Eq. �36� obeys properties
�a�–�e� below. The important features of the collision opera-
tor required to prove properties �a�–�c� are that it can be
written in the Landau form of Eq. �24� and that

QJ · �v − v�� = 0, �41�

which follows from the fact that QJ�v ,v��=QJ�v� ,v�. Since QJ

exhibits these features, proof of properties �a�–�c� for Eq.
�35� are identical to those for the Lenard–Balescu equation
provided by Lenard in his original work.1 Therefore, we omit
the detailed proofs here.

�a� Conservation of particle density, momentum, and en-
ergy. Conservation of density is simply a statement that col-
lisions, whether through interaction with waves or other par-
ticles, do not create or destroy particles. This statement is
described by

� d3vC�fs� = 0. �42�

Conservation of momentum,

� d3vmsvC�fs, fs�� +� d3vms�vC�fs�, fs� = 0, �43�

states that momentum lost by one species is gained by the
other species. Coulomb electric fields and waves are each an
intermediary for the momentum transfer. Equation �43� also
implies that momentum is conserved for collisions within a
species. A conservation of energy property is also present,

� d3v
1

2
msv

2C�fs, fs�� +� d3v
1

2
ms�v

2C�fs�, fs� = 0. �44�

�b� If f �0 initially, then f �0 always. This property
guarantees that f stays physically meaningful throughout the
time evolution.

�c� The Maxwellian is an equilibrium for any species.
The Maxwellian distribution with flow fM�v�
=exp�−Av2 /2+B ·v+C�, in which A�0, B and C are con-
stants, satisfies C�fM , fM�=0. Therefore it is a stationary, i.e.,
equilibrium, solution.

�d� C�f� is Galilean invariant. Proof: Transforming co-
ordinates to w�v−Vf and w��v�−Vf changes the charac-
teristic equations to x�=x+ �w+V f��t�− t� and w�=w with
the same initial conditions x��t�= t�=x and w��t�= t�=w.
This introduces a Doppler shift into Eqs. �9�–�11�, where
�↔�+k ·Vf when v↔w. By defining the variables

�̄ � � + k · V f and �̄� � �� + k · V f �45�

which satisfy d3�=d3�̄ and � /��̄=� /��, we can replace �
with �̄, �� with �̄�, v with w, v� with w� and the entire
analysis of Sec. II A can be repeated in these new coordi-
nates. Thus, the collision operator, Eq. �36�, is Galilean in-
variant. Therefore the kernel satisfies the Galilean invari-
ance, Q�v ,v��=Q�w ,w��, as well.

�e� Boltzmann H-theorem.21 The H-functional,

H �� d3vf�v�ln f�v� �46�

satisfies dH /dt�0 for any distribution function f�v�. Fur-
thermore, as t→�, f�v� always tends to the Maxwellian fM

=exp�−Av2 /2+B ·v+C�.
Proof: From the definition of H,

dH
dt

=� d3v�1 + ln f�
�f

�t
. �47�

Putting in df /dt=C�fs�, where C�fs� is given in Eq. �36�,
then adding it to the form of the same expression with v
switched with v� gives the quadratic form

2
dH
dt

= −
1

ms
� d3v� d3v�X · QJ�v,v�� · X , �48�

where

X �
� ln fs�v��

�v�
−

� ln fs�v�
�v

. �49�

Using Eq. �35� for QJ , writing ���R,j −k ·v� in the form given
in Eq. �34� and performing one k integral yields
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X · QJ · X =
2qs

4

ms
� d2k

�k · X�2

k4�v − v��� 1

��̂�k,k · v��2

+ �
j

e2�jt


 ��̂�k,��
��



�j

2

���R,j − k · v�2 + � j
2�� ,

�50�

which is positive for all v and v�. Thus, one finds that

dH
dt

� 0 �51�

for all f . Equality, i.e., dH /dt=0, only holds when X is
parallel to the vector v−v� which implies that f must have
the general Maxwellian form

f�v� = fM�v� = exp�− 1/2Av2 + B · v + C� , �52�

where the five constants A, B, and C are determined by the
initial conditions. Proof of this final step is provided by
Lenard.1

The H-theorem shows that the plasma evolves toward a
Maxwellian equilibrium not only by Coulomb scattering be-
tween individual particles, but also by wave-particle scatter-
ing due to instabilities in a finite space-time domain. The
time scale on which equilibrium is realized is set by the
scattering rate which, for unstable plasmas, is often domi-
nated by wave-particle interactions. That is to say, a non-
Maxwellian distribution will become Maxwellian much
more rapidly in the presence of instabilities, for example,
convective instabilities, than it would otherwise. A simple
illustrative example is considered in the next section.

V. APPLICATION TO THE ION-ACOUSTIC INSTABILITY

To illustrate enhanced scattering by convective modes
we consider the ion-acoustic instability excited by a Max-
wellian ion distribution flowing relative to a stationary Max-
wellian electron distribution with fluid flow velocity u. For
flowing Maxwellian distributions the dielectric function, Eq.
�11� reduces to

�̂�k,�� = 1 − �
s

�ps
2

k2vTs
2 Z���s� , �53�

where �ps��4�nsqs
2 /ms is the plasma frequency of species

s, Z� is the derivative of the plasma dispersion function with
respect to �s,

�s �
� − k · us

kvTs
, �54�

and k��k�.
In this example we assume that ue=0 and Te�Ti. For

these parameters, the ion-acoustic instability is excited. Fur-
thermore, we assume that �e�1 and �i�1. In this case the
plasma dispersion function can be expanded in a power se-
ries for electrons and asymptotically for ions to yield

�̂�k,�� = 1 +
1

k2�De
2 −

�pi
2

�� − k · u�2 + i
��

k2�De
2

�

kvTe
. �55�

For this example, we have assured that ion Landau damping
is negligible due to the cold ion approximation Te�Ti. Solv-
ing for the dispersion relation, �̂=0 from Eq. �55�, reveals
the two solutions

�
 = 	k · u 

kcs

�1 + k2�De
2 �


�1 � i��me

8Mi

1

�1 + k2�De
2 �3/2� , �56�

where cs
2=Te /Mi is the sound speed. At most, only one un-

stable mode is present for any particular wavenumber k, and
the other mode is stable for that k. The group velocity of the
unstable mode is in the ion flow direction and the instability
criterion for the flow speed is given by

�k · u� �
kcs

�1 + k2�De
2

. �57�

The real and imaginary parts of the dispersion relation,
Eq. �56�, are plotted as a function of k�De in Fig. 1 for a
particular k ·u. In the figures, we assume that the ion fluid
flow is a nonzero constant, in particular, u�2cs over a finite
length L and is zero elsewhere, as illustrated in Fig. 2. We
then estimate the collision frequency in the unstable region
as compared to the stable region and answer the following
questions: �1� What is the minimum length Lmin, where
wave-particle scattering dominates particle-particle scatter-
ing in the unstable region? �2� What is the maximum length
Lmax where nonlinear effects become important and our
analysis is superseded by a nonlinear one?

The collision frequency for electron-ion scattering, v
�vTe and v��vTi, can be estimated from the plasma kinetic
equation df /dt=C�f�⇒��C�f� / f . From Eq. �36�, we esti-
mate for electrons

� �
n

mevTe
2 Q , �58�

where we estimate Q as a scalar. To highlight the different
mechanisms for scattering we split Q into two terms Q
�QLB+Qw, where QLB is the Lenard–Balescu kernel due to
Coulomb scattering between particles and Qw is due to wave-
particle scattering from the unstable part of k-space.

To estimate the Lenard–Balescu term requires the
plasma dielectric evaluated at k ·v�kvTe, which leads to

��̂�k,k · v��2 � 	1 +
1

k2�De
2 �2

+
�

k4�De
4 , �59�

where we have used kvTe��pi. Using this in the k-space
integral for QLB and integrating from k=0 to k=1 /bmin,
where bmin is the minimum impact parameter, gives the fa-
miliar result
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QLB �
2�e4

mevTe
ln � �60�

in which ���De /bmin�1.
An estimate for Qw requires the scaling


 ��̂

��



�R

2

� 4
�1 + k2�De

2 �3

k6�De
4 cs

2 , �61�

where we have neglected the higher order term resulting
from the imaginary part of �̂. Using this along with k ·v
�kvTe��R leads to the estimate, using w�k�De,

Qw �
�e4

mevTe
�

0

�

dw
w3

�1 + w2�3 exp�2�t� . �62�

The exponent from Eq. �38� reduces to 2�t��w / �1+w2�3/2,
where

� ���me

2Mi

x

�De
�63�

for this example as long as u�cs.
Upon estimating the integral in Eq. �62� for ��1, we

find

Qw �
QLB

ln �

1

8

��

��
e�/�8. �64�

Smaller values of � do not contribute to enhanced scattering
since Qw�QLB for this case. Equation �64� shows that wave-
particle scattering becomes dominant when

1

8 ln �

��

��
e�/�8 � 1, �65�

which for ln ��10 implies ��14 so wave-particle scatter-
ing dominates for L�Lmin, where

Lmin � 28� 2Mi

�me
�De. �66�

Having answered question �1�, we now seek to deter-
mine the distance Lmax beyond which nonlinear effects be-
come important. Equation �40� for this example reduces to

1

n�De
3 �

0

�

dw
w

�1 + w2�3/2�
j

e�jt � 1, �67�

where we have used � j −k ·v�kvTe and � j −k ·v��kcs. Us-
ing the definition in Eq. �63� and evaluating the integral for
��1 in Eq. �67� yields the condition

1

n�De
3 �8�

�
e�/4�2 � 1, �68�

which determines the space domain in which the linear
theory can be applied to our example. Conditions �65� and
�68� can be solved using the Lambert W-function to show
that wave-particle scattering dominates and the linear theory
is valid when

Stable

� �u x

2 su c�

0 L x

0�j� 0j� �0j� �

StableUnstable

minL maxL

FIG. 2. Schematic drawing of the example problem. A finite ion flow of u
�2cs is imposed over a finite region L of the otherwise stable plasma.

R

pi

�
�

pi

j

e

i

m
M

�
�

22
Dek �

(a)

(b)

22
Dek �

FIG. 1. �Color online� �a� Real part of the frequency determined from the
ion-acoustic dispersion relation normalized to the ion plasma frequency as a
function of k�De with k ·u /k=2. �b� Corresponding imaginary parts. In this
case �+ �red, dashed line� is damped while �− �blue, solid line� is unstable.
If the sign of k is changed �+ grows while �− damps since �+�−k�=−�−�k�.
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− �2W�−
�

64�2�ln ��2� � � � − 2�2W�−
4�

�2�n�De
3 �2� .

�69�

A plot of the conditions in Eq. �69�, which shows the param-
eter space in which both the linear theory is valid and wave-
particle scattering dominates, is shown in Fig. 3 for five de-
cades in the plasma parameter n�De

3 . In Fig. 3 we have taken
ln �� ln�n�De

3 �.
As a concrete example, if n�De

3 �103 for an electron-
proton plasma, then Lmax�103�De. A typical Debye length
for a low-temperature laboratory plasma may be �De

�10−2 cm. Thus, the unstable region where the linear wave-
particle scattering can be dominant and applicable �i.e., not
nonlinear� can be up to about 10 cm in length for this case.

The effective collision frequency in terms of � can thus
be written

�eff � �o	1 +
1

8 ln �
��

�
e�/�8� �70�

which illustrates each mechanism for particle scattering and
in which

�o �
�pe

8�n�De
3 ln � �71�

is a reference collision frequency. A plot of each source of
scattering as a function of the dimensionless position � is
shown in Fig. 4. It is apparent that wave-particle scattering
dominates in the unstable region of the plasma.

VI. CONCLUSION

A formalism similar to Lenard–Balescu theory for de-
scribing the collisional equilibration of plasma distribution
functions is developed to include plasmas which are un-
stable, either convectively or absolutely, in a finite space or
time domain, respectively. The collision operator, Eq. �36�, is
written in the “Landau” form which elucidates the physics of
scattering between the test particle species s and any species
s� �including self-collisions within s itself�. Modifications to
the collision operator which include wave-particle interac-

tions due to plasma instabilities are contained in the kernel QJ

of Eq. �35�. Wave-particle scattering acts to extend the range
over which charged particles can interact to well beyond the
conventional Debye sphere within which conventional Cou-
lomb interactions are confined.

Writing the collision operator in the “Landau” form with

kernel QJ enables simple proofs that it satisfies conservation
of particles, momentum, and energy as well as Galilean in-
variance and the Boltzmann H-theorem. It has also been
shown that the Maxwellian distribution is the only equilib-
rium solution. A direct consequence is that a non-Maxwellian
distribution function equilibrates to a Maxwellian much
more rapidly when instabilities are present than it does in a
stable plasma. The theory’s validity is limited to the finite
space-time domain described in Eq. �40�. Outside this do-
main nonlinear effects may become important.

The ion-acoustic instability is a convective mode which
exemplifies important consequences of the linear wave-
particle scattering theory. In particular, for a constant ion
fluid velocity of order the sound speed relative to a stationary
electron distribution, the minimum length for which wave-
particle scattering dominates the conventional particle-
particle scattering is O��De

�Mi /me�. An example problem
with ion-acoustic instabilities is constructed that exhibits a

 

3
 AJ!

linear,

nonlinear

wave-particle

particle-particle

max 

min 

FIG. 3. �Color online� Plot of the maximum dimensionless distance �max

such that the linear analysis is valid ����max� and the minimum dimen-
sionless distance �min such that wave-particle interactions dominate the con-
ventional particle-particle scattering. For ���max, nonlinear effects may be
significant.

�

o

eff

�
�

FIG. 4. �Color online� The effective collision frequency, �eff, normalized to
the reference collision frequency, �o, for Coulomb collisions, i.e., the
Lenard–Balescu collision operator �red, dotted line�, due to wave-particle
interactions �blue, dashed line� and the total �black, solid line�. Here the ion
flow, u�2cs, is present for 0���35 and is zero otherwise and we have
assumed ln �=10.
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case that the linear particle-discreteness theory can describe,
but which cannot be accurately predicted using stable plasma
or nonlinear theories. In this example, linear electrostatic ion
acoustic waves are excited from the thermal fluctuations in-
herent in the plasma. These waves effectively extend the in-
teraction distance of individual discrete particles, which en-
hances the collision frequency resulting in more rapid
relaxation to the Maxwellian equilibrium.
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