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The Bogoliubov–Born–Green–Kirkwood–Yvon �BBGKY� hierarchy is used to derive a
generalization of the Lenard–Balescu plasma kinetic equation that accounts for wave-particle
scattering due to instabilities that originate from discrete particle motion. Application to convective
instabilities is emphasized for which the growing waves either propagate out of the domain of
interest or modify the particle distribution to reduce the instability amplitude before nonlinear
amplitudes are reached. Two such applications are discussed: Langmuir’s paradox and determining
the Bohm criterion for multiple ion species plasmas. In these applications, collisions are enhanced
by ion-acoustic and ion-ion two-stream instabilities, respectively. The relationship between this
kinetic theory and quasilinear theory is discussed. © 2010 American Institute of Physics.
�doi:10.1063/1.3346448�

I. INTRODUCTION

Plasma kinetic theories typically assume either that the
plasma is stable, in which case scattering is dominated by
conventional Coulomb interactions between individual par-
ticles, or that fluctuations due to instabilities have grown to
such large amplitudes that collective wave motion is the
dominant mechanism for scattering particles. In this work,
we consider an intermediate regime: weakly unstable plas-
mas in which collective fluctuations may be, but are not nec-
essarily, the dominant scattering mechanism and for which
the collective fluctuation amplitude is sufficiently weak that
nonlinear effects are subdominant. We emphasize convective
instabilities that either leave the plasma �or region of inter-
est� or modify the particle distribution functions to limit the
fluctuation amplitude before nonlinear amplitudes are
reached. We discuss applications for each of these cases and
show that collective fluctuations can be the dominant mecha-
nism for scattering particles even when they are in a linear
growth regime. The collision operator we discuss here was
first derived in Ref. 1 using a test-particle approach. In this
paper, we derive the same operator starting from a funda-
mentally different formalism using the Liouville equation
and the BBGKY hierarchy �after Bogoliubov,2 Born,3

Green,3 Kirkwood,4 and Yvon5�.
Kinetic equations for weakly unstable plasmas have also

been developed by other authors. Frieman and Rutherford6

used a BBGKY hierarchy approach, but focused on nonlinear
aspects such as mode coupling that enters the kinetic equa-
tion at higher order in the hierarchy expansion than we con-
sider in this work. The part of their collision operator that
described collisions between particles and collective fluctua-
tions also depended on an initial fluctuation level that must
be determined external to the theory. Rogister and Oberman7

started from a test-particle approach and focused on the lin-
ear growth regime, similar to the approach in Ref. 1, but the

fluctuation-induced scattering term in their kinetic equation
also depended on specifying an initial fluctuation level exter-
nal to the theory. Imposing an initial fluctuation level is also
a feature of Vlasov theories of fluctuation-induced scattering,
such as quasilinear theory.8,9 A distinguishing feature of this
work �and Ref. 1� is that the initial fluctuation level, which
subsequently becomes amplified and leads to instability-
enhanced collisions, is self-consistently accounted for by its
association with discrete particle motion.

Related work by Kent and Taylor10 used the Wentzel–
Kramers–Brillouin �WKB� approximation to calculate the
amplification of convective fluctuations from discrete par-
ticle motion. They focused on describing the fluctuation am-
plitude, rather than a kinetic equation for particle scattering,
and emphasized drift-wave instabilities in magnetized inho-
mogeneous systems. Baldwin and Callen11 derived a kinetic
equation accounting for the source of fluctuations and their
effects on instability-enhanced collisional scattering in the
specific case of loss-cone instabilities in magnetic mirror
devices.

Our work develops a comprehensive collision operator
for unmagnetized plasmas in which electrostatic instabilities
that originate from discrete particle motion are present. The
resultant collision operator consists of two terms. The first
term is the Lenard–Balescu collision operator12,13 that de-
scribes scattering due to the Coulomb interaction acting be-
tween individual particles. The second term is an instability-
enhanced collision operator that describes scattering due to
collective wave motion. Each term can be written in the Lan-
dau form,14 which has both diffusion and drag components in
velocity space. The ability to write the collision operator in
the Landau form allows proof of physical properties such as
the Boltzmann H-theorem and conservation laws for colli-
sions between individual species.

A prominent model used to describe scattering in weakly
unstable plasma is quasilinear theory.8,9 Quaslinear theory is
“collisionless,” being based on the Vlasov equation, but has
an effective “collision operator” in the form of a diffusion
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equation that describes wave-particle interactions due to
fluctuations. In the kinetic theory presented here, the
instability-enhanced term of the total collision operator for
species s, which is a sum of the component collision opera-
tors describing collisions of s with each species s� C�fs�
=�s�C�fs , fs��, fits into the diffusion equation framework of
quasilinear theory. This is because the drag term of the Lan-
dau form vanishes in the total collision operator �but not
necessarily in the component collision operators�. The
instability-enhanced contribution to the total collision opera-
tor may also be considered an extension of quasilinear theory
for the case that instabilities arise internal to a plasma. Con-
ventional quasilinear theory requires specification of an ini-
tial electrostatic fluctuation level external to the theory. The
kinetic prescription provides this by self-consistently ac-
counting for the continuing source of fluctuations from dis-
crete particle motion. This determines the spectral energy
density of the plasma, which is otherwise an input parameter
in conventional quasilinear theory.

This paper is organized as follows. In Sec. II, we derive
a collision operator for weakly unstable plasmas using the
BBGKY hierarchy. Section III provides a description of how
the instability-enhanced term of this kinetic equation fits into
the framework of quasilinear theory, but also provides a
unique prescription for the source of fluctuations. In Sec. IV,
physical properties of the resultant collision operator are re-
viewed. Section V describes two applications to which the
kinetic equation has been applied.15,16 The first of these is
Langmuir’s paradox,17,18 which is a measurement of en-
hanced electron-electron scattering above the Coulomb level
for a stable plasma. We consider the role of instability-
enhanced collisions due to ion-acoustic instabilities in the
presheath region of Langmuir’s discharge and show that they
significantly enhance scattering even though the instabilities
propagate out of the plasma before reaching nonlinear
levels.15 The second application we consider is determining
the Bohm criterion �i.e., the speed at which ions leave a
plasma� in plasmas with multiple ion species. In this case we
show that when ion-ion two-stream instabilities arise in the
presheath they cause an instability-enhanced collisional fric-
tion that is very strong and forces the speeds of each ion
species toward a common speed at the sheath-presheath
boundary.16

II. KINETIC COLLISION OPERATOR

In Ref. 1, a kinetic equation for weakly unstable plasma
was derived using a test-particle approach. A test-particle
approach is based on describing the physical-space and
velocity-space position of each particle individually. The dis-
tribution for all N individual particles, F=�i

N��x−xi�t����v
−vi�t�� is a function of six phase-space dimensions plus time.
It evolves according to the Klimontovich equation dF /dt
=0, in which d /dt=� /�t+v ·� /�x+a ·� /�v is the convective
derivative. A kinetic equation can then be derived by sepa-
rating the smoothed and discrete particle components of F,
F= f +�f , where f ��F�. Here �¯ � denotes an ensemble av-
erage and ��f�=0. For the test-particle problem the ensemble
averaging procedure is defined by the coarse graining inte-

gral �¯ ���nV�−1	l=1
N 
d3xlod3vlof�vlo��¯ � in which n is the

particle density and V a macroscopic volume for which nV
=N.19,20 The kinetic equation then follows from using the
linear part of the �f evolution equation, and Gauss’s law, to
find the collision operator for the kinetic equation of f .

In this work, we derive an equivalent kinetic equation
starting from a fundamentally different approach: the Liou-
ville theorem and BBGKY hierarchy.19–22 This approach
starts by describing the state of the entire plasma as a single
system, or point, in a 6-N-dimensional phase space that
evolves in time. Letting DN�X1 ,X2 , . . . ,XN� denote the prob-
ability distribution function of the system, in which Xi�t�
= �xi�t� ,vi�t��, the Liouville theorem states that this
distribution is constant along the path that the system follows
in phase space: DN�X1�t=0� ,X2�t=0� , . . . ,XN�t=0��
=DN�X1�t� ,X2�t� , . . . ,XN�t��. Taking a convective derivative
gives the Liouville equation, dDN /dt=0, which can also be
written in the form21

�DN

�t
+ �

i=1

N �vi ·
�DN

�xi
+ ai ·

�DN

�vi
� = 0, �1�

in which vi��xi /�t and ai��vi /�t. Applying the Coulomb
approximation, we assume no applied electric or magnetic
fields, and neglect the magnetic fields produced by charged
particle motion. Since we only consider forces due to the
electrostatic interaction between particles, the acceleration
vector can be identified as

ai = �
j,j�i

aij�xi − x j� = �
j,j�i

qiqj

mi

xi − x j


xi − x j
3
. �2�

The reduced distributions, f1 , f2 , . . . , fN, are defined as21

f��X1,X2, ¯ ,X�,t� � N�� d6X�+1 ¯

d6XNDN�X1,X2, ¯ ,XN� . �3�

Equation � of the BBGKY hierarchy of equations is formed
by integrating Eq. �1� over the 6�N−�� phase-space coordi-
nates, 
d6X�+1¯d6XN, which yields

� f�

�t
+ �

i=1

�

vi ·
� f�

�xi
+ �

i=1

�

�
j=1

�

aij ·
� f�

�vi

+
N − �

N
�
i=1

� � d6X�+1ai,�+1 ·
� f�+1

�vi
= 0. �4�

A closure scheme is required to solve Eq. �4�. We apply
the standard Mayer cluster expansion23

f1�X1� = f�X1� ,

f2�X1,X2� = f�X1�f�X2� + P12�X1,X2� , �5�

f3�X1,X2,X3� = f�X1�f�X2�f�X3� + f�X1�P23�X2,X3�

+ f�X2�P13�X1,X3� + f�X3�P12�X1,X2�

+ T�X1,X2,X3� ,

in which f is the velocity distribution function, P is the pair
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correlation, and T is the triplet correlation. The closure
scheme we use is to neglect the triplet correlation T. In a
stable plasma, it can be shown that T / fP�O��−1�, where
��n�D

3 .20 In unstable plasmas, such as we consider here,
the small parameter becomes �−1 times the amplification of
collisions due to instabilities. After the instability amplitude
becomes too large, this parameter is no longer small and T,
as well as higher order terms, must be included. Some non-
linear effects, such as mode coupling, enter the hierarchy at
the triplet correlation T level.6

Putting the expansion of Eq. �5� into Eq. �4� for �=1,2
and neglecting T gives the two lowest order equations21

� f�X1�
�t

+ v1 ·
� f�X1�

�x1
+ a1 ·

� f�X1�
�v1

= −� d6X2a21 ·
�P12

�v1
,

�6�

and

� �

�t
+ �

i=1

2

�vi ·
�

�xi
+ ai ·

�

�vi
+ �

j=1

j�i

2

aij ·
�

�vi��P12

+ �
i=1

2

�
j=1

j�i

2
� f�Xi�

�vi
·� d6X3ai3Pj3

= − �
i=1

2

�
j=1

j�i

2

aij ·
�

�vi
f�Xi�f�X j� , �7�

in which we have used the notation Pij = P�Xi ,X j� and have
identified

ai�xi,t� � � d6Xjaij f�X j,t� , �8�

which is an average of the electrostatic fields surrounding
individual particles. Also, since N�� we have used
�N−�� /N�1.

We assume that acceleration due to ensemble averaged
forces �i.e., Eq. �8��, which are from potential variations over
macroscopic spatial scales, are small. Thus the ai ·� /�vi

terms in Eqs. �6� and �7� can be neglected. Also, the aij ·� /�vi

terms in Eq. �7� can be neglected because they are �−1

smaller than the � /�t+vi ·� /�xi terms. This scaling can be
obtained by putting �x��D into Eq. �2�, which gives

aij
�/�vi

�/�t
�

e2

m�D
2

1/vT

�p
� �−1. �9�

Since we only consider electrostatic interactions between
particles, Pij�xi ,x j�= Pij�xi−x j�. Furthermore, we apply the
Bogoliubov hypothesis: the characteristic time and spatial
scales for relaxation of the pair correlation P are much
shorter than that for f .2 We denote the longer time and spatial
scales �x , t̄� and Fourier transform �F� with respect to the
shorter spatial scales on which f is approximately constant.
We use the definition F�g�x��= ĝ�k�=
d3x exp�−ik ·x�g�x�
with inverse g�x�= �2��−3
d3k exp�ik ·x�ĝ�k�. The double
Fourier transform is then

F12�h�x1,x2�� = ĥ�k1,k2�

=� d3x1d3x2e−i�k1·x1+k2·x2�h�x1,x2� . �10�

Applying these approximations and using the identities

F12�h�x1−x2��= �2��3��k1+k2�ĥ�k1�, 
d3xh1�x�h2�x�
= �2��−3
d3k1ĥ1�−k1�ĥ2�k1�, and F12�
d3x3h1�x1−x3�h2�x2

−x3��= �2��3��k1+k2�ĥ1�k1�ĥ2�−k1�, for any functions h1

and h2, Eqs. �6� and �7� can be written

� �

� t̄
+ v1 ·

�

�x1
� f�x1,v1, t̄� = C�f1� = −

�

�v1
· Jv �11�

and

� �

�t
+ L1�k1� + L2�− k1��P̂12�k1,v1,v2,t� = Ŝ�k1,v1,v2, t̄� .

�12�

Here Jv is the collisional current

Jv �
4�q1q2

m1
� d3k1

�2��3

− ik1

k1
2 � d3v2P̂12�k1,v1,v2,t� , �13�

Lj is the integral operator

Lj�k1� � ik1 · v j − i
4�q1q2

mj

k1

k1
2 ·

� f�v j�
�v j

� d3v j �14�

and Ŝ is the source term for the pair correlation function
equation

Ŝ�k1,v1,v2� = 4�iq1q2
k1

k1
2 · � 1

m1

�

�v1
−

1

m2

�

�v2
� f�v1�f�v2� .

�15�

We next use Eqs. �12� and �13� to solve for the collision
operator, which is the right side of Eq. �11�.

After Laplace transforming with respect to the fast time
scale t, Eq. �12� can be written formally as

P̂12�k1,�� =
P̃12�k1,t = 0� − Ŝ/i�

− i� + L1�k1� + L2�− k1�
, �16�

in which the velocity dependence of P̂12, Ŝ, and L has been
suppressed for notational convenience. In the following, we

neglect the initial pair correlation term P̃12�t=0� because it is
smaller in plasma parameter than the continually evolving

collisional source term Ŝ. In Davidson’s approach to quasi-
linear theory, which is a collisionless description of wave-
particle interactions, the collisional source term is
neglected.22 Keeping the initial pair correlation term leads to
a diffusion equation.22 Here we are interested in a collision
operator.

The 1 / �−i�+L1�k1�+L2�−k1�� part of Eq. �16� is an op-

erator that acts on −Ŝ / i�. It can be written6
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1

− i� + L1�k1� + L2�− k1�

=
1

�2��2�
C1

�
C2

d�1d�2

− i�� − �1 − �2�

·
1

�− i�1 + L1�k1��
1

�− i�2 + L2�− k1��
, �17�

in which the contours C1 and C2 must be chosen such that
I���	I��1+�2�. Frieman and Rutherford6 showed that

1

− i�1 + L1�k1�
=

i

�1 − k1 · v1
�1 −

4�q1q2

m1k1
2

k1 · � f�v1�/�v1


̂�k1,�1�

�� d3v1

�1 − k1 · v1
� , �18�

in which


̂�k1,�1� � 1 +
4�q1q2

m1k1
2 � d3v1

k1 · � f�v1�/�v1

�1 − k1 · v1
. �19�

The equivalent expressions for 1 / �−i�2+L2�−k1�� and

̂�−k1 ,�2� are obtained by the substitutions v1↔v2,
�1↔�2, m1↔m2, and k1↔−k1.

We call R�1 / �−i�1+L1�k1���−i�2+L2�−k1��, the

Frieman–Rutherford operator6 and require R�Ŝ�. Using Eq.
�18�, the equivalent form for the 1 / �−i�2+L2�−k1�� term and

the source term of Eq. �15�, produces an expression for R�Ŝ�
with eight terms. These can be expanded to an expression
with twelve terms by identifying four terms with parts that

can be written 
̂−1. These are identified using Eq. �19�.
Eight of the remaining terms cancel and the surviving terms
can be written

R�Ŝ� =
− 4�iq1q2/k1

2

��1 − k1 · v1���2 + k1 · v2�

��� k1 · �/�v1

m1
̂�k1,�1�
−

k1 · �/�v2

m2
̂�− k1,�2�� f�v1�f�v2�

+
4�q1q2

m1m2k1
2

k1 · � f�v1�/�v1


̂�k1,�1�
k1 · � f�v2�/�v2


̂�− k1,�2�

�� d3v2
f�v2���1 + �2�

��2 + k1 · v2���1 − k1 · v2�� . �20�

For Jv in Eq. �13�, we need 
d3v2P̂12�k1 , t� which is

� d3v2P̂12�k,t� =� d�1

2�
� d�2

2�
� d3v2R�Ŝ�

�� d�

2�

e−i�t

��� − �1 − �2�

=� d�1

2�
� d�2

2�
� d3v2

�
�− i�R�Ŝ�
�1 + �2

�1 − e−i��1+�2�t� . �21�

The 
d3v2R�Ŝ� term in Eq. �21� can be simplified using Eqs.
�19� and �20�, which yields

� d3v2R�Ŝ� =
4�iq1q2

k1
2 � d3v2k1 · � 1

m1

�

�v1
−

1

m2

�

�v2
� f�v1�f�v2�

·

̂�− k1,�2���2 + k1 · v2� − ��1 + �2�


̂�k1,�1�
̂�− k1,�2���1 − k1 · v1���1 − k1 · v2���2 + k1 · v2�
. �22�

Putting Eq. �22� into Eq. �21�, the terms with 
̂�−k1 ,�2���2+k1 ·v2� in the numerator vanish upon completing the �2

integral. Inserting the remaining terms into Eq. �13�, we find that the collisional current can be written in the Landau form

Jv =� d3v2Q�v1,v2� · � 1

m2

�

�v2
−

1

m1

�

�v1
� f�v1�f�v2� , �23�

which has both a diffusion component �due to the � /�v1 term� and a drag component �due to the � /�v2 term�. Here Q is the
tensor kernel

Q�v1,v2� =
�4��2q1

2q2
2

m1
� d3k1

�2��3

− ik1k1

k1
4 � d�1

2�
� d�2

2�

·
�1 − e−i��1+�2�t���2 + k1 · v1�


̂�k1,�1���1 − k1 · v1���1 − k1 · v2�
̂�− k1,�2���2 + k1 · v2���2 + k1 · v1�
. �24�

Of the four terms in the numerator of Eq. �24�, the two proportional to k1 ·v1 have overall odd parity in k1 and vanish upon
doing the k1 integral. The term with just �2 vanishes for stable plasmas and is much smaller than the exponentially growing
terms for unstable plasmas. Thus it can be neglected. The collisional kernel can then be written in the form
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Q�v1,v2� =
�4��2q1

2q2
2

m1
� d3k1

�2��3

− ik1k1

k1
4 p1�k1�p2�k1� ,

�25�

in which p1 and p2 are defined by

p1�k1� =� d�1

2�

e−i�1t


̂�k1,�1���1 − k1 · v1���1 − k1 · v2�
�26�

and

p2�k1� =� d�2

2�

�2e−i�2t


̂�− k1,�2���2 + k1 · v1���2 + k1 · v2�
.

�27�

Equations �25�–�27� are identical to Eqs. �25�–�27� of
Ref. 1, which were obtained using a test-particle method.
The inverse Laplace transforms are carried out accounting
for the poles at �= �k ·v, which leads to the conventional
Lenard–Balescu collisional kernel, and for poles at 
̂=0. If
instabilities are present, the poles at 
̂=0 produce temporally
growing responses.1

We make a final substitution in which we identify the
species that we have labeled f�v1� as species s. The species
that interacts with s, which has been labeled f�v2� up to now,
we label s�. The species s� represent the entire plasma �in-
cluding s itself� and can be split into different components
�i.e., individual s��. Thus, the total s response is due to the
sum of the s� components. We also drop the subscripts on k1

and v1 and label v2 as v�.
After these substitutions, the final kinetic equation for

species s is �fs /�t+v ·�fs /�x=C�fs�=�s�C�fs , fs�� in which

C�fs, fs�� = −
�

�v
·� d3v�Q

· � 1

ms�

�

�v�
−

1

ms

�

�v� fs�v�fs��v�� , �28�

is the component collision operator describing collisions be-
tween species s and s� and Q=QLB+QIE is the collisional
kernel. The collisional kernel consists of the Lenard–Balescu
term

QLB =
2qs

2qs�
2

ms
� d3k

kk

k4

��k · �v − v���


̂�k,k · v�
2

, �29�

that describes the conventional Coulomb scattering of indi-
vidual particles and the instability-enhanced term

QIE =
2qs

2qs�
2

�ms
� d3k

kk

k4 �
j


 j

��R,j − k · v�2 + 
 j
2

�
exp�2
 jt�

���R,j − k · v��2 + 
 j
2�
� 
̂�k,��/��
�j

2 , �30�

that describes the scattering of particles by collective fluc-
tuations. We can also write the dielectric function in the fa-
miliar form


̂�k,�� = 1 + �
s�

4�qs�
2

k2ms�
� d3v

k · � fs��v�/�v

� − k · v
. �31�

We have used the notation � j =�R,j + i
 j where �R,j and 
 j

are the real and imaginary parts of the jth root of the dielec-
tric function Eq. �31�.

The total collision operator C�fs� for the evolution equa-
tion of species s is a sum of the collision operators describing
collisions between s and each species s� �including itself
s�=s�; thus C�fs�=�s�C�fs , fs��. This total collision operator
appears from Eqs. �28�–�30� to have four terms: terms for
“drag” and “diffusion” �from the � /�v� and � /�v derivatives,
respectively� using both the Lenard–Balescu collisional ker-
nel of Eq. �29�, and the instability-enhanced collisional ker-
nel of Eq. �30�. However, there are actually only three non-
zero terms because the total instability-enhanced
contribution to drag vanishes. To show this, we write the
total instability-enhanced collision operator as

CIE�fs� = −
�

�v
· �

s�
� d3v�QIE

· � 1

ms�

�

�v�
−

1

ms

�

�v� fs�v�fs��v�� �32�

=
�

�v
· �DIE,diff ·

� fs�v�
�v

� −
�

�v
· �DIE,drag fs�v�� ,

�33�

in which

DIE,diff = �
s�
� d3v�QIE

fs��v��

ms
�34�

and

DIE,drag = �
s�
� d3v�QIE ·

1

ms�

� fs��v��

�v�
. �35�

Evaluating the dielectric function, Eq. �31�, at its roots
�� j� and multiplying by �� j −k ·v�� / �� j −k ·v�� inside the in-
tegral gives


̂�k,� j� = 1 + �
s�

4�qs�
2

k2ms�
� d3v�

�
��R,j − k · v� − i
 j�k · � fs�/�v�

��R,j − k · v��2 + 
 j
2 . �36�

The real and imaginary parts of Eq. �36� individually vanish;
R�
̂�k ,� j��=I�
̂�k ,� j��=0. The imaginary part is

I�
̂�k,� j�� = �
s�

4�qs�
2

k2ms�
� d3v�

�− 
 j�k · � fs��v��/�v�

��R,j − k · v��2 + 
 j
2 .

�37�

Equation �37� shows that the term proportional to �R,j in Eq.
�36� is zero; thus the real part of Eq. �36� can be written
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R�
̂�k,� j�� = 1 − �
s�

4�qs�
2

k2ms�
� d3v�

k · v�k · � fs��v��/�v�

��R,j − k · v��2 + 
 j
2 .

�38�

Putting Eq. �30� into DIE,drag in Eq. �35�, we find
DIE,drag�fs��I�
̂�k ,� j��=0. Thus, only a diffusion term sur-
vives in the instability-enhanced portion of the total collision
operator CIE�fs�.

Although the instability-enhanced drag is zero in the to-
tal collision operator C�fs�, it is not necessarily zero in each
component collision operator C�fs , fs��. Identifying the com-
ponent collision operators in the form of Eq. �28� is particu-
larly useful because they do not each cause evolution of fs on
similar time scales. For example, like-particle collisions
�s=s�� tend to dominate unlike-particle collisions for short
times. The time scale for which unlike-particle collisions
matter may be longer than those of interest, or those of
mechanisms external to the plasma theory such as neutral
collisions or losses to boundaries. Thus, although the
instability-enhanced contribution to drag in the total collision
operator vanishes, it remains a useful term in describing the
individual collision operator components. Both examples
discussed in Sec. V are concerned with component collision
operators.

As discussed in Ref. 1, time in the 2
 jt term of Eq. �30�
must be computed in the reference frame of the unstable
wave. For convective modes with group velocity
vg=��R /�k, this is

2
t = 2�
xo�k�

x

dx� ·
vg



vg
2
, �39�

in which xo�k� is the location where the mode with wave-
number k becomes unstable, x is the spatial variable and x�
is the path that the wave travels from xo to x. Thus, for
convective instabilities f does not change in time at a fixed
spatial location, but does change as a function of position
along the convection path of the unstable fluctuations. For
inhomogeneous media, different wavenumbers k may be-
come unstable at different spatial locations, thus xo�k�.

III. RELATING CIE„fs… AND QUASILINEAR THEORY

The instability-enhanced term of the total collision op-
erator, Eq. �33�, is a diffusion equation similar to quasilinear
theory.8,9 In fact, CIE�fs� may be interpreted as a quasilinear
operator in which the continuing source of fluctuations is
self-consistently calculated from discrete particle motion in
the plasma. Conventional quasilinear theory does not iden-
tify an origin of fluctuations and this must be supplied exter-
nal to the theory. In this section, we show that if the source
of fluctuations is internal to the plasma, rather than from
externally applied sources, the instability-enhanced term of
the kinetic theory of Sec. II fits into the conventional quasi-
linear formalism, but with a self-consistent determination of
the spectral energy density.

Conventional quasilinear theory is based on the Vlasov
equation �fs /�t+v ·�fs /�x+ �qs /ms�E ·�fs /�v=0. By separat-
ing the distribution function and electric field into smoothed

and fluctuating components fs= fs,o+ fs,1, such that fs,o= �fs�
where the �¯ � represents a spatial average, and applying the
quasilinear approximation, which assumes E1fs,1− �E1fs,1�
�E1fs,o, one can derive the quasilinear diffusion equation8,9

of species s

� fs,o

�t
=

�

�v
· Dv ·

� fs,o

�v
. �40�

The velocity-space diffusion coefficient is

Dv =
qs

2

ms
28��

j
� d3k

kk

k2


 jE j�k�

���R,j − k · v�2 + 
 j
2�

, �41�

in which j represents the unstable modes and the spectral
energy density is defined as

E j
ql�k� =


E1�t = 0�
2

�2��3V

e2
jt

8�
. �42�

The term 
Eo
2 is the initial electrostatic fluctuation level that
must be supplied external to this theory.

An alternative approach to quasilinear theory that uses
the BBGKY hierarchy has been provided by Davidson.22

This can be derived by the same methods as in Sec. II, except

taking only the initial pair correlation term P̃�t=0� in Eq.

�16� instead of the continuous source term Ŝ that was used in
Sec. II, and keeping only terms that grow as exp�2
 jt�. Re-
moving the source term, which is larger than the initial pair
correlation by O���, effectively removes collisions and
leaves a Vlasov model. The resulting diffusion equation has
the same form as Eqs. �40� and �41�, but with the spectral
energy density redefined as a function of the initial pair cor-
relation instead of the initial fluctuation level22

E j
dv�k� = �

s�

qs�
2

4�2k2
� 
̂/��
�j

2 � d3v

�� d3v�
P̃�k,v,v�,t = 0�e2
jt

�� j − k · v��� j
� − k · v��

. �43�

The instability-enhanced contribution to the total colli-
sion operator, Eq. �33�, is a diffusion equation that also fits
into the quasilinear formalism of Eqs. �40� and �41�, but with
the spectral energy density self-consistently calculated to be

E j
kin�k� = �

s�

qs�
2

4�2k2
� 
̂/��
�j

2 � d3v�
fs��v��e2
jt

��R,j − k · v��2 + 
 j
2 .

�44�

An important feature of Eq. �44� is that it does not depend on
specifying an initial electrostatic fluctuation level, as Eq.
�42� requires, or an initial pair correlation function, as Eq.
�43� requires. Equation �44� also shows that when fluctua-
tions originate from discrete particle motion, the spectral en-
ergy density has a particular dependence on k that is deter-
mined by the plasma dielectric function. This k dependence
cannot be captured by the conventional quasilinear theory,
Eq. �42�, which typically proceeds by specifying a constant
for 
E1�t=0�
2 to determine the spectral energy density.
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IV. PHYSICAL PROPERTIES OF C„f…

The kinetic equation derived in Sec. II obeys certain
physical properties such as conservation laws and the Boltz-
mann H-theorem. A brief overview of these properties is
provided in this section along with a discussion of how the
plasma evolves to equilibrium and how these properties re-
late to those of the effective collision operator in conven-
tional quasilinear theory.

�a� Density is conserved. Collisions do not create or de-
stroy particles or cause them to change species. For colli-
sions between species s and s�, this can be expressed math-
ematically as

� d3vC�fs, fs�� = 0, �45�

which also implies the less restrictive conditions that the
species s density is conserved 
d3vdfs /dt
=
d3v�s�C�fs , fs��=0 and the total plasma density is con-
served 
d3v�sdfs /dt=0. This is true of both the CLB and CIE

terms individually. The conventional quasilinear theory sum-
marized in Sec. III, does not distinguish the species s�, so
one cannot show Eq. �45�, but it does satisfy that the species
s and total plasma density are conserved.

Proof: Equation �45� follows directly from writing
C�fs , fs�� in the form of a divergence of the collisional cur-

rent C�fs , fs��=−�v ·Jv
s/s�. The integral over velocity vanishes

due to the divergence theorem since Jv
s/s� is zero at infinity.

�b� Momentum is conserved. Momentum lost from spe-
cies s due to collisions of species s with species s� is gained
by species s�. Mathematically this is expressed as

� d3vmsvC�fs, fs�� +� d3vms�vC�fs�, fs� = 0. �46�

Equation �46� implies that the total momentum is conserved:

d3v�smsdfs /dt=0. Only total momentum can be shown to
be conserved within the conventional quasilinear theory.

Proof: Equation �46� follows from first integrating by

parts to show 
d3vmsvC�fs , fs��=ms
d3vJv
s/s�, which is

� d3vmsvC�fs, fs�� = −� d3v� d3v�msQs,s� · Xs,s�, �47�

where we have defined

Xs,s��v,v�� =
fs��v��

ms

� fs�v�
�v

−
fs�v�
ms�

� fs��v��

�v�
. �48�

An expression for 
d3vms�vC�fs� , fs� is obtained by the sub-
stitutions s↔s� and v↔v� in Eq. �47�. Using the properties
ms�Qs�,s=msQs,s� and Xs,s��v ,v��=−Xs�,s�v� ,v� in the result
and adding it to Eq. �47� yields the conservation of momen-
tum expression of Eq. �46�.

�c� The sum of particle and wave energy is conserved.
The energy lost by species s due to conventional Coulomb
collisions of s with s� �described by the Lenard–Balescu op-
erator� is gained by s�. Mathematically this can be written

� d3v
1

2
msv

2CLB�fs, fs�� +� d3v
1

2
ms�v

2CLB�fs�, fs� = 0,

�49�

and it implies that 
d3v�smsv2CLB�fs� /2=0. The instability-
enhanced portion of the collision operator shows that a
change in total energy in the plasma is balanced by a change
in wave energy. Thus we find that the total energy conserva-
tion relation is given by

� d3v�
s

1

2
msv

2C�fs� = −
�

�t
� d3k

E�k�
k2 , �50�

in which the spectral energy density is defined in terms of
Eq. �44�. Equation �50� is also satisfied in conventional qua-
silinear theory.

Proof: Conservation of energy from the Lenard–Balescu
collision operator, Eq. �49�, follows from first integrating by

parts to show 
d3vmsv2C�fs , fs�� /2=
d3vmsv ·Jv
s/s�. Putting

in JLB
s/s� and using the same method that was used in the proof

of momentum conservation for obtaining an expression for

d3vms�v

2CLB�fs� , fs� /2 yields

� d3v
v2

2
�msCLB�fs, fs�� + ms�CLB�fs�, fs��

= −� d3v� d3v�msQLB · �v − v�� · Xs,s�. �51�

Since QLB· �v−v��=0, the right side of Eq. �51� vanishes;
thus proving Eq. �49� and by a trivial extension

d3v�smsv2CLB�fs� /2=0.

The only nonvanishing component of the conservation
of energy relation is the instability-enhanced portion
which can be written 
d3v�smsv2CIE�fs� /2
=−
d3v�smsv ·DIE,diff ·�fs /�v. Inserting DIE,diff from Eq.
�34�, identifying Eqs. �41� and �44�, gives

� d3v�
s

1

2
msv

2CIE�fs�

= −� d3k
2
E�k�

k2 ��
s

4�qs
2

k2ms
� d3v

k · vk · � fs/�v

��R,j
2 − k · v�2 + 
 j

2� .

�52�

Equation �38�, describing R�
̂�k ,� j��=0, shows that the
term in square brackets in Eq. �52� is equal to 1. Identifying
2
 jE=�E /�t in Eq. �52� from Eq. �44� and adding the condi-
tion 
d3v�smsv2CLB�fs� /2=0 to the result completes the
proof of Eq. �50�.

�d� If fs�0 initially, fs�0 for all time. Proof of this
property for the kinetic equation of Sec. II is analogous to
that provided by Lenard for the Lenard–Balescu equation.12

The proof requires that C�fs� can be written in the Landau
form of Eq. �28� and that Q is a positive definite tensor.
These conditions are both satisfied by the generalized colli-
sion operator with Q=QLB+QIE derived in Sec. II. The ex-
pression for QIE is only valid for 
 j �0, as is quasilinear
theory. However, one criticism of quasilinear theory is that it
does not transition to stable plasmas.24 If 
 j �0, the diffusion
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coefficient is negative and an unphysical equation results.
This would be a misapplication, but also illustrates the limits
of quasilinear theory because a Coulomb collision operator
�i.e., CLB�fs�� is required near marginal stability.

�e� The Boltzmann H-theorem is satisfied. The
H-functional for each species s is defined as Hs

�
d3vfs�v�ln fs�v� and the total H is the sum of the compo-
nent species H=�sHs. The Boltzmann H-theorem states that
the total H satisfies dH /dt�0. It is equivalent to stating that
entropy always increases until equilibrium in reached.

Proof: The time derivative of Hs is dHs /dt=
d3v�1
+ln fs�v��dfs�v� /dt. Using the conservation of density prop-

erty from �a� gives dHs /dt=−
d3v�s�ln�fs��v ·Jv
s/s�. Integrat-

ing by parts yields dHs /dt=�s�
d3vJv
s/s� ·� ln fs /�v. We then

identify the components of Hs such that Hs=�s�Hs,s�. Put-
ting in the kinetic equation of Sec. II gives

dHs,s�

dt
= −� d3v� d3v�

1

ms

� ln fs�v�
�v

· �msQs,s�� · Xs,s�.

�53�

By interchanging the species s↔s� and dummy integration
variables v↔v� an expression for Hs�,s is obtained

dHs�,s

dt
=� d3v� d3v�

1

ms�

� ln fs��v��

�v�
· �ms�Qs�,s� · Xs,s�.

�54�

Using msQs,s�=ms�Qs�,s in Eq. �54� along with Eq. �53� in
2H=�s�s��Hs,s�+Hs�,s� yields

2
dH
dt

= − �
s

�
s�
� d3v� d3v�

Xs,s� · �msQs,s�� · Xs,s�

fs�v�fs��v��
.

�55�

Since the Qs,s� of Sec. II is positive-semidefinite and fs , fs�
�0 from �d�, each term on the right side of Eq. �55� is
negative-semidefinite. Thus, we find that the Boltzmann
H-theorem is satisfied: dH /dt�0.

�f� The unique equilibrium distribution function is Max-
wellian and the approach to equilibrium is hastened by in-
stabilities. Equilibrium is established when dH /dt=0. In the
analysis below, we first show that CLB implies that the
unique equilibrium state of a plasma is a Maxwellian in
which each species has the same temperature and flow ve-
locity. Since instabilities cannot be present near this equilib-
rium, CIE=0, and instability-enhanced effects are irrelevant.
However, bounded plasmas are rarely in true equilibrium. A
much more common concern is to determine the time scales
for which equilibration between individual species occurs.
The fastest time scales are typically for self-equilibration
within species. For example, electrons and ions in a plasma
may be in equilibrium with themselves, in which case
dHe,e /dt=0 and dHi,i /dt=0, but not in equilibrium with
each other, so dHi,e /dt�0. In this case, electrons and ions
will individually have Maxwellian distributions, but their
temperature and flow velocities will not necessarily be the
same and instabilities may be present. In the second part of
the analysis below, we show that instabilities can signifi-

cantly shorten the time scale for which individual species
reach a Maxwellian quasiequilibrium.

Analysis: First, we consider the final equilibrium state of
the plasma from the CLB term of the collision operator. Since
each term of Eq. �55� is negative-semidefinite, each must
vanish independently in order to reach equilibrium at
dH /dt=0. The terms that tend to zero on the fastest time
scale are those describing like-particle collisions s=s�. Con-
sidering these first, dHs,s /dt=0 implies that Xs,s�v−v� �be-
cause QLB· �v−v��=0�. This can happen only when fs�v� has
the general Maxwellian form fMs�v�=exp�−Asv2 /2+Bs ·v
+Cs�. Proof of this step is provided by Lenard.12 Applying
the conventional definitions for density ns=
d3vfs, flow ve-
locity Vs=
d3vvfs /ns and thermal speed vTs

2 = 2
3
d3v�v

−Vs�2fs /ns=2Ts /ms, the Maxwellian for species s can be
written in the familiar form

fMs =
ns

�3/2vTs
3 exp�−

�v − Vs�2

vTs
2 � . �56�

On a longer time scale the unlike-particle terms �s�s��
of Eq. �55� must also vanish for equilibrium to be reached.
This implies Xs,s��v−v�. Putting the individual species
Maxwellians of Eq. �56� into this condition gives

� v

Ts
−

v�

Ts�
� + �Vs�

Ts�
−

Vs

Ts
� � v − v�, �57�

which is satisfied only if Ts=Ts� and Vs=Vs�. Thus, the
unique equilibrium state of the plasma is that each species
have a Maxwellian distribution of the form of Eq. �56� with
the same flow velocity and temperature.

Next, we consider the role of instability-enhanced colli-
sions in the equilibration process. The analysis just consid-
ered could be repeated by substituting QIE for QLB, except
that Eq. �30� is not proportional to ��k · �v−v��� and does not
satisfy QIE · �v−v��=0. However, QIE has a Lorentzian form
in velocity space that is very peaked around k · �v−v��=0
and the dominant term can be written in the delta function
form. Substituting QIE into Eq. �55� gives an expression that
depends on velocity-space integrals in v and v� over Lorent-
zian distributions. We assume that the instabilities are weakly
growing and thus satisfy 
 j ��R,j −k ·v. These velocity-
space integrals are of the form 
dxg�x�� / ��x−a�2+�2�,
where ��a. Here the appropriate substitutions are �=
 j,
a=�R,j and x=k ·v �or x=k ·v��. They can be approximated
by

�
−�

�

dxg�x�
�

�a − x�2 + �2 � �
−n�

n�

dyg�y + a�
�

y2 + �2 ,

�58�

where n is a number large enough to span most of the inte-
grand. Expanding g�x� about the peak at x=a, g�x��g�a�
+g��a�y+g��a�y2 /2+¯, the lowest order term in Eq. �58�
gives g�a�2 arctan�n���g�a�. The second term is zero. The
third term gives g��a��2�n−arctan�n���O��2 /a2�. Thus,
these integrals satisfy
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� dxg�x�
�

�a − x�2 + �2 �� dx�g�x���x − a� + O��2

a2 � .

�59�

Using Eq. �59� and the property ��x−a���x−b�
=��x−a���a−b�, we find that within the velocity-space inte-
grals of Eq. �55�, the QIE term can be written in the form

QIE = �
j

2qs
2qs�

2

ms
� d3k

kk

k4

���k · �v − v������R,j − k · v�e2
jt


 j
� 
̂�k,��/��
�j

2

+ O� 
 j
2

�R,j
2 � . �60�

Since the lowest order term of Eq. �60� satisfies Q · �v
−v��=0, one can repeat the analysis used for the Lenard–
Balescu term to show that the instability-enhanced term
drives the plasma to a quasiequilibrium state that is nearly
Maxwellian. The correction terms in Eq. �60� will not obey
this property and can be expected to cause some deviation
from the Maxwellian. In this sense there is no true equilib-
rium if instabilities are present. However, if the distribution
is non-Maxwellian the lowest order term in Eq. �60� drives
the distribution toward a Maxwellian on a faster time scale,
by a factor of O��R,j

2 /
 j
2�, than the correction terms cause a

deviation from Maxwellian. Thus, if instabilities are present
from the interaction of two different species, for example
flow-driven instabilities, the instabilities can shorten the time
scale for which each species will self-equilibrate to a Max-
wellian. On a typically much longer time scale the different
species will also equilibrate with one another. However, in
the mean time a quasiequilibrium can be established where
each species is Maxwellian, but the flow speeds and tempera-
tures have not yet equilibrated and instabilities can persist. In
Sec. V applications are considered where flowing instabili-
ties cause the self-equilibration time scales to shorten, but for
which the time scales for different species to equilibrate re-
main much longer than the time it takes the plasma to flow
out of the system.

It may be worth pointing out that one cannot show from
conventional quasilinear theory that instability-enhanced col-
lisions drive the plasma toward a Maxwellian. This can be
shown within the kinetic theory because kinetic theory dis-
tinguishes the origin of fluctuations and thus determines the
spectral energy density E�k� �see Eq. �44��. Specification of
E�k� is required in order to show that QIE is very peaked in
velocity-space about k · �v−v��, and this is an important
property for showing that Maxwellian is the unique equilib-
rium �or quasiequilibrium depending on the time scale
considered�.

V. APPLICATIONS

In this section, we briefly review two applications where
Eq. �28� has been successfully applied. Both are concerned
with scattering phenomena in the plasma-boundary transition
region of low temperature plasmas �with Te�Ti�. In particu-
lar, we will be concerned with the presheath region in which
a weak electric field accelerates ions from a fluid moment

speed of essentially zero in the bulk plasma to near the ion
sound speed at the presheath-sheath boundary. The presheath
length �l� is approximately an ion-neutral collision length in
these plasmas. This is on the 1–10 cm length scale and is
typically 102–103 times longer than a Debye length which is
�0.1–1 mm in these plasmas.

A. Langmuir’s paradox

Langmuir’s paradox17,18 is a measurement of anomalous
electron-electron scattering in a low temperature plasma. In
particular, Langmuir measured self-equilibration of electrons
to a Maxwellian in a discharge of approximately 3 cm diam-
eter when the electron-electron scattering length was calcu-
lated to be 30 cm �assuming a stable plasma�. Langmuir
expected truncation of the electron distribution at an energy
corresponding to the sheath potential energy ��5Te for mer-
cury� because electrons exceeding this energy escape the
sheath and rapidly leave the plasma. The fact that Langmuir
measured a Maxwellian for energies beyond the sheath en-
ergy suggested that some mechanism for scattering electrons
must be present that is at least ten times more frequent than
scattering by the Coulomb interaction of individual particles.

Langmuir’s mercury discharge had a plasma density of
n�1011 cm−3, neutral density �1013 cm−3 �0.3 mTorr� and
an electron temperature of Te�2 eV.17 Although the ion
temperature could not be diagnosed at the time of Lang-
muir’s experiment, it has since been shown that in these
discharges ions are typically in thermal equilibrium with the
neutral particles. Thus the ion temperature is near room tem-
perature and satisfies Te�Ti.

Reference 15 applied Eq. �28� to show that ion-acoustic
instabilities, which are present in the presheath, could sig-
nificantly enhance the electron-electron collision frequency
in Langmuir’s discharge. The collision frequency was shown
to be a sum of contributions from the conventional Coulomb
scattering of individual particles �the Lenard–Balescu term�
and the instability-enhanced interaction from the scattering
of particles from the collective wave motion: �e/e=�LB

e/e +�IE
e/e.

The stable plasma contribution is calculated using Eq. �29�,
which for thermal particles gives

�LB
e/e �

�pe

8�n�De
3 ln � . �61�

For Langmuir’s discharge, the electron-electron collision
length is �LB

e/e �vTe /�LB
e/e �28 cm, if the plasma is stable.

The instability-enhanced collision frequency was calcu-
lated using the plasma dielectric function with fluidlike ions
streaming with a fluid velocity Vi and nearly adiabatic elec-
trons. Instability is caused by a small nonadiabatic electron
response. The dielectric function for ion-acoustic instabilities
is given by


̂ = 1 +
1

k2�De
2 −

�pi
2

�� − k · Vi�2 + i
��

k2�De
2

�

kvTe
. �62�

The roots of this equation, 
̂=0, are given by the dispersion
relation

055704-9 Kinetic theory of instability-enhanced collisional effects Phys. Plasmas 17, 055704 �2010�

Downloaded 15 Jul 2010 to 128.104.1.219. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



�� = �k · Vi �
kcs

�1 + k2�De
2 ��1 � i

��me/8Mi

�1 + k2�De
2 �3/2� . �63�

Ion-acoustic instabilities are present if the ion fluid speed
satisfies 
k ·Vi
	kcs /�1+k2�De

2 .
Using Eqs. �62� and �63� in Eq. �30� leads to an expres-

sion for the instability-enhanced collision frequency for elec-
trons near thermal speed

�IE
e/e �

�LB
e/e

8 ln �

1 + 2�c
2

�1 + �c
2�2exp��

z

l
� . �64�

Here �� l��me /16Mi /�De where z=0 is the location along
the presheath that instabilities first become excited and �c

��cs
2 /Vi

2−1 accounts for the k-space cutoff of the instabili-
ties; it is valid for Vi�cs �the presheath region�, otherwise
�c=0. For Langmuir’s discharge, �IE

e/e /�LB
e/e gets as large as

100 near the presheath-sheath boundary and it is at least 10
for much of the presheath.15 Thus, the instability-enhanced
collisions shrink the effective electron-electron collision
length to within the dimensions of Langmuir’s discharge.
Since 
2 /�R

2 �me /Mi�10−4, the correction terms of Eq.
�60� are very small and the instability-enhanced term drives
the electrons to a Maxwellian distribution. Thus, the plasma
reaches a quasiequilibrium state where electrons and ions
have Maxwellian distributions, but with unequal flow speeds
and temperatures.

For this plasma with n�De
3 �3�103, the kinetic theory is

valid for �z / l�55.1,15 For longer growth lengths, the fluc-
tuation amplitude is expected to be nonlinear and this kinetic
theory is no longer valid. However, in this calculation the
growth distance �for convective instabilities� is restricted to
the presheath length. After propagating through the
presheath, the waves are lost to the plasma boundaries. For
this presheath �z / l�10; the kinetic theory is well suited to
this problem.15

B. Determining the Bohm criterion

The Bohm criterion25 states that the ion fluid speed must
be supersonic at the presheath-sheath boundary: V
��Te /Mi �equality typically holds�. It is important because
it determines the flux and energy of ions as they leave a
plasma. However when the Bohm criterion is generalized to
multiple ion species, the result26

�
i=1

N
nio

neo

cs,i
2

Vi
2 � 1, �65�

is a single equation in N unknowns, where N is the number
of different ion species. Thus Eq. �65� does not uniquely
determine the speed of each ion species as it leaves the
plasma �even assuming equality holds, as in the single spe-
cies case�. In Eq. �65� we have assumed that Te�Ti, which is
valid for the plasmas we are concerned with here.

Franklin27 has studied the plasma-boundary transition
theoretically and proposed that each ion species enters the
sheath with a fluid speed near its individual sound speed Vi

��Te /Mi. In his work, Franklin accounted for ion drag due
to ionization sources and ion-neutral collisions, but neglected

ion-ion drag. In a stable plasma with typical low-temperature
parameters, ion-ion friction is normally at least ten times
smaller than other terms in the fluid momentum balance
equation; neglecting it is justified. Experimental studies28

have used laser-induced fluorescence to reveal that the ion
flows at the sheath edge can be far from their individual
sound speeds. The measured flow speeds in these experi-
ments �which are in a low-temperature regime Te�1 eV,
Ti�0.02 eV� tend to be closer to a common “system” sound
speed cs=��ics,i

2 ni /ne than their individual sound speeds cs,i.
This suggests that some anomalous ion-ion friction may be
present.

Reference 16 applied Eq. �28� to calculate the collisional
friction force between ion species using parameters of a
plasma from the experimental literature:28 Ar+ and Xe+ ions
with equal densities, Te=0.7 eV, Ti=0.02 eV, and a neutral
pressure of 0.7 mTorr. It was shown that ion-ion streaming
instabilities can be present in the presheath and that these
instabilities lead to a rapid enhancement of the collisional
friction between ion species. This collisional friction force

�Rs−s�=
d3vmsvC�fs , fs��� was calculated using Eq. �28�. It
was shown that the instability-enhanced friction dominates
the stable plasma friction within a short distance �a few De-
bye lengths� whenever two-stream instabilities are present. In
particular, RIE

1−2 /RLB
1−2�104 for a wave growth distance of 10

Debye lengths. This distance is much shorter than the
presheath length scale. In this application it is also important
that momentum be conserved for collisions between indi-
vidual species. Equation �46� shows that the kinetic theory
obeys this property.

The instability-enhanced friction creates a very stiff sys-
tem where if the relative flow between ion species exceeds a
critical value at which the streaming instabilities arise ��V
=V1−V2��Vc�, the friction rapidly forces the fluid veloci-
ties together and reduces the instability amplitude. Thus, the
kinetic theory remains valid as long as the instability ampli-
tude is reduced before reaching nonlinear levels. However,
since nonlinear fluctuations would imply a friction over 106

times the stable plasma level, the friction has dominated and
forced the speeds together well before reaching this ampli-
tude. The implication is that as long as �Vc�cs,1−cs,2, in-
stabilities will arise in the presheath and force the relative
flow speed of ion species to the critical condition �V=�Vc.
Otherwise no ion-ion streaming instabilities are expected,
and Franklin’s solution that each species obtain a speed close
to its individual sound speed should hold.

Reference 16 presents a cold ion model for the two-
stream instabilities and shows that in this case �Vc→0.
Thus, for cold ion plasmas, Eq. �65� and �V=0 predict that
the speed of each ion species is the common system sound
speed, Vi=cs. This solution is consistent with experimental
measurements.28 It is also noteworthy that two-stream insta-
bilities have been directly measured in the presheath of simi-
lar plasmas.29 Accounting for small finite ion temperatures,
such that �Vc�O�vT,i��cs, the condition �V=�Vc and Eq.
�65� show that
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V1 � cs +
n2

ne

cs,2
2

cs
2 �Vc and V2 � cs −

n1

ne

cs,1
2

cs
2 �Vc. �66�

Thus, in typical gas discharge plasmas, ions fall into the
sheath near the system sound speed cs rather than their indi-
vidual sound speeds cs,i.

VI. CONCLUSIONS

A kinetic equation that generalizes the Lenard–Balescu
equation to describe weakly unstable plasmas has been de-
veloped using two independent methods: the test-particle ap-
proach in Ref. 1 and the BBGKY hierarchy in Sec. II of this
work. The resultant collision operator, Eq. �28�, can be writ-
ten in the Landau form with both drag and diffusion terms. It
obeys properties such as conservation laws and the Boltz-
mann H-theorem. We have also shown that, within the weak-
instability approximation 
 /�R�1, instability-enhanced col-
lisions can shorten the time scale on which equilibration of
the distribution functions to Maxwellians occurs. The
instability-enhanced contribution to the total collision opera-
tor was shown to have a diffusive form that fits the frame-
work of conventional quasilinear theory, but for which the
continuing source of fluctuations is self-consistently ac-
counted for and is due to discrete particle motion. This led to
a determination of the spectral energy density that is absent
in conventional quasilinear theory.

This kinetic equation connects the work of Kent and
Taylor,10 which introduced the concept that collective fluc-
tuations arise from discrete particle motion, with previous
kinetic and quasilinear theories for scattering in weakly un-
stable plasmas �such as Rogister and Oberman7�, which
treated the fluctuations as independent of the discrete particle
motions. Baldwin and Callen11 also made this connection for
the case of loss cone instabilities in magnetic mirror ma-
chines and calculated the resultant instability-enhanced scat-
tering.

Here we have considered a general formulation for un-
magnetized plasmas. However, the basic result that the col-
lision frequency due to instability-enhanced interactions
scales as the product of � / ln � and the energy amplification
due to fluctuations is common to this work and that of Bald-
win and Callen.11 Here � is typically a small number �
�10−2–10−3, which depends on the fraction of wave-number
space that is unstable. Although the theory is limited by the
assumption that the fluctuation amplitude be linear, we have
found that instabilities can enhance the collision frequency
by a few orders of magnitude before nonlinear amplitudes
are reached.

The theory has been successfully applied to two out-
standing problems: Langmuir’s paradox and determining the
Bohm criterion in multiple ion species plasmas. It was
shown that Langmuir’s paradox can be explained by
instability-enhanced collisions that arise due to ion-acoustic
instabilities in the presheath. In this application, the convec-
tive instabilities propagate out of the plasma before reaching
nonlinear levels. Thus, the theory is well suited to describe
this problem. The Bohm criterion in low ion temperature,
multiple ion species plasmas was shown to be determined by

instability-enhanced friction between ion species because
ion-ion streaming instabilities are present in the plasma-
boundary transition �presheath� region. It was found that the
speed of each ion species is close to a common system sound
speed rather than the commonly accepted result of individual
sound speeds. In this application, the linear kinetic theory is
valid because the instability-enhanced collisional friction
modifies the plasma dielectric to limit the instability ampli-
tude so that nonlinear fluctuation levels are never reached.
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