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The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the

Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at

the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant

surface have a unique angle with respect to the guide field direction. Both kinetic simulations and

numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed

that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that

this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theo-

ries miss this drift stabilization because the inner tearing layer broadens at oblique angles suffi-

ciently far that the assumption of scale separation between the inner and outer regions of boundary-

layer theory breaks down. The dispersion relation obtained by numerically solving a single second

order differential equation is found to approximately capture the drift stabilization predicted by sol-

utions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stabil-

ity criterion is provided. Published by AIP Publishing. https://doi.org/10.1063/1.5020777

I. INTRODUCTION

Tearing instabilities are magnetic reconnection events

that occur in transition layers where the frozen flux condition

of ideal magnetohydrodynamics (MHD) is violated.1 In toka-

maks, they contribute to the basic magnetic field topology,2

transport,3–6 rotation,7 and may trigger disruptive events.8 In

space, they are responsible for initiating large-scale magnetic

reconnection in Earth’s magnetosphere,9 as well as flares in

the solar corona.10 If the plasma is sufficiently dense or cool,

tearing instabilities are well described by resistive,1,13–17 or

visco-resistive18 MHD. At lower densities or higher tempera-

tures, two-fluid or Hall MHD effects modify the resistive

reconnection rate.19–23 At even lower densities or higher

temperatures, resistivity plays no role and reconnection is

determined entirely by collisionless two-fluid or kinetic

effects.24–28 Space plasmas are frequently found in the latter

collisionless regime, and fusion plasmas can also reach this

regime.29–32

In this paper, we revisit the linear kinetic dispersion

relation for collisionless tearing instability of a Harris current

sheet.33 Recent particle-in-cell (PIC) simulations, together

with numerical solutions of the linearized Vlasov equation,34

have revealed the surprising result that the spectrum of obli-

que modes is much more narrow than standard analytic theo-

ries predict.24,25 Here, h ¼ arctanðky=kzÞ is the angle of

obliquity and k the wavevector; see Fig. 1. The resonant sur-

face locations xs ¼ karctanhðlÞ, where l � tan hBoy= �Boz,

locate the chain of magnetic islands associated with angle h.

This narrower spectrum has significant consequences for the

subsequent nonlinear reconnection dynamics. Flux ropes on

adjacent resonant surfaces can overlap, which leads to sto-

chastic magnetic field generation and even turbulence.35,36

The spectrum of unstable tearing modes determines the

plasma volume that is ultimately susceptible to this form of

turbulence. It also has consequences for theories of particle

acceleration by contracting magnetic islands, which relies on

a broad spectrum of unstable modes (i.e., volume filling of

magnetic islands).37,38 Resonant surfaces unstable to linear

tearing modes also become the sites of electron layers in the

nonlinear regime,39 which can lead to multiple electron

layers in domains long enough to support multiple resonant

surfaces. Understanding the spectrum of linear tearing modes

is critical.

FIG. 1. Illustration of chains of flux tubes on three resonant surfaces. Flux

tubes are aligned along the magnetic field and h is the angle between this

and the guide field direction (ŷ).
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This work focuses on understanding the stabilization of

oblique modes. There are many theories of linear collisionless

tearing modes in the literature,24,25,40–49 but none of them cap-

tures this effect. We focus on comparing with Drake and Lee

(DL)24 and Galeev et al.,25 as these are the most commonly

used. In a kinetic plasma, the linear response is determined by

orbit integrals, leading to an eigenvalue problem with com-

plex integro-differential operators. All of the theories make

assumptions to reduce the complexity of these equations,

including various combinations of a small gyroradius expan-

sion, the constant-w approximation, neglect of electrostatic

terms, etc. Each of these theories also assumes a scale separa-

tion between an “inner” region where reconnection occurs

and an “outer” (ideal) region.

To identify the approximation responsible for missing

the effect, we apply a series of three successive approxima-

tions and discuss the influence of each on the growth rate.

The most general description is a normal mode analysis of

the Vlasov-Maxwell integro-differential (VMID) equations

that includes the full orbit integrals. This full system of equa-

tions has been solved numerically for the Harris sheet geom-

etry using both Hermite50 and finite-element expansions9,51

of the eigenfunction. In this paper, the results from the finite-

element code51 are used to evaluate and refine simplified theo-

ries. As a first step, the full system of equations is simplified by

taking the small gyroradius limit. The next step exploits a scale

separation that allows one to eliminate electrostatic terms from

the system of equations. We find that each set of equations cap-

tures the narrower mode spectrum, in qualitative agreement

with the previous kinetic simulations and the full numerical sol-

utions of the tearing eigenmode equations. Quantitative differ-

ences do arise at each level of approximation.

We find that the physical process responsible for the sta-

bilization of oblique modes is the uniform diamagnetic drift

in the Harris equilibrium. The drift broadens the inner layer

of oblique modes. At large angles, the inner region becomes

broad enough that the scale separation that boundary layer

theories are predicted on breaks down. In this regime, both

kinetic simulations and VMID calculations indicate that tear-

ing modes are damped. In this work, we demonstrate that

this stabilization effect can be described from the numerical

solution of a single second order differential equation. A

comparison with previous boundary layer theories is pro-

vided, which details asymptotic limits and where they agree

and disagree with the more complete theory.24,25,45,49 A sim-

ple analytic formula for the cutoff angle at which stabiliza-

tion occurs is provided.

It is noteworthy that previous work on other models, or

for other equilibria, have not seen the same stabilization of

oblique modes. For example, modes were found to span the

current sheet in resistive MHD.52 Simulations and collision-

less kinetic theory, similar to what are discussed here, were

found to agree well for a force-free equilibrium.39 Similarly,

two-fluid theory was found to accurately capture the disper-

sion of oblique modes in this case.53 These results are consis-

tent with what is presented here because the force-free

equilibrium does not have a diamagnetic drift. We also note

that Cowley et al.54 have shown that temperature gradients

can stabilize tearing modes, but the density gradient did not

cause stabilization in that analysis and it produced only loga-

rithmic corrections to the growth rates calculated without a

density gradient.29 There is no temperature gradient in the

Harris equilibrium.

The remainder of this paper is organized as follows. The

three sets of equations obtained from successive approxima-

tions of the Vlasov-Maxwell system are derived in Sec. II.

Numerical solutions are provided in Sec. III. Section IV

gives a comparison of these results with previous theories.

Section V shows an analysis of how the boundary layer theo-

ries break down at oblique angles and provides a simple ana-

lytic estimate for the cutoff angle.

II. BASIC EQUATIONS

A. Vlasov-Maxwell

This section describes the Vlasov-Maxwell integro-dif-

ferential equations in which the full orbit integrals are solved

numerically. We will refer to this as the VMID model. It

starts from the linearized Vlasov equation

ddfs

dt
¼ � qs

ms
dEþ v� dB

c

� �
� @fso

@v
; (1)

where d=dt ¼ @=@tþ v � r þ ðqs=msÞðEo þ v� Bo=cÞ � rv

is the convective derivative. We will later focus on the

Harris equilibrium, but in this section, the requisite is only

that the equilibrium magnetic field can be written in the form

Bo ¼ ByoðxÞŷ þ BzoðxÞẑ and that the lowest-order distribu-

tion functions are Maxwellians

fso ¼
nsðxÞ

p3=2v3
Ts

exp �ðv� UsÞ2

v2
Ts

" #
; (2)

where the flow velocity is Us ¼ Us;yðxÞŷ þ Us;zðxÞẑ. We

write dE and dB in terms of scalar and vector potentials

dE ¼ �rd/� 1

c

@dA

@t
and dB ¼ r� dA; (3)

and apply a normal mode analysis of the form

d/ ¼ d�/ðxÞ exp ð�ixtþ ikyyþ ikzzÞ;
dA ¼ d�AðxÞ exp ð�ixtþ ikyyþ ikzzÞ:

Inserting Eq. (2) into (1) and integrating along the char-

acteristics, which are the unperturbed particle orbits,

provides50

dfs ¼ �
qsfso

Ts
d/� Us � dA

c
þ iðx� k � UsÞS

� �
; (4)

where

S ¼
ð1

0

dsðd~/ � v0 � d~A=cÞeixs�ik�ðx�x0Þ; (5)

s ¼ t� t0; d~/ ¼ d/ðk; x0; tÞ and d~A ¼ dAðk; x0; tÞ. The sin-

gle particle characteristics (x� x0) are quite complicated in

the sheared electric and magnetic fields of a general neutral
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sheet configuration. In the VMID model, S was computed

numerically from Eq. (5) for the exact single particle charac-

teristics using the orbit integration technique described in

Refs. 50 and 51.

Equations (4) and (5) are used to calculate the perturbed

charge density (dq ¼
P

sqsdns, where dns ¼
Ð

d3v dfs) and cur-

rent density (dJ ¼
P

sqsdCs, where dCs ¼
Ð

d3v vdfs), which

are then used in Maxwell’s equations in the Lorenz gauge

r2d/� 1

c2

@2d/
@t2
¼ �4pdq; (6a)

r2dA� 1

c2

@2dA

@t2
¼ � 4p

c
dJ: (6b)

The resulting set of three coupled integro-differential equa-

tions for d/ and dA is then solved numerically as an eigen-

value problem for the eigenvectors and dispersion relation

using a finite element approach.51 The boundary conditions

on d/ and dA are that they asymptote to a constant value

(zero) as x ¼ 61.

B. Small gyroradius limit

As a next level of approximation, gyroradius effects are

neglected (qs ! 0). In this case, the single particle character-

istics are x� x0 ¼ vksb̂ þOðqsÞ, where b̂ ¼ Bo=jBoj, and

Eq. (5) reduces to

S ¼
iðd/� vkdAk=cÞ

x� kkvk
þ OðqsÞ (7)

assuming =fxg > 0. To the lowest-order in this gyroradius

expansion, Eq. (4) can then be written as

dfs ¼ �
qsfso

Ts
d/� Us � dA

c
� d/�

vkdAk
c

� �
x� k � Us

x� kkvk

" #
:

(8)

Since the phase speed of the waves of interest are much smaller

than c, we drop the displacement current terms in Maxwell’s

equations, sor2d/ ¼ �4pdq andr2dA ¼ �ð4p=cÞdJ.

Evaluating the velocity-space integrals for the perturbed

density and putting the result into Gauss’s law gives

@2
x � ðk2 þ k�2

D Þ
� �

d/

¼
X

s

k�2
Ds �

Us � dA

c
þx� k � Us

kkvTs

h
d/ZðwsÞ

(

� vTs

c
dAkð1þ fsZðwsÞÞ

i)
; (9)

in which k2
Ds ¼

P
sð4pq2

s nsoÞ=Ts is the square of the Debye

length for species s, and k�2
D ¼

P
sk
�2
Ds gives the total Debye

length

ws �
x� kkUs;k

kkvTs
and fs �

x
kkvTs

: (10)

The coordinate rotation ðx; y; zÞ ! ðx; b; gÞ has been applied,

where b̂ ¼ byŷ þ bzẑ is parallel to the equilibrium magnetic

field and ĝ ¼ x̂ � b̂ ¼ �bzŷ þ byẑ. The plasma dispersion

function55

ZnðwÞ ¼
1ffiffiffi
p
p
ð1
�1

dt
tne�t2

t� w
(11)

has also been used where ZðwÞ � Z0ðwÞ. Evaluating the inte-

grals for the perturbed current and putting the result into

Ampère’s law gives

r2dA ¼
X

s

2x2
ps

ckkv2
Ts

idBx
Us;g

c
Us þ idEk

(

� Us þ
ðx� k � UsÞ

kk

Us

vTs
ZðwsÞ þ Z1ðwsÞb̂

� �" #)
;

(12)

where xps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pq2

s nso=ms

p
is the plasma frequency of spe-

cies s. Also, note that dBx ¼ iðkkdAg � kgdAkÞ and dEk
¼ �ikkd/þ iðx=cÞdAk.

Explicit evolution equations for dAy and dAz can be

obtained by projecting Eq. (12) along ŷ and ẑ. However,

more compact expressions can be obtained by projecting Eq.

(12) in the direction along Bo at a resonant surface

b̂
s ¼ BoðxsÞ=BoðxsÞ ¼ cos hŷ � sin hẑ (13)

as well as the direction that is perpendicular to both this and

x̂, which is simply k̂ : b̂
s � k̂ ¼ x̂. Thus, ðx̂; b̂s

; k̂Þ provides a

convenient orthogonal coordinate system. Applying this to

Eq. (12) gives

@2
x � ðk2 þ VbsÞ

� �
dÂ

¼ idEk
X

s

2x2
ps

ckkvTs

b̂
s � Us

vTs
þ ðx� k � UsÞ

kkvTs

"

� b̂
s � Us

vTs
ZðwsÞ þ

kg

k
Z1ðwsÞ

 !#
(14)

and

ð@2
x � k2ÞdAk ¼ dÂVk þ idEk

X
s

2x2
ps

ckkvTs

k̂ �Us

vTs

"

þðx� k �UsÞ
kkvTs

k̂ �Us

vTs
ZðwsÞ þ

kk
k

Z1ðwsÞ

 !#
;

(15)

in which

V ¼
X

s

2x2
ps

c2

k

kk

Us;gUs

v2
Ts

; (16)

Vbs ¼ b̂
s � V and Vk ¼ k̂ � V. Here, dAk ¼ k � dA

dÂ ¼ bs � dA ¼ ðkgdAk � kkdAgÞ=k ¼ idBx=k; (17)

and
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idEk ¼ kkd/� x
c

kg

k
dÂ þ

kk
k

dAk

� �
: (18)

The set of three coupled Eqs. (9), (14), and (15) provides a

closed description for the small gyroradius limit.

C. Decoupled magnetic field approximation

Although dEk in Eq. (14) depends on d/; dÂ and dAk,

consideration of two-scale features of a tearing layer can be

used to justify an approximate decoupling of dÂ from d/
and dAk. In the outer region, far from a resonant surface,

magnetic flux is frozen into the plasma, so the parallel elec-

tric field vanishes dEk ! 0. In this ideal MHD-like outer

region, the right side of Eq. (14) is negligible and dÂ is the

only remaining dependent variable. In the inner region near

a resonant surface, kk � k, which implies

idEk ¼ kkd/� x
c

kg

k
dÂ � x

c

kk
k

dAk ’ �
x
c

dÂ; (19)

and

b̂
s � Us ¼ bs

kUs;k þ bs
gUs;g ¼

kg

k
Us;k �

kk
k

Us;g ’ Us;k (20)

so,

k

kg

b̂
s � Us

vTs
ZðwsÞ þ Z1ðwsÞ ’ 1þ fsZðwsÞ: (21)

If we also note that the first term on the right side of Eq. (14)

is small compared to the other two, we are left with

@2
x � ðk2 þ VbsÞ

� �
dÂ ¼ �dÂ

X
s

2x2
ps

c2

ðx� k � UsÞ
kkvTs

� fs 1þ fsZðwsÞ½ �; (22)

to describe the inner region.

Although Eq. (22) was derived for the inner region, it is

expected to hold in the outer region as well. This is because

the left side is the ideal MHD outer region equation, and in

the outer region, the right side is negligibly small since it is

proportional to x2=ðkvTsÞ2 � 1. The right side contributes

only in the inner region where kk is small. Thus, Eq. (22) is

an approximate equation spanning the layer that is decoupled

from dAk and d/. The validity of this scale separation will

be evaluated in Sec. V.

D. Harris equilibrium

We utilize the following properties of the Harris

equilibrium33

Bo ¼ Boyŷ þ �Boztanhðx=kÞẑ; (23a)

�n ¼ �nosech2ðx=kÞ; (23b)

�B
2
oz ¼ 8p�noðTe þ TiÞ; (23c)

Us ¼ �2cTs=ðqs
�BozkÞŷ; (23d)

where an additional uniform background density (nb) for

each species is included, nðxÞ ¼ �nðxÞ þ nb. Noting that Us;g

¼ �bzUs, Eq. (16) reduces to

V ¼ � 4p�ne2

c2

Ui

Ti

� �2

ðTe þ TiÞ
kBz

kkBo
ŷ; (24)

and Ampère’s law gives

B00z ¼ �
4pe

c

Ui

Ti
ðTe þ TiÞ�n0; (25)

where “prime” denotes a derivative. Taking a derivative of

Eq. (23b) and utilizing Eqs. (23c) and (25) give

B00z ¼ �
4p�ne2

c2

Ui

Ti

� �2

ðTe þ TiÞBz: (26)

Substituting this into Eq. (24) provides

V ¼ F00

F

k

kz
ŷ; (27)

where F ¼ k � Bo. The individual components of interest are

then

Vbs ¼ F00

F
¼ � 2

k2

sech2ðx=kÞtanhðx=kÞ
tanhðx=kÞ � tanhðxs=kÞ

; (28)

and Vk ¼ tan hVbs .

III. NUMERICAL SOLUTIONS

In this section, the dispersion relation computed from

the VMID model of Sec. II A is compared with that com-

puted from the approximate layer equation of Sec. II C [Eq.

(22)]. The VMID computations were calculated using the

method and the code described in Refs. 50 and 51. Solutions

of Eq. (22) were obtained by numerically integrating from

x ¼ 61! xs and determining the dispersion relation from

the requirement that dÂ
0ðxþs Þ ¼ �dÂ

0ðx�s Þ.

A. Growth rate profiles

The VMID solutions shown in Fig. 2(c) demonstrate that

at a realistic mass ratio (mi=me ¼ 1836), the growth rate is a

maximum at h ¼ 0�, corresponding to the usual parallel mode

at the center of the current sheet, and it monotonically

decreases with increasing angle of obliquity. The growth rate

falls off slowly with the angle until near h ¼ 20�, where it

rapidly decreases, and quickly reaches stability for larger

angles. These general features of the growth rate profiles hold

at each of the current sheath widths considered (k ¼ qi; 2qi

and 5qi), but details of the slope of the fall off differ in each

case. The real frequency of the instability is to a good approx-

imation linearly proportional to h over the entire range of

unstable angles at each sheet width.

Figure 2(b) shows the results of analogous simulations,

but at a lower mass ratio (mi=me ¼ 100). Similar trends in

the growth rate as for the proton-electron mass ratio are

observed, including the maximum growth rate at h ¼ 0� and
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a monotonic decrease of the growth rate. The primary differ-

ences in this comparison are that the unstable range of wave-

number extends further out on the current sheet (to h ’ 30�)
and that the values of the growth rate in units of Xci take

larger values at a lower mass ratio. Here, Xci ¼ e �Boz=ðmicÞ
is the ion gyrofrequency based on the asymptotic magnetic

field strength �Boz. In the latter comparison, an additional con-

sideration is the mass dependence of the growth rate units

being displayed. Accounting for this, 1836=100 ¼ 18:36,

demonstrates that in dimensional units (s�1), the growth rate

is higher at a larger mass ratio.

Figure 2(a) shows that at the mass ratio of unity

mi=me ¼ 1, qualitative differences in the growth rate profiles

are observed. The most apparent is that the growth rate is

positive and near constant over the entire range of angles.

This suggests that at unity mass ratio, linear tearing modes

would be excited throughout the entire current sheet; a result

that has also been observed in kinetic simulations.56 Another

apparent difference is that for larger current sheet widths

(k ¼ 5qi and, to a lesser extent, k ¼ 2qi), the most unstable

mode is oblique.

Each of the panels in Fig. 2 also shows the predictions

of the approximate layer equation from Eq. (22). A compari-

son with the Vlasov simulation curves shows that, despite

the severity of some the approximations made in Secs. II B

and II C, these solutions capture key features of the growth

rate profiles and also give a fair quantitative prediction. The

key agreement is that at large mass ratios (mi=me ¼ 100 and

1836), the range of unstable angles is well approximated by

this solution. From the perspective of understanding how lin-

ear tearing modes will contribute to the overall reconnection

dynamics, this is a key feature because it determines the

locations in the current layer that are expected to be unstable.

It is also observed that at large mass ratios, Eq. (22) accu-

rately predicts the growth rate of the central mode at h ¼ 0�

and generally predicts a flat profile. One distinction observed

at k ¼ 5qi and mi=me ¼ 1836 is that Eq. (22) predicts that

the most unstable mode is oblique (near the cutoff), whereas

the Vlasov solutions predict a monotonically decreasing pro-

file. Finally, much poorer agreement between Eq. (22) and

the Vlasov solutions is observed at unity mass ratio. With

the exception of the larger current sheet widths and angles

near the center of the current sheet, the agreement is poor.

This is expected because, for a pair plasma, the electron

gyroradius becomes comparable to the gradient scale of the

current sheet.

The observed stabilization at sufficiently oblique angles

is associated with the diamagnetic drift Us. This is confirmed

by the dashed lines in Fig. 2, which show solutions of Eq.

(22) with Us ¼ 0. These show that in the absence of the dia-

magnetic drift, the theory predicts positive and nearly con-

stant growth rates across the entire current sheet. Recall from

Eq. (23d) that the diamagnetic drift in the Harris equilibrium

is associated with the density gradient, since the temperature

is uniform. Cowley, Kulsrud and Hahm previously studied

the influence of temperature gradients.54 It is also interesting

to note that for force-free equilibria, which do not have dia-

magnetic drifts, tearing modes have been observed to span

the current sheet.39,53 The results of Eq. (22) in the absence

of diamagnetic drift agree well with the predictions of the

standard kinetic tearing mode theory of Drake and Lee.24 In

Sec. V, it is shown that the reason for the absence of the drift

stabilization of oblique modes in the theory is a broadening

of the inner layer at oblique angles, which causes the

FIG. 2. (a)–(c) Growth rates and (d)

real frequency computed from the

VMID model (circles), the decoupled

layer equation from Eq. (22) (red line),

Eq. (22) with Us ¼ 0 (dashed line) and

the Drake and Lee theory from Eq.

(38) (black line). Other parameters

include: Ti=Te¼1;kk¼0:4;nb¼0:3no;
Boy= �Boz¼1.
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boundary layer approximation that the theory utilizes to

break down. Because the full numerical solution of Eq. (22)

accurately captures the essential feature of the unstable

region of the current layer, the remainder of this work will

focus on this equation.

B. Vector potential and phase shifts

Figure 3(a) shows profiles of the real and imaginary

components of the vector potential dÂðxÞ across the current

sheet for modes centered at resonant surfaces corresponding

to h ¼ 0�; 5�; 10�, and 15�. This solution assumed a proton-

electron mass ratio mi=me ¼ 1836, and the other parameters

chosen were the same as in Fig. 2(c). The eigenfunction cor-

responding to the mode at the central resonant surface

(h ¼ 0�) is purely real and is symmetric about x¼ 0. This is

the common MHD solution of the outer region familiar from

the seminal Furth, Killeen, and Rosenbluth (FKR)1 analysis.

Oblique modes are centered at resonant surfaces off-center

of the current sheet, and the most pronounced feature of the

eigenfunctions is the formation of an asymmetry about the

resonant surface. This asymmetry was also observed in our

previous reduced MHD analysis of oblique tearing modes

(see Fig. 7 of Ref. 52), and is associated with the ideal MHD

outer region for off-center modes.

A distinguishing feature of the kinetic solutions, com-

pared to MHD solutions, is that the eigenfunctions of the

oblique modes are complex. Figure 3 shows that all off-

center modes (h > 0) have a finite =fdÂðxÞg, and that their

profile is also asymmetric with respect to the resonant sur-

face. The values of this component are negative (the plot

shows =f�dÂg). Figure 3(b) shows that if the complex vec-

tor potential is represented as dÂðxÞ ¼ jdÂðxÞj exp ½i/ðxÞ�,
there is a phase shift of the eigenfunction across the current

sheet for oblique modes. The phase factor asymptotes to a

constant value far from the center of the current sheet and

vanishes at the resonant surfaces. This phase shift is

observed to increase with increasing angle of obliquity. This

phase factor is also a distinctly kinetic feature of the

eigenfunctions.

Boundary layer theory assumes that the outer region is

described by ideal MHD and does not account for a complex

vector potential. Thus, one may expect the larger imaginary

component of dÂ at oblique angles to be associated with the

observed breakdown of the analytic theories. However, we

find that the dominant effect is a breakdown of the boundary

layer scale separation, rather than the complex eigenfunc-

tion. This aspect will be discussed further in Sec. V.

IV. RELATION TO PREVIOUS THEORIES

A. Drake and Lee

The seminal kinetic tearing mode theory of Drake and

Lee (DL)24 applies a boundary-layer analysis that considers

only electrons in the inner region. A dispersion relation is

obtained by matching the inner layer solution with an outer

layer solution through a matching parameter called the tear-

ing stability index

D0 � dÂ
0ðxþs Þ � dÂ

0ðx�s Þ
h i

=dÂðxsÞ; (29)

which is provided by an independent ideal MHD solution.

Generalizing the inner region equation to include ions gives

dÂ
00 ¼ �dÂ

X
s

2x2
ps

c2

ðx� k � UsÞ
kkvTs

fsZ1ðfsÞ: (30)

Equation (30) agrees with the inner region of Eq. (22) in the

limit that ws ! fs, which implies x=kk 	 Us;k. Note that

Z1ðfsÞ ¼ �Z0ðfsÞ=2 ¼ 1þ fsZðfsÞ.
The DL dispersion relation follows from applying the

constant-w approximation. In this approximation, dÂ on the

right side of Eq. (30) is assumed constant across the inner

layer. Dividing by this and integrating across the layer giveÐ
dx dÂ

00
=dÂðxsÞ ’ D0, and

D0 ’
X

s

ðx� k � UsÞ
x

ð1
�1

dx
x2

ps

c2
f2

s Z0ðfsÞ: (31)

The full solution of kk for the Harris equilibrium described in

Sec. II D is

kk
k
¼ cos h

lþ tanhðx=kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

oy=
�B

2
oz þ tanh2ðx=kÞ

q : (32)

FIG. 3. (a) Real (blue) and imaginary

(red) components of the vector poten-

tial computed from solutions of Eq.

(22) for plasma parameters nb ¼ 0:3no;
k¼ 5qi; kk¼ 0:4; �Boz=Boy ¼ 1, Ti¼Te.

(b) The magnitude of the associated

phase angle.
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To integrate the right side of Eq. (31), an additional assump-

tion is applied, where the space-dependent functions kk and

xps are expanded about the resonant surface location:

kk ’ kðx� xsÞ=ls, and xps ¼ xpsðxsÞ, where

ls ¼
k

k0kðxsÞ
¼ kBoy= �Boz

cos2hð1� l2Þ : (33)

Figure 4 shows a plot of the full space-dependent solution of

Eq. (32) along with the linear expansion at several resonant

surface locations. This shows that the width over which the

linear expansion is accurate depends on the resonant surface

location.

In Ref. 24, the integral in Eq. (32) is evaluated by apply-

ing the above approximations. The result isð1
�1

dx f2
s Z0ðfsÞ ¼ �

2i
ffiffiffi
p
p

xls

kvTs
: (34)

With this, Eq. (31) provides the dispersion relation

D0 ¼ �2i
ffiffiffi
p
p X

s

lsðx� k � UsÞ
kvTsd2

s

; (35)

where ds � c=xps is the skin depth associated with species s.

Rearranging, the real frequency and growth rate are

xDL ¼

X
s

k � Us=ðvTsd
2
s ÞX

s

1=ðvTsd
2
s Þ
þ i

kD0

2
ffiffiffi
p
p

ls

X
s

1=ðvTsd
2
s Þ
: (36)

Applying the expressions for a Harris sheet with a back-

ground density from Sec. II D provides x ¼ xr þ ic, where

xr ¼
kyUeð1� aTi=TeÞ

ð1þ aÞ 1þ n̂b=ð1� l2Þ
� � (37)

is the real frequency of the tearing mode, and

c ¼
kD0vTed2

e jxs

2
ffiffiffi
p
p

lsð1þ aÞ (38)

is the growth rate. Here, n̂b � nb=�no and a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Teme=ðTimiÞ

p
. For the plots in Fig. 2, which show x=Xci,

it is convenient to note that kyUe ¼ Xcikk sin hðTe=TiÞðqi=kÞ2
and vTed2

e jxs
¼ Xciq3

i að1þ Te=TiÞ=ð1� l2 þ n̂bÞ.
The tearing stability index D0 must be supplied from a

model for the outer region of the boundary layer. This is typ-

ically assumed to obey ideal MHD (FKR)1

dÂ
00 � ðk2 þ VbsÞdÂ ¼ 0: (39)

Recall that Vbs ¼ F00=F is provided in Eq. (28). Figure 5

shows the solution of Eq. (39) throughout the domain of pos-

sible resonant surfaces. One prominent feature is that dÂðxÞ
is an even function of x only for h¼ 0. For off center modes,

the characteristic peak is much higher on the low magnetic

field side of the current sheet (x < xs) than on the high mag-

netic field side (x > xs). A model for D0 based on Eq. (39),

which considers oblique modes, was developed in Ref. 52

D0H ’
2

k
1þ l2

kk
� kk

� �
: (40)

This was validated against numerical solutions of Eq. (39)

over a broad range of conditions (see Fig. 3 of Ref. 52), and

a similar validation is shown in Fig. 6(b). It was used to eval-

uate D0 for the DL theory curves shown in Fig. 2.

Figure 2 shows that the solution of the DL theory,

obtained this way, accurately predicts the growth rate of par-

allel (h ¼ 0�) modes; the only exception being thin current

sheets at unity mass ratio. However, the figure also shows

that theory does not accurately capture oblique modes, par-

ticularly the stabilization. It is interesting to notice that Eq.

(22) does capture the range of unstable modes, and that it is

very closely related to the fundamental equation that the DL

boundary layer theory is based on. The only difference is

that the argument of the Z-function in Eq. (22) is ws, whereas

it is fs in DL theory. We have also numerically solved a ver-

sion of Eq. (22) with ZðwsÞ replaced by ZðfsÞ, and have

FIG. 4. Parallel wavenumber of modes associated with different resonant

surfaces (h ¼ 0�; 15�; 30�, and 44�) across the current sheet using Eq. (32)

(solid lines) and the linear expansion using Eq. (33) (dashed lines). These

curves were obtained assuming Boy= �Boz ¼ 1.

FIG. 5. Contours of constant dÂ from a numerical solution of the FKR outer

region from Eq. (39). The black line shows the location of the resonant sur-

face. The parameters kk ¼ 0:5 and Boy= �Boz ¼ 1 were chosen.
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found that the solutions are very close (they also capture the

stabilization of oblique modes). Thus, the discrepancy with

DL theory cannot be explained by this difference.

B. Galeev et al.

Previous researchers25,57,58 have studied oblique colli-

sionless tearing modes in the context of Earth’s magneto-

pause and have obtained a different result than Drake and

Lee. These papers keep a first-order finite gyroradius correc-

tion, but the small gyroradius limit of their equations can be

derived from Eq. (8) by applying the following assumptions:

(1) kk � k and (2) Us=vTs � 1. These imply

Us � dA

c
� ðx� k � UsÞ

kkc
dAk and ws ’ fs; (41)

so, Eq. (9) reduces to

ð@2
x � k2 � k�2

D Þd/

¼
X

s

k�2
Ds

ðx� k � UsÞ
kkvTs

d/ZðfsÞ �
vTs

c
Z1ðfsÞdAk

� �
: (42)

For Ampère’s equation, it is convenient to first rearrange Eq.

(12) to the form

r2dA ¼
X

s

2x2
ps

cv2
Ts

d/� Us � dA

c

� �
Us

	

þðx� k � UsÞ
kk

d/
Us

vTs
ZðwsÞ þ Z1ðwsÞb̂

� ��

�dAk
vTs

c

Us

vTs
1þ fsZðwsÞð Þ þ fsZ1ðwsÞb̂

� ��

:

(43)

The kk � k assumption implies dA ’ dÂb̂
s

and b̂
s ’ b̂ ’ ẑ.

Applying these along with assumption (2), the b̂
s

projection

of Eq. (43) reduces to

ð@2
x � k2 � VadÞdÂ ¼ idEk

X
s

k�2
Ds

ðx� k � UsÞ
k2
kc

Z1ðfsÞ (44)

in which

Vad ¼ �
X

s

2x2
ps

c2

ðb̂s � UsÞ2

v2
Ts

(45)

is what Galeev calls the adiabatic interaction term.

Equations (42) and (44) are the two basic equations that

this line of previous collisionless oblique tearing mode

research25,57,58 worked from.59 This set of two coupled equa-

tions is substantially different from any of the approximate

equations derived in Sec. II. The most significant difference

is in the description of the outer region. For an ideal MHD

outer region, the Vad is replaced by Vbs , which reduces to Eq.

(28) for Harris equilibrium. However, the adiabatic response

used in Eq. (44) is

Vad ¼ �
2

k2
cos2h sech2ðx=kÞ (46)

for Harris equilibrium. This agrees with the ideal MHD

response, Eq. (28), only in the limit of a standard symmetric

layer ðxs ! 0Þ, i.e., the parallel mode. The cause of this dis-

agreement is that the kk � k assumption holds only near a

resonant surface. This leads to substantial errors in the outer

region, which also affects the dispersion relation.

To illustrate that the primary difference between Galeev

et al. and our approach is the outer region solution, we first

apply the idEk ’ �xdÂ=c approximation from Eq. (19),

which was validated in Sec. III, to Eq. (44). This gives

ð@2
x � k2 � VadÞdÂ ¼ �dÂ

X
s

2x2
ps

c2

ðx� k � UsÞ
kkvTs

fsZ1ðfsÞ;

(47)

which is the same as the Us;k � x=kkvTs limit of Eq. (22)

except in the outer region (left side) where Vad replaces Vbs.

Figure 6(a) shows solutions of the outer region of the

Galeev equation

dÂ
00 � ðk2 þ VadÞdÂ ¼ 0 (48)

FIG. 6. (a) Numerical solutions of dÂ from the ideal MHD outer region from

Eq. (39) (solid lines) and the Galeev outer region from Eq. (48) (dashed lines)

at four values of the angle of obliquity. Here, kk ¼ 0:4; Boy= �Boz ¼ 1 have

been chosen. (b) D0 obtained from numerical solutions of the FKR outer region

Eq. (39) (blue circles), the Galeev outer region Eq. (48) and the approximate

solutions from Eqs. (40) and (49), respectively (solid lines).
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in comparison to ideal MHD from Eq. (39). For the parallel

mode, the solutions are identical. However, the solutions are

dramatically different for finite h, showing the inconsistency

of the Galeev outer region equation with ideal MHD. To

further emphasize this point, Fig. 6(b) shows a comparison

between D0 obtained from the numerical solutions of Eqs.

(48) and (39), and the model solutions from Eq. (40) and

Galeev’s approximate solution60

D0G ’ �
2ðkkþ �Þ

k
C ðkkþ �Þ=2½ �C ð1þ kk� �Þ=2½ �
C ðkk� �Þ=2½ �C ð1þ kkþ �Þ=2½ � ; (49)

where

� � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 cos2h

p
� 1

� �
: (50)

This figure emphasizes that D0 obtained from Eq. (48) differs

from the ideal MHD solution. It also shows that the approxi-

mate solution from Eq. (49) requires that kk be sufficiently

large to accurately model the numerical solution.

C. Electrostatic effects

Previous work has considered the influence of electro-

static effects, showing that the ion acoustic wave can couple

with the tearing mode, causing stabilization.45–48 Electrostatic

effects were eliminated from our analysis in Sec. II C based

on an argument of scale separation between the inner tearing

layer and the outer ideal region. These theories consider cases

where the inner layer can be sufficiently broad that this scale

separation is not satisfied. Indeed, we will see in Sec. V that

the inner layer does broaden substantially for oblique modes,

calling into question the neglect of electrostatic effects. It is

therefore prudent to compare with these theories.

Figure 7 shows a comparison of the dispersion relation

from Lee, Mahajan and Hazeline45

x ¼ xDL �
ffiffi
i
p

0:85
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk0kjcsqs

q ffiffiffiffiffiffi
me

mi

r
xo þ k � Uiffiffiffiffiffiffi

xo
p ; (51)

where k0k ¼ k=ls; qs ¼ cs=Xci, and xo ¼ <fxDLg. Here, xDL

is the DL dispersion relation from Eq. (35). The second term

on the right side of Eq. (51) is the correction due to

electrostatic effects. The figure shows that this theory does

predict a smaller growth rate for oblique modes than DL.

However, the predicted values do not agree well with the

VMID solutions, or capture the trend of a sharp cutoff in the

growth rate.

Electrostatic coupling does not appear to be the cause of

stabilization of the oblique modes since the approximate the-

ory neglecting electrostatic terms, Eq. (22), captures the

effect, while boundary layer theories including electrostatics

do not. Although the scale separation used to justify the

neglect of electrostatic effects is similar to that used to jus-

tify the boundary layer theory, it is not the same. Namely, in

Eq. (19), the approximation made was kkd/� x
c

kg

k dÂ.

Although wide tearing layers at oblique angles access a

range of values far from the current sheet, so kk=k may not

be small, the real frequency of oblique modes also increases

approximately as kyUe. Thus, these effects compete in such a

way that the electrostatic terms may remain small in compar-

ison to the vector potential terms. Indeed, the electrostatic

component of the eigenfunctions from the VMID solutions

have been shown to be small in comparison to the vector

potential contributions even at oblique angles (see Fig. 8 of

Ref. 9). This reference also showed that the ratio of the elec-

trostatic to electromagnetic contribution to the eigenfunction

scales linearly with xpe=xce. Thus, one can alter the magni-

tude of the electrostatic terms with this parameter.

Nevertheless, the computed growth rate remained indepen-

dent of this parameter.9

D. Nonconstant-w approximation

The DL theory applies the constant-w approximation to

obtain an analytic dispersion relation. This works best if the

inner layer is very thin because dÂ does not vary signifi-

cantly over sufficiently short distances. For thicker inner

layers, the approximation begins to break down. Methods

have been developed to extend the theory, typically by keep-

ing a linear term in the expansion of dÂ near the resonant

surface. These theories are called large D0, or nonconstant-w
approximations. It was observed in the MHD theory that a

nonconstant-w approximation was required to accurately

model oblique modes.52 Section V will show that the inner

layer of the collisionless problem becomes thicker at oblique

FIG. 7. (a) Growth rate and (b) real fre-

quency computed from the VMID

model (circles), DL theory from Eq.

(35) (black lines), the theory with elec-

trostatic effects from Eq. (51) (red

dashed-dotted lines) and the large D0

theory from Eq. (52) (blue dashed lines).

Other parameters are: mi=me ¼ 1836;
Ti=Te ¼ 1; kk ¼ 0:4; nb ¼ 0:3no, and

Boy= �Boz ¼ 1.
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angles. It is thus natural to investigate if nonconstant-w
effects are responsible for the observed stabilization.

A large D0 theory of kinetic collisionless tearing modes

has been computed by Mahajan et al.,49 which provides the

dispersion relation

ðx� xoÞ 1� i
D0x

pk0kvA

 !
¼ icDL: (52)

Here, cDL¼=fxDLg;xo¼<fxDLg, and vA¼ �Boz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p�nomi

p

is the Alfv�en speed. Figure 7 shows a comparison of the

results of Eq. (52) with the VMID solutions. The noncon-

stant-w modification does reduce the growth rate substan-

tially at oblique angles. However, it still predicts a much

broader spectrum of unstable modes than either VMID or

Eq. (22). Thus, the large D0 extension of DL theory does not

appear to be able to explain the observed stabilization.

V. ANALYSIS OF BOUNDARY LAYER THEORY

A. Gyroradius effects

A small gyroradius expansion was used in Sec. II B to

reduce the full particle orbits from the Vlasov description in

Eqs. (5)–(7). This is strictly valid only in the limit that both

the electron and ion gyroradii are smaller than other length

scales of relevance to the tearing mode. Figures 8(d)–8(f)

show that this approximation is clearly violated under the

conditions explored in this paper. The largest gradient scale

is the current sheet width, which for the parameters chosen

in Fig. 2, ranges from k ¼ qi to 5qi. Thus, ions are not

strongly magnetized even on the scale of the shear of the cur-

rent sheet. Electrons, however, are strongly magnetized

at this scale for the large mass ratio cases, since qe=k



ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
� 1. However, use of the approximation at the

scale of the inner reconnection layer faces a more stringent

requirement. Figures 8(d)–8(f) plot an estimate of the ratio

of the ion inner tearing layer width to the ion gyroradius,

showing that in all cases considered, the inner tearing layer

width is smaller than the gyroradius. Since di=qi is indepen-

dent of mass, the same result applies for electrons. Here, the

inner tearing layer width was estimated as in Drake and Lee,

which provides ds ’ jxjls=ðkvTsÞ, where x was computed

from Eqs. (37) and (38).24 Although Fig. 2 has shown that

this does not accurately model the growth rate of oblique

modes, it does accurately model the real mode frequency.

Since the inner layer width estimate is dominated by the

larger real component of the frequency, we expect that it

remains a reasonable estimate at oblique angles.

Although the small gyroradius expansion is not expected

to be valid under these conditions, a comparison with the full

VMID solutions in Fig. 2 shows that the predictions resulting

from it, namely Eq. (22), capture the essential features of the

growth rate profiles. The comparison reveals quantitative dif-

ferences in the predicted growth rate of oblique modes, but it

is quantitatively accurate for the parallel (h ¼ 0�) mode

(except at unity mass ratio), as well as the angle of obliquity

at which stabilization occurs. The full orbit integrals are

complicated, and any reduced analytic model must treat the

orbits in an approximate fashion. The comparison in Fig. 2

provides confidence that the small gyroradius expansion cap-

tures the essential features of interest from linear theory.

It may seem surprising that the growth rate derived from

the small gyroradius expansion captures the essential fea-

tures of the full VMID solution under conditions where the

expansion is not expected to be valid. In this regard, one

should notice that the linear growth rate depends on the total

perturbed current within the resonance layer. Previous work

has shown that the electron finite Larmor radius (FLR)

broadens this layer, but does not significantly influence the

total perturbed current.11,12 Specifically, Fig. 1 of Ref. 11

shows that the perturbed current from the linear VMID cal-

culation is smeared over a scale of a few qe; it is not possible

to form a narrower current channel. Although FLR effects do

not seem to significantly influence the linear growth rate,

they have bigger implications for the saturation. Exponential

growth, as described by linear theory, is expected to saturate

FIG. 8. Ion layer width computed from

di ¼ jxjls=ðkvTiÞ, compared with k
(a)–(c) and qi (d) –(f) for each of the

conditions shown in Fig. 2. In each

case, the top line is for k ¼ qi, the mid-

dle for k ¼ 2qi and the bottom for

k ¼ 5qi.
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when the island width becomes comparable to the resonant

layer thickness. Since FLR effects broaden the resonant

layer, in comparison to the classical theoretical predictions,

this allows modes to grow linearly to much larger amplitudes

than would otherwise be expected. This issue is particularly

relevant to magnetospheric layers, and has been discussed by

Quest and Coroniti.30,31

B. Inner layer width

Boundary layer theory is predicted on the assumption of

an asymptotic scale separation between an “outer region”

described by ideal MHD and an “inner region” where two-

fluid and kinetic physics leads to violations of the frozen flux

condition. Such a two-scale approximation was used not

only in the theories of Sec. IV, but also in Sec. II B, which

led to the decoupling of the electric and magnetic fields

allowing one to describe the tearing mode from the single

differential equation, Eq. (22). The possible absence of this

scale separation is what led Coppi to suggest that a third

electrostatic layer must be accounted for in some circumstan-

ces, as discussed in Sec. IV C.

Figures 8(a)–8(c) show the ratio of the estimated inner

tearing layer width (di) to the width of the current sheet (k),

which characterizes the scale of the ideal MHD outer region.

At unity mass ratio, the scales are not well separated. We

expect that this is the cause of the poor agreement between

the VMID solutions and the solutions of Eq. (22) under these

conditions. But, for large mass ratio cases di=k� 1 near the

center of the current sheet (small h), the scale separation is

violated at highly oblique angles. This calls into question the

validity of this assumed scale separation at oblique angles.

Despite the scale separation becoming questionable at obli-

que angles, the fact that Eq. (22) captures the stabilization

suggests that the influence of electrostatic terms is not the

cause of this effect; see Sec. IV C. Regarding the subsequent

application of the boundary layer approximation in develop-

ing an analytic theory, specifically the DL theory from Sec.

IV A, the approximation can be tested in more detail.

To assess the boundary layer theories, we compare the

left side of Eq. (22), which has a characteristic scale of k,

with the inner region which is described by the right side

TðxÞ ¼ �k2
X

s

2x2
ps

c2

ðx� k � UsÞ
kkvTs

fsZ1ðfsÞ: (53)

(Here, the version of Eq. (22) with ws replaced by fs in the

Z-function is used to make connection with the DL theory.)

In boundary layer theory, the spatially dependent terms are

expanded locally about the resonant surface: kk ’ kðx
�xsÞ=ls and xps ’ xpsðxsÞ, leading to an approximate

expression describing the inner region

TDLðxÞ ¼ �k2
X

s

2x2
psjxs

xðx� k � UsÞ
c2k2v2

Tsðx� xsÞ=ls
Z1

xls
kvTsðx� xsÞ

� �
:

(54)

Figures 9(a) and 9(b) show a comparison of the solu-

tions of Eqs. (53) and (54) for the same parameters as the

k ¼ 2qi case of Fig. 2(c). Here, the mode frequency is com-

puted using the DL solutions from Eqs. (37) and (38). This

reiterates the breakdown of a scale separation at oblique

angles, which was estimated in Fig. 8. As h approaches sev-

eral degrees near the value where the growth rate rapidly

FIG. 9. (a) Real and (b) imaginary

parts of T(x) computed from Eq. (53)

(solid lines) and Eq. (54) (dashed lines)

at h ¼ 0� (blue) and h ¼ 15� (red) with

parameters: Ti=Te ¼ 1; kk ¼ 0:4; Boy=
�Boz ¼ 1; k ¼ 2qi, and n̂b ¼ 0:3. (c)

and (d) show the same with n̂b ¼ 0.

Dashed and solid lines are indistin-

guishable for h ¼ 0�.
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diminishes, the scale associated with the inner region ½TðxÞ�
is observed to grow to a comparable value with the scale

associated with the outer region (k). This explains why

boundary layer theory fails to accurately model the numeri-

cal solutions of Eq. (22) at sufficiently oblique angles. The

numerical solutions reveal that the growth rate rapidly

diminishes under the same conditions; see Fig. 2.

C. Phase and the outer region

Figure 9 answers another inconsistency between the

boundary layer and numerical solutions: Why there is a

prominent complex (phase) component of dÂ for oblique

modes (h 6¼ 0) in the numerical solutions, while this does not

arise in the boundary layer theory.

First, we observe that T(x) is purely real for the parallel

mode (h ¼ 0�) (as a result of x being purely imaginary).

Thus, no phase component is expected in this case, nor is

one observed in the numerical solutions; see Fig. 3. The fig-

ure also shows that Tðx ¼ 61Þ ! 0 and that T(x) is local-

ized if h¼ 0. This case is amenable to a boundary layer

analysis because the inner region decays to zero before

reaching the scale of the outer region, and the inner and outer

regions are both purely real and can be matched asymptoti-

cally. The boundary layer theory agrees with the numerical

solutions in this case.

Oblique modes have fundamentally different properties.

For any finite angle, T(x) becomes complex (has both real and

imaginary components) implying that dÂ will be complex

(i.e., have a finite phase). This is consistent with what is

observed in the numerical solutions at finite angles; see Fig. 3.

In addition, Fig. 9 shows that at finite angles Tðx
¼ �1Þ 6¼ 0, if n̂b 6¼ 0. Since part of T(x) extends far from

the resonant surfaces, this implies that at finite angles, the

kinetic theory does not asymptote to the ideal MHD outer

region. Instead, one should move the components of T(x)

extending to asymptotically far distances Tðx61Þ to the left

side of Eq. (22) (the outer region). In fact, if one does not do

this, the finite value of Tðx ¼ �1Þ implies that the integralÐ
dxTðxÞ, which is used in the constant-w approximation, actu-

ally diverges. This divergence happens to not arise in DL the-

ory when integrating
Ð

dxTDLðxÞ as a fortuitous consequence

of the local expansion of xps and kk (which is not valid in this

case). The local expansion forces TDLðx ¼ 61Þ ! 0 even at

finite n̂b; see Figs. 9(a) and 9(b).

D. Role of background density

Since T(x) extends to asymptotically far distances only

when nb 6¼ 0, it is interesting to compare with the situation

of no background density nb¼ 0. This allows one to isolate

the role of the imaginary component of dÂ to determine if it

influences the growth rate, and in particular, if it is associ-

ated with the damping observed at oblique angles. If T(x) is

sufficiently local near the resonant surface, one expects that

=fdÂg will be small compared to the real component.

Figures 9(c) and 9(d) show that T(x) and TDLðxÞ agree quite

well in this case. Figures 10(c) and 10(d) show solutions of

Eq. (22) with n̂b ¼ 0, confirming that =fdÂg is small com-

pared to the real component when h is small (see also Fig.

3), but that it grows comparable to the real component for

x > xs at oblique angles. Figures 10(a) and 10(b) show solu-

tions of the dispersion relation computed from Eq. (22) with

n̂b ¼ 0. These are found to damp at a similar angle as the

case with n̂b ¼ 0:3 from Fig. 2(c). This provides further evi-

dence that the damping is caused by the broadening of the

inner region, not simply the finite phase component.

FIG. 10. (a) Growth rate and (b) real

frequency computed from the

decoupled layer equation (22) (red

dashed line), and the DL theory from

Eq. (38) (black dashed-dotted line)

with parameters: mi=me ¼ 1836; Ti=Te

¼ 1; kk¼ 0:4; nb ¼ 0:3no;Boy= �Boz ¼ 1.

The blue solid lines show solutions

with nb¼0. (c) The vector potential

and (d) the phase magnitude from solv-

ing Eq. (22) with nb¼0 and k¼ 5qi.
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E. Role of guide field

Figure 11 shows that the narrower spectrum of unstable

modes predicted by Eq. (22), in comparison to DL, persists

over a wide range of guide field strength. For this range of

parameters, the cutoff angle is also independent of k=qi.

Each of these observations is consistent with the notion that

stabilization is associated with the width of the inner layer

exceeding the shear scale k. This is further quantified in

Sec. V G. As the ratio of the guide field to the asymptotic

field strength, Boy= �Boz, exceeds unity, the range of unstable

angles narrows substantially simply because the field is pre-

dominantly in the guide field direction. This behavior is also

shown in Fig. 12, which displays the cutoff angle (where c
¼ 0) as a function of Boy= �Boz from each theory.

F. Role of temperature ratio

Figure 13 shows that the cutoff angle computed from

Eq. (22) depends significantly on the temperature ratio

Ti=Te. In contrast, the cutoff angle is independent of the tem-

perature ratio in the DL model. At Ti=Te 
 1, the spectrum

of unstable modes from Eq. (22) is significantly more narrow

than from the DL. However, as Ti=Te increases, the spectrum

predicted from Eq. (22) broadens substantially. At a large

temperature ratio (Ti=Te ¼ 100), the two results agree very

well; see Figs. 13(c) and 13(d). The same trend is captured

in Fig. 12(b), which shows the cutoff angle as a function of

temperature ratio for three values of the ratio k=qi. The

Drake and Lee limit is obtained at large temperature ratios.

Since the scale separation between the inner region and the k

FIG. 11. Growth rate computed from

Eq. (22) (red lines) and the DL theory

from Eq. (38) (black lines) using

mi=me ¼ 1836; Ti=Te ¼ 1; kk¼ 0:4 and

nb¼ 0:3no, and four values of the

guide field to the asymptotic field ratio:

(a) Boy= �Boz¼ 0:1, (b) 1, (c) 10, and (d)

100.

FIG. 12. Cutoff angle as a function of

(a) Boy= �Boz for Ti=Te ¼ 1 and (b) Ti=Te

for Boy= �Boz ¼ 1. Other parameters

include mi=me ¼ 1836; nb ¼ 0:3no,

and kk ¼ 0:4. Data points show solu-

tions from Eq. (22), the DL cutoff angle

from Eq. (57) (dashed lines) and from

Eq. (56) (solid lines).
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scale is broader at large Ti=Te, this also provides further evi-

dence associating the cutoff in the growth rate with the broad-

ening of the inner region. This will be further quantified in

Sec. V G. This temperature ratio dependence is directly

related to the drift stabilization. For a Harris sheet, the tem-

perature ratio sets the ratio of flow velocities Ui=Ue

¼ �Ti=Te, while the ion velocity is fixed by the current sheet

thickness Ui=vTi ¼ qi=k. Thus, changing the temperature ratio

effectively changes the electron drift speed Ue ¼ �UiTe=Ti.

For Ti=Te 	 1, Ue is very small, and one returns the results

of the DL theory valid in the limit Ue ! 0. Finally, Figs.

12(b) and 13 show that the cutoff angle is essentially indepen-

dent of k=qi, when Ti> Te, but that a significant dependence

on this ratio arises when Ti< Te.

G. Estimate of instability threshold

An important contribution that linear tearing theory can

provide to the overall understanding of reconnection dynam-

ics is the volume of space susceptible to tearing (or plasmoid

formation), as this has significant consequences for subse-

quent heating processes as well as the volume susceptible to

the formation of turbulence. This volume is determined by

the cutoff angle (hc) since the resonant surface furthest from

the center of the current sheet that will be unstable is given

by xc ¼ karctanhðlcÞ, where lc ¼ tan hcBoy= �Boz. We have

shown that the differential equation Eq. (22) provides a good

description of the cutoff in comparison to the complete linear

VMID solution. However, this requires solving the differen-

tial equation numerically. Here, we show that a simple ana-

lytic formula for hc can be obtained based on the results

described previously in this section, which have established

that damping occurs when the inner tearing layer becomes as

wide as the current sheet (k).

The width of the inner layer (k0) can be estimated using

Eq. (54). We approximate the stability condition as

jTðx ¼ k0Þj ¼ c, where c is a constant that will be determined

from a fit to the numerical solutions. Since T / k=jx� xsj,
the numerical value of the cutoff width can be absorbed into

the fit parameter. The outer layer of this region is determined

by the condition that the argument of Z1 becomes small, in

which case Z1 ! 1; see Fig. 9. Applying the approximation

that x ’ xR ’ kyUe at oblique angles and that jx� xsj=k
’ 1� arctanhðlÞ ’ 1� l, the cutoff condition is then

T ’ 4l2

1� l
1� l2 þ n̂b

1� l2

 !
Te=Ti

1þ Ti=Te
¼ c: (55)

Finally, a simplification can be made based on the previous

observation that the background density does not signifi-

cantly influence the cutoff angle (see Fig. 10), so the term in

parentheses can be approximated as 1. Applying this, Eq.

(55) provides the following estimate for the cutoff angle

lc ¼
c

8

Ti

Te
1þ Ti

Te

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

c

Te=Ti

ð1þ Ti=TeÞ

s
� 1

2
4

3
5 (56)

such that instability is expected when h�hc ¼ arctanðlc
�Boz=

BoyÞ. Alternatively, the critical temperature ratio at a given

angle and layer thickness (k=qi) can be related to a critical

electron drift speed since Ue ¼ � Te

Ti
Ui ¼ � Te

Ti

qi

k .

FIG. 13. Dispersion relation computed

from Eq. (22) (red lines) and DL the-

ory from Eq. (38) (black lines) using

mi=me ¼ 1836; �Boz=Boy ¼ 1; kk ¼ 0:4,

and nb ¼ 0:3no. (a) Growth rate for

Ti=Te ¼ 1, (b) growth rate for Ti=Te
¼ 10, and (c) growth rate for Ti=Te

¼ 100. (d) The real frequency for

Ti=Te ¼ 100, where the results of the

two theories are indistinguishable.

022115-14 Baalrud, Bhattacharjee, and Daughton Phys. Plasmas 25, 022115 (2018)



Figure 12 shows a comparison between the cutoff angle

predicted by Eq. (56) and the numerical results of Eq. (22).

The fit parameter used was c¼ 0.4, which is a reasonable

number based on the fact that T(x)¼ c defines where the

effective width of T is measured (see Fig. 9). Also shown in

the figures is the cutoff from the DL dispersion relation,

which is simply l ¼ 1, leading to

hc;DL ¼ arctanð �Boz=BoyÞ: (57)

Figure 12(a) shows that Eq. (56) captures both the large

Boy= �Boz scaling and the value at which the deviation from

this scaling occurs (for Boy= �Boz < 1). Importantly, Fig. 12(b)

shows that Eq. (56) accurately captures the temperature ratio

dependence of the cutoff angle (when Ti=Te is sufficiently

large). Equation (55) shows that the thickness of the inner

region scales as 1=ðTi=TeÞ2 when Ti=Te 	 1. That is, the

inner region becomes very thin at a large temperature ratio,

and one should expect in this limit that the boundary layer

scale separation that the analytic dispersion relations (such

as DL) are based on will be valid. Indeed, this is what is

observed, as the two predictions merge at a high temperature

ratio; see Fig. 12(b). For Ti=Te � 1, a dependence on the

layer thickness is observed that is not captured by Eq. (56).

This figure provides further evidence that broadening of the

tearing layer, associated with the diamagnetic drift, is

responsible for the stabilization at oblique angles. It also

shows that Eq. (56) provides a reliable estimate for the cutoff

angle of oblique collisionless tearing modes.

VI. CONCLUSIONS

It was shown that oblique collisionless tearing instabil-

ities of a Harris current sheet are stabilized due to the

density-gradient-driven diamagnetic drift. The complicated

Vlasov-Maxwell system of equations was simplified to a sin-

gle second order differential equation for the vector potential

perturbation, which captures the essential features of the dis-

persion relation obtained from the full numerical solution of

the linear Vlasov-Maxwell equations. Theories from previ-

ous literature are not able to capture this stabilization

because they are based on a boundary layer scale separation

between an inner tearing layer and an outer ideal MHD

region. The inner layer was observed to broaden at oblique

angles, invalidating this approximation.

These results are applicable to studies of magnetic

reconnection in space and fusion plasmas, where tearing and

plasmoid instabilities are known to initiate and accelerate the

rate of magnetic reconnection. They provide a method to

compute the spectrum of oblique modes, which contributes

to theories of turbulence generation and particle acceleration.

They are particularly relevant to understanding the magneto-

pause, where reconnection occurs within thin asymmetric

layers in which diamagnetic drifts are strong. In this context,

Galeev coined the term “percolation” to denote the regime in

which many overlapping islands formed by tearing modes

give rise to turbulent particle transport.25 Our results show

that diamagnetic drifts broaden the inner tearing layer, so

that in current sheets with strong diamagnetic drifts, only

resonant surfaces with small k � U are expected to be unsta-

ble. This leads to a narrower spectrum of instabilities, i.e., a

smaller volume of space susceptible to tearing, than was pre-

viously expected. A simple analytic estimate for the stabili-

zation threshold was provided in Eq. (56), which can be used

to predict the volume of space susceptible to linear tearing

instabilities. The results also highlight the importance of the

equilibrium current sheet properties in understanding tearing

instabilities, and by extension, the overall reconnection pro-

cess. Specifically, drift-stabilization is not present in other

common equilibria used to model such processes, such as the

force-free current sheet.39

Interesting questions remain to be answered, such as to

what extent fluid theory can describe collisionless tearing

and to what extent purely kinetic effects such as Landau

damping play a role. For instance, Landau damping is a non-

negligible, and an even prominent, contributor to the disper-

sion relation [arising in the plasma dispersion function of Eq.

(22)] in the kinetic theory described in this work. Yet, two

fluid theories have found success in modeling collisionless

tearing modes in some geometries.53 In one case, the pre-

dicted growth rates differ only by a factor of
ffiffiffi
p
p

.61 It would

be useful to understand if two-fluid theory captures the stabi-

lization of oblique modes observed in this work. If so, can it

provide a simplified dispersion relation? It would also be

important to revisit the linear tearing stability theory in the

presence of temperature gradients. Although the Harris sheet

does not have them, both the magnetopause and fusion

machines have density and temperature gradients.
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