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The incomplete plasma dispersion function is a generalization of the plasma dispersion function in

which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for

describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the

distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in

velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found

near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian

with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example

to demonstrate the utility of using the incomplete plasma dispersion function for calculating

modifications to wave dispersion relations. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4789387]

I. INTRODUCTION

The incomplete plasma dispersion function, defined as

Zð�;wÞ � 1ffiffiffi
p
p
ð1
�

dt
e�t2

t� w
; (1)

for =fwg > 0 and as its analytic continuation for =fwg � 0,

was introduced by Franklin.1 It is a generalization of the

plasma dispersion function,2,3 which corresponds to the limit

� ! �1 : ZðwÞ ¼ Zð�1;wÞ. Like the plasma dispersion

function, it arises in the linear plasma dielectric function and

corresponding wave dispersion relations. However, the

plasma dispersion function describes Maxwellian distribu-

tions, whereas Eq. (1) describes non-Maxwellian distribu-

tions so long as they can be approximated as Maxwellian in

finite, or semi-infinite, intervals of velocity phase-space.

Each interval may have different characteristic densities,

flow speeds, and temperatures associated with them.

Situations where a plasma is far from equilibrium, but

model distribution functions can be formulated in terms of

piecewise Maxwellians are prevalent.4–38 An early applica-

tion was in the study of waves near the boundaries of

Q-machine plasmas.8,12 There ions were modeled with a dis-

tribution consisting of only the high-energy tail of a Maxwel-

lian. Electrons trapped by the confining ion sheaths were

considered Maxwellian, whereas the passing interval was

depleted in density. These distributions are depicted by the

dashed and sold lines, respectively, in Fig. 1(a).

This type of depleted electron distribution is commonly

found in the presence of potential barriers, such as sheaths

near material walls,13–16 or probes,17–19 as well as double

layers which provide an electrostatic barrier between plasmas

with differing properties (density, temperature, etc.).22–32

Potential barriers create a trapped-passing boundary for one

or more species. At the edge of an absorbing wall sheath, for

example, the passing interval of the electron distribution will

be empty. This depleted region can significantly alter the

plasma dielectric response. For example, it has been shown to

reduce the threshold for temperature-anisotropy-driven whis-

tler instabilities near the boundary of magnetized plasmas.16

Scattering can fill in the depleted region such that the density

of the passing interval increases away from the potential bar-

rier. Also, in some applications, secondary electron emission

can generate an additional population of tail electrons,20,21

see Fig. 1(b), which may also be modeled using Eq. (1).

Other examples include electron sheaths, double sheaths,

and double layers that arise when a boundary is biased more

FIG. 1. Example distributions functions for which the incomplete plasma dis-

persion function will arise in the linear dielectric: (a) depleted Maxwellians

with a flow-shift (dashed) and without (solid), (b) depleted Maxwellian with

an additional tail population from secondary electron emission, (c) Maxwel-

lian distribution with a hole at low energy, (d) plateau distributions, (e) Max-

wellian with a narrow flattened interval, and (f) a flat-top distribution.
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positive than the plasma potential.29–31 In these situations, the

electron distribution can often be modeled as a depleted half-

Maxwellian with a flow shift; see Fig. 1(a). Phelps and Allen

studied waves in the presence of a double sheath with elec-

tron emitting boundaries.11 They modeled the electron distri-

bution as a background Maxwellian with an additional

flowing half-Maxwellian component generated by wall emis-

sion. By modeling the electrons in this manner, they were

able to accurately predict measured wave dispersion relations

for high frequency waves. They noted that ions in these con-

figurations can resemble Maxwellian distributions with a hole

at low energies, as shown in Fig. 1(c).

The incomplete plasma dispersion function may also be

useful for studying waves after non-linear process has modi-

fied a velocity distribution function, such as flattening of a

region of velocity-space due to a driven wave or instability,39

as shown in Fig. 1(e). Another common example is the pla-

teau distribution following the quasilinear evolution of a

bump-on-tail distribution, as depicted in Fig. 1(d). These

have been measured for ions downstream of current-free

double layers.23,24 Piecewise Maxwellian distributions have

also been used to model electrons upstream of current-free

double layers,22,25,26,28 as well as double layers that form in

electronegative plasmas.27

The incomplete plasma dispersion function may also

find use in magnetic reconnection research. A recent theory

proposes that large scale parallel electric fields can both

accelerate electrons and create a trapped-passing barrier that

affects the electron distribution.33–37 In this model, the paral-

lel electron distribution is Maxwellian in the tails and con-

stant in the intermediate region, as shown in Fig. 1(f).

Notably, Eq. (1) will arise in the dispersion relation of colli-

sionless tearing modes, which can be a trigger for fast recon-

nection in magnetospheric plasmas.

The purpose of this paper is to provide several properties

of the incomplete plasma dispersion function, which are use-

ful for applying it to the linear dielectric response and wave

dispersion relations in piecewise Maxwellian plasmas. These

properties are discussed in Sec. II. In Secs. III and IV, the

utility of this function is demonstrated by applying it to the

application of electrostatic waves near absorbing boundaries

of unmagnetized plasmas. In Sec. III, the depleted region of

the electron distribution is taken to be completely devoid of

particles, whereas in Sec. IV the depleted region is modeled

as a colder Maxwellian (returning the results of Sec. III in

the limit of zero tail temperature). Waves in plasmas with

gently depleted tails,40 as well as Lorentzian (or kappa) dis-

tributions41,42 have also been studied previously.

Ion-acoustic and Langmuir wave dispersion relations

are shown to be significantly modified when the trapped-

passing boundary affects the bulk distribution (i.e., it is near

the thermal speed), and the temperature characterizing the

passing population is low enough. For instance, one signifi-

cant modification to Langmuir waves is the absence of Lan-

dau damping for modes with phase velocity beyond the

trapped-passing boundary because of the lack of resonant

electrons. Similar undamped (or weakly damped) waves

have previously been studied in the high frequency limit

near a floating probe using a total depletion model. The mod-

eled wave properties were also confirmed using a probe and

spectrum analyzer.9 Similarly, the dispersion relations devel-

oped in Secs. III and IV should be accessible to experimental

measurement with the classical probe techniques. In addi-

tion, modern laser-induced fluorescence techniques may be

capable of measuring both the dispersion properties of these

waves, as well as how they may influence the distribution

functions in velocity-space.43–45

II. PROPERTIES

A. Differential representation

The incomplete plasma dispersion function, Eq. (1), can

also be represented in the differential form

dZ

dw
þ 2wZ ¼ 1ffiffiffi

p
p e��

2

� � w
� erfcð�Þ: (2)

Equation (2) can be used to write higher order derivatives in

terms of lower-order derivatives

ZðnÞ ¼ ðn� 1Þ! e��
2ffiffiffi

p
p
ð� � wÞn � 2½ðn� 1ÞZðn�2Þ þ wZðn�1Þ� (3)

for n � 2. Here, ZðnÞ � dnZ=dwn denotes the nth derivative

of Z with respect to w.

B. Asymptotic expansions

Asymptotic expansions can be obtained by applying the

Plemelj formula

Zð�;wÞ ’ i
ffiffiffi
p
p

Hðw� �Þe�w2 þ 1ffiffiffi
p
p P

ð1
�

dt
e�t2

t� w
; (4)

in which H is the Heaviside step function, then using a large

or small argument Taylor expansion of the integrand. For

jwj � 1, this yields

Zð�;wÞ ¼ i
ffiffiffi
p
p

Hðw� �Þe�w2 þ
X1
n¼0

anwn (5)

in which

an ¼
Cð�n=2; �2Þ þ 2aðnþ 1; �Þcð�n=2; �2Þ

2
ffiffiffi
p
p : (6)

Here,

aðn; �Þ � ½1þ ð�1Þn�ð1� �=j�jÞ=4 (7)

is a parameter that is unity if � < 0 and n is even, but is zero

otherwise, Cðn; xÞ is the upper incomplete gamma function,

and cðn; xÞ is the lower incomplete gamma function.46 The

second term in Eq. (6) is taken to vanish for even n (due to

a ¼ 0), although cð�n=2; �2Þ diverges for even n. The first

four terms of the coefficient an are

ao ¼ E1ð�2Þ=ð2
ffiffiffi
p
p
Þ; (8a)
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a1 ¼ e��
2

=ð�
ffiffiffi
p
p
Þ � erfcð�Þ; (8b)

a2 ¼ e��
2

=ð2
ffiffiffi
p
p

�2Þ � E1ð�2Þ=ð2
ffiffiffi
p
p
Þ; (8c)

a3 ¼
1� 2�2

3
ffiffiffi
p
p

�3
e��

2 þ 2

3
erfcð�Þ; (8d)

where erfc is the complimentary error function and E1ð�2Þ
¼ Cð0; �2Þ is the exponential integral.46

Applying the same procedure in the asymptotic limit

jwj � 1 yields

Zð�;wÞ 	 ir
ffiffiffi
p
p

Hðw� �Þe�w2 �
X1
n¼1

bn=wn (9)

in which

bn ¼
Cðn=2; �2Þ þ 2aðnþ 1; �Þcðn=2; �2Þ

2
ffiffiffi
p
p ; (10)

and where

r �
0; =fwg > 0;
1; =fwg ¼ 0;
2; =fwg < 0:

8<
: (11)

Note that bn ¼ a�n. The first five terms of the coefficient bn

are

b1 ¼ erfcð�Þ=2; (12a)

b2 ¼ e��
2

=ð2
ffiffiffi
p
p
Þ; (12b)

b3 ¼ �e��
2

=ð2
ffiffiffi
p
p
Þ þ erfcð�Þ=4; (12c)

b4 ¼ ð1þ �2Þe��2

=ð2
ffiffiffi
p
p
Þ; (12d)

b5 ¼
�3 þ 3�=2

2
ffiffiffi
p
p e��

2 þ 3

8
erfcð�Þ: (12e)

C. Generalized functions

Generalized functions of the form

Znð�;wÞ �
1ffiffiffi
p
p
ð1
�

dt
tne�t2

t� w
; n � 0; = wf g > 0 (13)

can be related to derivatives of Zð�;wÞ via the generating

function

Zn ¼
1

2n

Xn

l¼0

ð�1ÞldlðnÞ



�

ZðlÞ � 1ffiffiffi
p
p
Xl�1

m¼0

ðl�m� 1Þ! ð�1ÞmHmð�Þe��
2

ð��wÞl�m

�
; (14)

where Hm denotes the mth Hermite polynomial, and dlðnÞ
denote the coefficients satisfying tn ¼ 2�n

Pn
l¼0 dlðnÞHlðtÞ;

see Table I (from Table 22.12 of Ref. 46). A derivation of

Eq. (14) is provided in the Appendix. The first few terms of

Eq. (14) are

Z0ð�;wÞ ¼ Z; (15a)

Z1ð�;wÞ ¼ �
Z0

2
þ e��

2

2
ffiffiffi
p
p
ð� � wÞ ¼

erfcð�Þ
2
þ wZ; (15b)

Z2ð�;wÞ ¼
1

4
2Z þ Z00 þ 2�ð� � wÞ � 1ffiffiffi

p
p
ð� � wÞ2

e��
2

" #

¼ w½erfcð�Þ=2þ wZ� þ e��
2

=ð2
ffiffiffi
p
p
Þ: (15c)

D. Numerical evaluation

The incomplete plasma dispersion function can be eval-

uated using similar techniques used to evaluate the plasma

dispersion function. When the pole at t¼w falls outside the

integration interval (w < �), Eq. (1) can be computed by

direct integration. When the pole at t¼w falls within the

integrand (i.e., � < w <1), a similar integral spanning �1
to � can be computed by direct integration, and the result

subtracted from the plasma dispersion function to yield the

incomplete plasma dispersion function

Zð�;wÞ ¼ ZðwÞ � 1ffiffiffi
p
p
ð�
�1

dt
e�t2

t� w
: (16)

Efficient methods, such as continued fraction expansions

(see Sec. II F), have been developed for evaluating Z(w).

Figure 2 shows plots of the real and imaginary parts of

the incomplete plasma dispersion function as a function of

the complex argument w¼ xþ iy for three values of the cut-

off parameter � ¼ �1; 0, and 1. The complete plasma disper-

sion function is also shown as a dashed line for reference. For

cuts along the real line (y¼ 0), the real part of Zð�;wÞ has a

pole at x ¼ �, as shown in panel (a). As w! �, the function

diverges logarithmically. This can be seen by considering the

principal value term of Eq. (4), applying the substitution s¼ t
– w and expanding the exponential term for s� w in the

dominant interval near s¼ 0. The leading term shows that the

integral scales as �expð�w2Þlnðj� � wjÞ as w! �. The

imaginary part is equal to
ffiffiffi
p
p

Hðx� �Þexpð�x2Þ for y¼ 0, as

show in panel (b). For cuts along the line y¼�0.5, the real

part closely follows the complete plasma dispersion function

for x > �, and no singularities arise, as shown in panel (c).

The imaginary part is again discontinuous at x ¼ �, but has a

TABLE I. Values for the coefficients dlðnÞ and cnðlÞ. The top row gives val-

ues of n, and the left column values of l [e.g., d3ð5Þ ¼ 20]. The Hermite pol-

ynomials are generated from Hl ¼
Pl

n¼0 cnðlÞxn [e.g., c2ð4Þ ¼ �48]. For

l¼ n, the left value corresponds to cnðlÞ and the right value to dlðnÞ.

n values

l values 0 1 2 3 4 5 6

0 1, 1 0 2 0 12 0 120

1 0 2, 1 0 6 0 60 0

2 �2 0 4, 1 0 12 0 180

3 0 �12 0 8, 1 0 20 0

4 12 0 �48 0 16, 1 0 30

5 0 120 0 �160 0 32, 1 0

6 �120 0 720 0 �480 0 64, 1
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more complicated behavior than the simple Gaussian shape

found along the real line, as shown in panel (d).

Figure 3 shows an altitude plot of the complete plasma

dispersion function and incomplete plasma dispersion func-

tion for � ¼ 1 in panels (a) and (b), respectively. The plot is

obtained from the representation Z ¼ jZjeih where blue lines

are lines of constant jZj and red lines are lines of constant h.

In the incomplete case, a branch cut arises at x ¼ � creating

a discontinuous boundary for constant jZj lines (see Refs.

47–49 for a discussion). The intersection of this and the real

line locates a singular point in Zð�;wÞ that is not present in

the complete case.

E. Two-pole approximation

Because the plasma dispersion function is difficult to

deal with analytically, it is often useful to have an approxi-

mate algebraic expression. A method that has been shown

to accurately capture both the real and imaginary parts of

the conventional plasma dispersion function is the two-pole

approximation.50,51 This method can be extended to the

incomplete plasma dispersion function. The approach is to

first write a Pad�e approximate of the form

~Zð�;wÞ ¼ po þ p1w

1þ q1wþ q2w2
(17)

in which the coefficients are determined by matching the

large and small argument asymptotic expansions of Eq. (17)

with those of Eq. (1). Using Eq. (9), the large argument limit

gives p1=q2 ¼ b1. Using Eq. (5), the small argument expan-

sion of Zð�;wÞ is Z ’
P1

n¼0 cnwn, where

co ¼ i
ffiffiffi
p
p

Hðx� �Þ þ E1ð�2Þ
2
ffiffiffi
p
p ; c1 ¼

e��
2

�
ffiffiffi
p
p � erfcð�Þ (18)

and

c2 ¼ �i
ffiffiffi
p
p

Hðx� �Þ þ e��
2

2
ffiffiffi
p
p

�2
� E1ð�2Þ

2
ffiffiffi
p
p : (19)

Matching these with the small argument expansion of Eq. (17),

the p coefficients are

po ¼ co; p1 ¼
b1ðc2

1 � coc2Þ
c2

o þ c1b1

(20)

FIG. 3. Altitude plot of (a) Zð�1;wÞ and (b) Z(1, w) where w¼ xþ iy.

FIG. 2. Real and imaginary components of Zð�;wÞ in which w¼ xþ iy.

Solid lines correspond to various values of � : � ¼ �1 (red), � ¼ 0 (black),

and � ¼ 1 (blue). The dashed line shows the complete plasma dispersion

function Zð�1;wÞ. (a) and (b) take y¼ 0 and (c) and (d) take y¼�0.5.
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and the q coefficients are

q1 ¼ �
coc1 þ c2b1

c2
o þ c1b1

; q2 ¼
c2

1 � coc2

c2
o þ c1b1

: (21)

Next, a two-pole form of Eq. (17), written as

~Zð�;wÞ ¼ A

cþ � w
þ B

c� � w
; (22)

can be obtained from its partial fraction decomposition. This

provides

c6 ¼ �
q1

2q2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 � 4q2

p
2q2

(23)

and

A ¼ � po þ p1cþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 � 4q2

p ; B ¼ po þ p1c�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 � 4q2

p : (24)

Equation (22) is a two-pole approximation of the incomplete

plasma dispersion function. In the complete limit (� ! �1),

the coefficients simplify considerably: A¼ 0.5� 1.289i, B
¼ A�, and c6 ¼ 70:514� 1:032i.50

A comparison of the two-pole approximation from

Eq. (22) and numerical solutions of Eq. (1) is shown in Fig.

4(a). Here, the complete case (� ¼ �1) and an incomplete

case ð� ¼ �0:1Þ are shown and the argument is taken to be

real w¼ x. This Pad�e-type approximation captures both the

large and small argument limits, and smoothly connects

them. However, the incomplete plasma dispersion function

has a pole on the real line at w ¼ � (see Fig. 2(a)), which this

approach does not capture. This leads to significant errors in

the vicinity of the pole. This technique has a limited range of

validity for the incomplete plasma dispersion function, and

one must use it cautiously. On the other hand, as Fig. 4

shows, it can still be useful when the argument is far from

the pole. A common situation where this approximation may

be useful is when � < 0, but one is interested in waves for

which wR > 0.

Figure 4(b) shows a measure of the relative error ð ~Z � ZÞ=
jZj between the numerical solutions and two-pole approxima-

tions, again taking a real argument which here varies from 0

to 20. The error grows as the cutoff parameter is increased

from approximately 10% maximum in the complete case to

approximately 30% for � ¼ �0:1.

F. Continued fraction expansion

The two-pole approximation of the previous section was

based on a Pad�e approximate written in a rational-fraction

form

Zð�;wÞ ’ PN
MðwÞ ¼

XN

n¼0

Anwn

�XM

n¼0

Bnwn; (25)

where N¼ 1 and M¼ 2. This approach can be extended to

higher order to obtain a convergent approximation. Equiva-

lently, the Pad�e representation can be written as a continued

fraction. This is a common method used to numerically

evaluate the plasma dispersion function. In this section, a

continued fraction expansion of Eq. (1) and algorithm for

evaluating it are calculated following the procedure pre-

sented in Ref. 52 (for an alternative method, see Ref. 53).54

The result is also used to calculate a rational fraction

representation.

McCabe and Murphy52 have developed an algorithm for

calculating a continued fraction expansion of a function f(z)

corresponding to power series expansions at two points. The

expansions are assumed to have the form

f ðzÞ ¼
X1
n¼0

�anwn (26)

and

f ðzÞ ¼ �
X1
n¼1

�bn=wn (27)

FIG. 4. (a) Comparison of the numerically evaluated Z and the two-pole

approximation ~Z from Eq. (22) for the complete case (� ¼ �1) and an

incomplete case (� ¼ �0:1) taking a real argument w¼ xþ 0i. The lines

representing numerical evaluation of the imaginary components lie on top of

one another. (b) A measure of the relative error of the two-pole approxima-

tion [ð ~Z � ZÞ=jZj] for three values of the cutoff parameter � ¼ �1; �0:4,

and �0.1. Again, the argument is real and x : 0! 20.
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with �a0; �a1 6¼ 0. For our application, Eq. (26) will corre-

spond to the small argument expansion and Eq. (27) to the

large argument expansion of Eq. (1).

The continued fractions are of the form

FðwÞ ¼ �a0

1þ d
ð0Þ
1 wþ n

ð0Þ
2 w

1þ d
ð0Þ
2 wþ n

ð0Þ
3 w

1þ d
ð0Þ
3 wþ…

: (28)

The coefficients n
ð0Þ
i and d

ð0Þ
i can be calculated from the re-

currence relations52

n
ðrÞ
iþ1 þ d

ðrÞ
i ¼ n

ðrþ1Þ
i þ d

ðrþ1Þ
i ; (29a)

n
ðrÞ
iþ1d

ðrþ1Þ
iþ1 ¼ n

ðrþ1Þ
iþ1 d

ðrÞ
i (29b)

for i¼ 1, 2, 3,… and r ¼ 0;61;62;… using the initial

values d
ð0Þ
1 ¼ ��a0=b1; d

ðrÞ
1 ¼ ��ar=�ar�1 for r � 1; d

ðrÞ
1

¼ ��bjrj=�bjr�1j for r � �1 and n
ðrÞ
1 ¼ 0 for all r. Solving Eqs.

(29a) and (29b) provides an array of terms, called the n-d

array. Once these are determined, the continued fraction of

Eq. (28) can be evaluated to order N.

McCabe and Murphy developed a convenient method to

determine the convergents F1;F2;…;FN , which also pro-

vides rational Pad�e approximates of the form of Eq. (25).

The Nth convergent (FN), corresponding to the continued

fraction of Eq. (28) keeping terms i¼ 1, 2,…, N, can be writ-

ten in the rational fraction form

FNðwÞ ¼ RNðwÞ=SNðwÞ: (30)

Here, RN and SN can be determined from the recurrence

relations52

RNþ1 ¼ ð1þ d
ð0Þ
Nþ1wÞRN þ n

ð0Þ
Nþ1wRN�1; (31a)

SNþ1 ¼ ð1þ d
ð0Þ
Nþ1wÞSN þ n

ð0Þ
Nþ1wSN�1 (31b)

for N � 1 and with the initial conditions R0 ¼ 0; R1 ¼ �a0;
S0 ¼ 1, and S1 ¼ 1þ d

ð0Þ
1 w.

Because the asymptotic expansions of Zð�;wÞ depend

on HðwR � �Þ, it is convenient to use the representation

Zð�;wÞ ¼ i
ffiffiffi
p
p

HðwR � �Þe�w2 þ f ð�;wÞ (32)

and approximate f ð�;wÞ with a continued fraction expan-

sion; f ð�;wÞ ’ FNð�;wÞ. In this case, the coefficients of

Eqs. (26) and (27) are simply the large and small argument

expansions from Eqs. (6) and (10) (i.e., �an ¼ an and �bn

¼ bn). Alternatively, the exponential term in Eq. (32) could

be included in the expansion coefficients, but then the coeffi-

cients become functions of wR through the HðwR � �Þ term.

Figure 5 shows convergents of Eq. (32) for N¼ 13

and 25 obtained from the continued fraction method. Here,

� ¼ �1 and y¼�0.5. Also shown is a converged numerical

solution obtained using the method of Sec. II D. The contin-

ued fraction solution converges quickly over much of the do-

main, with the exception of points in the vicinity of large

gradients. Since it is very difficult to capture regions with

steep gradients using Pad�e approximates, we have found the

method of Sec. II D to provide a more efficient means for nu-

merical evaluation. The advantage arises from splitting the

integral into a smooth part (the complete plasma dispersion

function), which can be calculated efficiently with continued

fractions, and a part with steep gradients, which can be eval-

uated by direct integration.

III. WAVES IN THE PRESENCE OF A DEPLETED
ELECTRON DISTRIBUTION

Next, Eq. (1) is applied to calculate the dispersion rela-

tion of linear electrostatic waves near an absorbing boundary.

The electron distribution in this scenario will have a trapped-

passing boundary corresponding to the local electrostatic

potential; see Fig. 6(a). Because the boundary is completely

absorbing, the passing interval will nominally be empty.

FIG. 5. Real (blue) and imaginary (red) components of the Nth convergent

of the continued fraction expansion of the incomplete plasma dispersion

function ~ZNð�;wÞ for � ¼ �1 and w¼ x� 0.5i. Solid lines show a con-

verged solution obtained using the method of Sec. II D.

FIG. 6. (a) Depleted Maxwellian distribution for �1 ¼ vc=vT1 ¼ �0:75 and

four values of T2=T1: 0, 0.3, 0.6, and 1. Also shown are the corresponding

fluid moment parameters: (b) density, (c) flow speed, and (d) temperature.

The case of total depletion (T2=T1 ¼ 0) is used in Sec. III.
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Collisions act to fill in the depleted interval, which populates

as a function of distance from the boundary. In this section,

we take the passing interval to be completely devoid of par-

ticles. In Sec. IV, we will generalize this to include a passing

population with an independent temperature.

The dispersion relation of linear electrostatic waves can

be computed from the roots of the dielectric function

ê ¼ 1þ
X

s

4pq2
s

k2ms

ð
d3v

k � rvfs

x� k � v : (33)

In this section, we take the electron distribution function to be

fe ¼
n1Hðvx � vcÞ

p3=2v3
T1

e�v2=v2
T1 ; (34)

see Fig. 6(a). In Eq. (34), n1 and T1 are parameters associated

with the Maxwellian region of velocity space. The subscript

1 is used to denote this interval. In this case, the passing

interval (interval 2) is empty so we need not consider it. We

use this notation for consistency with the next section.

The parameters n1 and T1 can be related to the density, flow

velocity, and temperature of the distribution through

the moment definitions: ns ¼
Ð

d3v fs; Vs ¼
Ð

d3v vfs=ns and

Ts ¼
Ð

d3v msðv� VsÞ2fs=ð3nsÞ. Inserting Eq. (34) provides

ne

n1

¼ erfcð�1Þ
2

; (35)

Ve

vT1

¼ n1

ne

e��
2
1

2
ffiffiffi
p
p x̂; (36)

and

Te

T1

¼ 1þ 2�1

3

Ve

vT1

� 2

3

V2
e

v2
T1

(37)

for the electron density, flow velocity, and temperature,

respectively. These are shown in Fig. 6 as a function of the

cutoff parameter �1 ¼ vc=vT1. The coordinates are aligned so

that �1 � 0.

We consider only waves that propagate perpendicular to

the boundary, such that k ¼ kx̂. Taking the model distribu-

tion from Eq. (34) for electrons, and a flowing Maxwellian

distribution for the ions, the dielectric function from Eq. (33)

reduces to

ê ¼ 1�
x2

pi

k2v2
Ti

Z0
x� k � Vi

kvTi

� �
�

x2
p1

k2v2
T1

Z0 �1;
x

kvT1

� �
: (38)

Next, numerical solutions and asymptotic approximations

will be used to study the dispersion relations of ion-acoustic

and Langmuir frequency waves determined from roots of Eq.

(38). We assume the ion flow is only in the parallel direction,

Vi ¼ Vix̂, and the abbreviated notation k � Vi ¼ kVi is used.

A. Ion-acoustic waves

An approximate analytic dispersion relation for ion-

acoustic waves is obtained from the large argument expansion

of the plasma dispersion function for the ion term

ðx� k � ViÞ=ðkvTiÞ � 1, and the small argument expansion

of the incomplete plasma dispersion function for the electron

term x=ðkvT1Þ � 1 using Eqs. (2) and (5). Applying these as-

ymptotic expansions to Eq. (38), the dielectric function

reduces to

ê ¼ 1þ a

k2k2
D1

�
x2

pi

ðx� kViÞ2
þ idw

k2k2
D1

(39)

in which w ¼ x=ðkvT1Þ,

a ¼ 1

2
erfcð�1Þ �

e��
2
1ffiffiffi

p
p

�1

" #
; (40)

and

d ¼
ffiffiffi
p
p

HðwR � �1Þ �
i

2

E1ð�2Þffiffiffi
p
p þ e��

2ffiffiffi
p
p

�2

 !
: (41)

Assuming that dw� 1þ k2k2
D1, and that xR � c, the

dispersion relation obtained from the roots of Eq. (39) is

x6 ¼ xR;6 17iZi

ffiffiffiffiffi
ne

n1

r ffiffiffiffiffiffiffiffi
pme

8Mi

r
HðwR � �1Þ
ðaþ k2k2

D1Þ
3=2

" #
(42)

in which

xR;6 ¼ kVi6

ffiffiffiffiffi
ne

n1

r
Zikcs1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ k2k2

D1

q (43)

is the real frequency of the waves. The notation in Eqs. (42)

and (43) assumes either the top or bottom set of 6 symbols is

used (not any permutation). The conventional ion-acoustic

dispersion relation is returned in the limit ne=n1 ! 1; a! 1,

and HðwR � �Þ ! 1.

Numerical dispersion relations have been obtained

directly from Eq. (38). For ion-acoustic frequency waves, it

is convenient to write Eq. (38) in terms of the dimensionless

frequency and growth rate xr=kcs1 and c=kcs1. Six free pa-

rameters then remain: kkD1; �1; T1=Ti; Vi=cs1; me=mi and Zi.

The dispersion relation for various roots at fixed kkD1 is

obtained from the points where both the real and imaginary

parts of the dielectric function, Eq. (38), vanish. Figure 7

shows cuts of each component in the [0, 0] plane. Here, the

red and blue lines denote the real and imaginary components

for kkD1 ¼ 10�2. The other free parameters chosen in this

plot are �1 ¼ �1; T1=Ti ¼ 10; Vi=cs1 ¼ 0; mi=me ¼ 1836,

and Zi ¼ 1. The upper set of circles denotes the roots for this

wavenumber, which each correspond to a different wave.

Dispersion relations are obtained by stepping kkD1 and deter-

mining the root at each step. This procedure maps the black

lines in Fig. 7 as kkD1 varies from 10�2 to 102. The green

lines show the cut of the real component of ê for kkD1 ¼ 102

and the imaginary component is essentially unchanged (blue

lines). Figure 7 shows that these ion-acoustic dispersion rela-

tions lie along the zero-plane cuts of the imaginary compo-

nent of ê.
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Figure 8 shows example dispersion relations obtained

with this method for three values of the cutoff parameter:

�1 ¼ vc=vT1 ¼ �1; �1 and �0.1. Here, the frequencies are

normalized to kcs1. Panels (a) and (b) take Vi ¼ 0 and look at

the least damped root with xr positive, while (c) and (d) take

Vi ¼ cs1 and look at the root where xr=kcs1 is small, which

is unstable for a range of kkD1 (there is also a higher

frequency mode with xr 	 2kcs1 in this case, which is

damped). The other parameters used are T1=Ti ¼ 100;
mi=me ¼ 1836, and Zi ¼ 1. Solid lines represent the numeri-

cal solutions and dashed lines the analytic approximations

from Eqs. (42) and (43). The curves for �1 ¼ �1 corre-

spond to the conventional ion-acoustic wave in a Maxwellian

plasma. The figure shows that this is not significantly modi-

fied for �1 as large as �1. Thus, modifications to the ion-

acoustic dispersion relation due to the depleted electron

interval near floating surfaces are negligible. For floating

surfaces, �1 is typically a few times �1. Significant (	50%)

corrections arise in the �1 ¼ �0:1 case. Such a case is rele-

vant near isolated boundaries, such as probes, biased so that

the potential drop from the plasma to probe is less than the

floating potential. Boundaries biased more positive than the

plasma often result in electron distributions with �1 ¼ 0.

Figure 8 also shows that the analytic approximations

from Eqs. (42) and (43) are typically within the expected

Oð
ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
Þ 	 10% accuracy for kkD1�1. One exception is

the growth rate for the �1 ¼ �0:1 case in panel (d), which is

off by 	50% for small kkD1. One interesting feature of the

depleted interval is that it can have a greater effect on the

growth rate than it does the real frequency; as shown in pan-

els (c) and (d). For �1 ¼ �1, depletion has a negligible affect

on the real frequency, but destabilizes low-k waves. How-

ever, the depletion produces competing effects, as demon-

strated by the result that increasing �1 further to �0.1

enhances the stabilizing effect of finite kkD1. This may be

because the electron-ion temperature ratio, see Eq. (37), is

substantially reduced in this case.

B. Langmuir waves

To obtain an approximate analytic dispersion relation

for Langmuir waves (x 	 xpe), the ion term in Eq. (38) is

Oðme=miÞ and will be neglected. Taking the large argument

expansion of the electron term from Eq. (9), Z0 ’ ½erfcð�Þ=2

þ dð�wÞ�=w2, where d keeps terms up to fourth order and �w
uses the lowest order solution of x ( �w ¼ xpe=kvT1). Using

these in Eq. (38) provides the dispersion relation

x2 ’ x2
pe þ

3

2
k2v2

T1 þ 2kVe xpe þ
3

2
kvT1�1

� �
; (44)

in which x2
pe ¼ erfcð�1Þx2

p1=2 is the plasma frequency based

on the density moment and Ve is the electron flow moment

speed from Eq. (36).

The ion term in Eq. (38) is also neglected for the numer-

ical analysis of Langmuir waves, which are determined from

the roots of

ê ¼ 1�
x2

p1

k2v2
T1

Z0 �1;
x

kvT1

� �
: (45)

Figure 9 shows some interesting features of the zeros of

Eq. (45) as the cutoff parameter increases from �1. In these

plots, kkD1 ¼ 0:2 was chosen. In the complete case (�1

¼ �1), the two usual Langmuir roots are found x ¼ 6xp1.

The dispersion of each of these is identical, except for the

sign of the phase speed. For �1 ¼ �2 (at this kkD1), these

two weakly damped waves persist nearly unaffected by the

depleted region in velocity-space. However, several damped

modes are strongly affected by the depletion, leading to an

asymmetry in 6xR that is not present in the complete case.

FIG. 8. The ion-acoustic dispersion relation computed numerically from Eq.

(38) (solid lines) and from the approximate analytic formula from Eqs. (42)

and (43) (dashed lines) for three values of the cutoff parameter

�1 ¼ �1;�1, and �0.1. The parameters T1=Ti ¼ 100; Zi ¼ 1, and

mi=me ¼ 1836 were used in each case. Panels (a) and (b) show the real and

imaginary components for no flow Vi ¼ 0, while (c) and (d) correspond to

sonic flow Vi ¼ cs1.

FIG. 7. Cuts of the intersection of the real and imaginary parts of the electro-

static dielectric function with the [0, 0] plane. The real part is shown for k
¼ 10�2 (red lines) and k ¼ 102 (green lines). The imaginary part is the same

for each k (blue lines). The black lines show the dispersion relation of vari-

ous modes as k varies from 10�2 to 102.
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As �1 is increased further to �1, this asymmetry extends to

the usual Langmuir roots as well. Here, jxR�j < jxRþj, but

only slightly so for �1 ¼ �1. A more substantial asymmetry

in the real frequency of the two oppositely directed modes is

found as the cutoff parameter increases further.

Figure 10 shows the Langmuir wave dispersion relation

for each of these modes at two values of the cutoff parame-

ter: �1 ¼ �1 and �0.1. The complete case is symmetric, so

xRþ ¼ �xR�, as is typical. As the cutoff parameter

increases, two effects set in: (1) there is a shift in the fre-

quency at asymptotically low wavenumber, and (2) the two

oppositely directed modes no longer have the same absolute

frequency. Effect (1) is simply due to the xp1 normalization.

Equation (44) shows that x ’ 6xpe at asymptotically small

wavenumbers, where xpe is the electron plasma frequency

based on the total electron density. For �1 ¼ �0:1;xpe=xp1

¼
ffiffiffiffiffiffiffiffiffiffiffi
ne=n1

p

 1=

ffiffiffi
2
p

, which accounts for this shift. Effect (2)

sets in at higher wavenumbers, which the asymptotic theory

does not capture. Here, the magnitude of the real frequency

can be significantly smaller for the mode with phase velocity

in the depleted region, in comparison to the oppositely

directed mode. Because the electron density vanishes in this

region of velocity phase-space, there are no resonant elec-

trons, and hence no Landau damping. This mode is

undamped, even for large kkD1, in contrast to the strong

damping that affects the mode with positive phase velocity.

This can be seen in Fig. 10(b).

IV. WAVES IN THE PRESENCE OF A PARTIALLY
DEPLETED ELECTRON DISTRIBUTION

Scattering and ionization cause the passing interval of

the electron distribution to be refilled as a function of dis-

tance from the boundary. Here, the discussion of the last sec-

tion is generalized to include a passing population (labeled

population 2), characterized by T2 � T1. The electron distri-

bution then takes the form

fe ¼
e�v2

?=v
2
T1

p3=2v2
T1

n2expð�v2
x=v

2
T2Þ=vT2; vx < vc

n1expð�v2
x=v

2
T1Þ=vT1; vx � vc

;

(
(46)

where vc � 0. For absorbing boundaries, fe is expected to be

continuous, in which case

n2 ¼ n1

ffiffiffiffiffi
T2

T1

r
e�

2
2
��2

1 : (47)

Although the continuous case of Eq. (47) is considered here,

the results can be generalized in a straight-forward way to

electron-emitting boundaries by applying a model for n2 that

accounts for this additional population of electrons in the

passing interval.

Applying Eqs. (46) and (47) to the moment definitions

of the fluid variables provides

ne

n1

¼ erfcð�1Þ
2

þ n2

n1

erfcð��2Þ
2

; (48)

Ve

vT1

¼ n1

ne

ð1� T2=T1Þ
2
ffiffiffi
p
p e��

2
1 x̂; (49)

FIG. 10. Langmuir wave dispersion relation calculated numerically from

Eq. (45) (solid lines) and analytically from Eq. (44) (dashed lines). (a)

Shows the real frequency for positive phase velocity (xþ) and negative

phase velocity (x�) modes. (b) Shows the growth rate for each mode. The

damping rate for x6ð�1 ¼ �1Þ and xþð�1 ¼ �0:1Þ lie on top of one

another.

FIG. 9. Contours of <fêg ¼ 0 (red) and =fêg ¼ 0 (blue) in the complex fre-

quency plane (x ¼ xR þ ic) for Langmuir-frequency waves from Eq. (45)

taking kkD1 ¼ 0:2.
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and

Te

T1

¼ 2

3
1þ 1

2

T2

T1

þ Ve

vT1

�1 �
Ve

vT1

þ
ffiffiffi
p
p

2
erfcð�1Þe�

2
1

� �� �
(50)

for the electron density, flow velocity, and temperature,

respectively. These are shown in Fig. 6 as a function of the

cutoff parameter �1 ¼ vc=vT1 (note �2 ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
) for a

few values of the temperature ratio T2=T1. Putting Eq. (46)

into Eq. (33), the linear plasma dielectric takes the form

ê ¼ 1�
x2

pi

k2v2
Ti

Z0
x� k � Vi

kvTi

� �

�
x2

p1

k2v2
T1

Z0ð�1;w1Þ þ
T1n2

T2n1

½Z0ðw2Þ � Z0ð�2;w2Þ�
� 	

:

(51)

Next, the ion-acoustic and Langmuir waves from the previ-

ous section are revisited using Eq. (51), which includes a

non-vanishing tail population.

A. Ion-acoustic waves

To obtain an approximate analytic dispersion relation,

we apply to Eq. (51) the usual ordering: ðx� k � ViÞ=kvTi

� 1; x=kvT1 � 1, and x=kvT2 � 1. However, we note at

the outset that the approximate dispersion relation obtained

in this manner cannot be expected to reduce to Eq. (42) in

the T2 ! 0 limit because this would violate the x=kvT2 � 1

assumption. Estimating x=kvT2 	 cs1=vT2, the x=kvT2 � 1

ordering requires T2 � T1me=mi. Following the same proce-

dure as Sec. III A provides the approximate ion-acoustic

wave dispersion relation

x6 ¼ xR;6 17iZi

ffiffiffiffiffi
ne

n1

r ffiffiffiffiffiffiffiffi
pme

8Mi

r
HðxRÞ

ð�a þ k2k2
D1Þ

3=2

" #
(52)

in which

xR;6 ¼ kVi6

ffiffiffiffiffi
ne

n1

r
Zikcs1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�a þ k2k2
D1

q ; (53)

is the real frequency. Here,

�a ¼ erfcð�1Þ
2

þ T1n2

T2n1

erfcð��2Þ
2

(54)

and

H ¼ HðwR1 � �1Þ þ Hð�2 � wR2Þ
T1

T2

� �3=2 n2

n1

e�w2
R2 : (55)

The conventional ion-acoustic dispersion relation can be

returned in the T2=T1 ! 1 limit (in which case ne=n1; �a and

H! 1).

Numerical solutions of the dispersion relation were

obtained from Eq. (51) in terms of x=kcs1 using the same

method described in Sec. III A. Here, seven free parameters

must be set: kkD1; �1; T2=T1; T1=Ti; Vi=cs1; me=mi, and Zi.

Figure 11 shows the real frequency and growth rate as a

function of kkD1 for a few trapped-passing temperature ratios

for stationary (Vi ¼ 0) and sonically flowing (Vi ¼ cs1) ion

distributions. The other free parameters chosen were: �1

¼ �0:1; T1=Ti ¼ 100; mi=me ¼ 1836, and Zi ¼ 1. Figure 11

shows a transition between the conventional ion-acoustic

wave (T2=T1 ¼ 1) and the fully depleted wave (T2=T1 ¼ 0)

as T2=T1 decreases. It also shows that the approximate for-

mula from Eq. (52) typically captures the small kkD1 behav-

ior of the real frequency and growth rate to within the

expected Oð
ffiffiffiffiffiffiffiffiffiffiffi
Te=Ti

p
Þ 	 10% accuracy. Equation (42) was

used for the T2=T1 ¼ 0 case, since Eq. (52) is not expected

to hold in this limit.

B. Langmuir waves

An approximate analytic expression for Langmuir waves

can be obtained from Eq. (51) using the same procedure as

Sec. III B. Neglecting the ion term, and obtaining up to

fourth order in the large argument expansion of the electron

term, this procedure provides the dispersion relation

x2 ’ x2
pe þ

3

2
k2v2

T1

þ2kVe xpe þ
3

2
kvT1 �1 �

ffiffiffiffiffi
T2

T1

r
erfcð��2Þ

2
e�

2
2

� �� �
;

(56)

in which xpe is the electron plasma frequency based on the

total electron density ne from Eq. (48) and Ve is the flow-

moment speed from Eq. (49). Equation (56) reduces to the

conventional Langmuir wave dispersion relation in the limit

T2=T1 ! 1 ðVe ! 0Þ and to Eq. (44) in the limit T2 ! 0.

FIG. 11. The ion-acoustic dispersion relation computed numerically from

Eq. (51) (solid lines) and from the approximate analytic formula (dashed

lines) for values of the temperature ratio: T2=T1 ¼ 1; 0:6; 0:3, and 0. The

parameters �1 ¼ �0:1; T1=Ti ¼ 100; Zi ¼ 1, and mi=me ¼ 1836 were used

in each case. Panels (a) and (b) show the real and imaginary components for

no flow Vi ¼ 0, while (c) and (d) correspond to sonic flow Vi ¼ cs1.
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As in Sec. III B, the ion term is dropped for the numeri-

cal analysis for the high-frequency Langmuir waves, so Eq.

(51) reduces to

ê ¼ 1�
x2

p1

k2v2
T1

Z0ð�1;w1Þ þ
T1n2

T2n1

½Z0ðw2Þ � Z0ð�2;w2Þ�
� 	

:

(57)

Figure 12 shows how the zeros of<fêg and=fêg, and the cor-

responding dispersion relations, change as the trapped-passing

temperature ratio is varied. The parameters �1 ¼ �0:5 and

kkD1 ¼ 0:2 have been chosen for this figure. The usual sym-

metric roots are obtained for the complete case (T2=T1 ¼ 1).

As the temperature ratio drops, this symmetry is broken and

the density of damped roots increases substantially for

xR=xp1��1kkD1 
 �0:1. As the temperature ratio drops, the

asymmetry between the oppositely directed modes increases,

and the Landau damping decreases.

Figure 13 shows the Langmuir wave dispersion relation

for �1 ¼ �0:1 and three values of the temperature ratio

T2=T1 ¼ 1; 0:2, and 0. The general behavior is similar to the

totally depleted case from Fig. 10. The T2=T1 ¼ 0:2 line

shows a transition between the two limiting cases. Figure

13(b) shows that the undamped modes extend to higher wave-

numbers for cold, but nonzero, tail temperature. However,

Landau damping does not vanish completely for finite tail

temperature. The approximate formula from Eq. (56) accu-

rately predicts the wave frequency at small wavenumber.

V. SUMMARY

Plasmas, especially in the presence of potential barriers,

can be far from equilibrium. Nevertheless, models can often

be constructed to describe the distribution functions using

Maxwellians in finite velocity-space intervals, where each

interval is characterized by different effective densities, tem-

peratures, and flow speeds. Whenever such models are applied

to calculate the linear plasma dielectric response, the incom-

plete plasma dispersion function, defined by Eq. (1), will

arise. Several properties of this function, such as asymptotic

expansions and other approximations, that are useful for

applying it to calculate wave dispersion relations were

reviewed in Sec. II. In Secs. III and IV, this function was used

to develop quantitative dispersion relations for ion-acoustic

and Langmuir waves in plasmas near absorbing boundaries.

The passing interval of the electron distribution is depleted in

density compared to the trapped interval in this circumstance.

Substantial modifications to the dispersion relations were

shown to arise if the passing interval is sufficiently cold, and

the trapped-passing boundary is not too far onto the tail of the

distribution. These conditions are particularly interesting near

probes biased near (or above) the plasma potential.
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APPENDIX: DERIVATION OF GENERATING FUNCTION
FOR Zn

An outline of the derivation of Eq. (14), which relates

Eq. (13) to derivatives of Zð�;wÞ, is provided in this appen-

dix. First, it is useful to apply n derivatives to Eq. (1) to give

ZðnÞð�;wÞ ¼ n!ffiffiffi
p
p
ð1
�

dt
e�t2

ðt� wÞnþ1
: (A1)

Applying

e�t2

ðt� wÞnþ1
¼ 1

n!

ðdn=dtnÞe�t2

t� w

� d

dt

Xn�1

m¼0

ðn� m� 1Þ!
n!

ðdm=dtmÞe�t2

ðt� wÞn�m

" #
(A2)

and the relation

ðdn=dtnÞe�t2 ¼ ð�1Þne�t2 HnðtÞ; (A3)

Eq. (A1) can be rearranged to show

1ffiffiffi
p
p
ð1
�

dt
HnðtÞe�t2

t� w
¼ ð�1ÞnZðnÞ

� ð�1Þnffiffiffi
p
p

Xn�1

m¼1

ðn� m� 1Þ!ð�1ÞmHmð�Þe��
2

ð� � wÞn�m : (A4)

Using the identity

tn ¼ 1

2n

Xn

l¼0

dlðnÞHlðtÞ (A5)

in Eq. (13) shows

Znð�;wÞ ¼
1

2n

Xn

l¼0

dlðnÞ
1ffiffiffi
p
p
ð1
�

dt
HlðtÞe�t2

t� w
: (A6)

Finally, putting Eq. (A4) into Eq. (A6) completes the deriva-

tion of Eq. (14).
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