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Abstract

A kinetic theory for collective interactions that accounts for electrostatic instabilities in unmagnetized

plasmas is developed and applied to two unsolved problems in low-temperature plasma physics: Lang-

muir’s paradox and determining the Bohm criterion for multiple-ion-species plasmas. The basic theory

can be considered an extension of the Lenard-Balescu equation to include the effects of wave-particle

scattering by instability-amplified fluctuations that originate from discrete particle motion. It can also

be considered an extension of quasilinear theory that identifies the origin of fluctuations from discrete

particle motion. Emphasis is placed on plasmas with convective instabilities that either propagate out of

the domain of interest, or otherwise modify the distribution functions to limit the instability amplitude,

before nonlinear amplitudes are reached. Specification of the discrete particle origin of fluctuations al-

lows one to show properties of the resultant collision operator that cannot be shown from conventional

quasilinear theory (which does not specify an origin for fluctuations). Two important properties for the

applications that we consider are momentum conservation for collisions between individual species and

that instabilities drive each species toward Maxwellian distributions.

Langmuir’s paradox refers to a measurement showing anomalous electron scattering rapidly estab-

lishing a Maxwellian distribution near the boundary of gas-discharge plasmas with low temperature

and pressure. We show that this may be explained by instability-enhanced scattering in the plasma-

boundary transition region (presheath) where convective ion-acoustic instabilities are excited. These

instability-amplified fluctuations exponentially [∼ exp(2γt)] enhance the electron-electron scattering

frequency by more than two orders of magnitude, but convect out of the plasma before reaching non-

linear amplitudes. The Bohm criterion for multiple ion species is a single condition that ion flow speeds

must obey at the sheath edge; but it is insufficient to determine the flow speed of individual species.

We show that an instability-enhanced collisional friction, due to ion-ion streaming instabilities in the

presheath, determines this criterion. In this case the strong frictional force modifies the equilibrium,

which reduces the instability growth rate and limits the instability amplitude to a low enough level that

the basic theory remains valid.
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Chapter 1

Introduction and Background

Plasmas consist of ions and electrons that interact with one another through their self-generated elec-

tromagnetic fields and, if present, with externally applied fields. By tracking individual particles, the

laws of classical mechanics combined with Maxwell’s equations formally provide a complete description

of non-relativistic plasma. However, such essentially exact formulations are exceedingly complicated

because they require tracking a huge number of particles that all interact with one another simultane-

ously. For example, the plasma in a fluorescent light bulb contains approximately 1010 charged particles

(assuming a typical density of 1014 m−3 and volume of 100 cm3). Even the fastest supercomputers can-

not calculate the evolution of every individual particle in such a complicated system for a meaningful

amount of time. Thus, it is necessary to formulate approximate descriptions that describe macroscopic

properties of a plasma. A hierarchy of approximations leads to the three leading plasma theories:

kinetic, multi-fluid and magnetohydrodynamic (MHD) descriptions. In this work, we will mostly be

concerned with kinetic theory, which is the most fundamental of these theories, but we will also discuss

multi-fluid equations that can be obtained from the kinetic description.

Rather than describe the position and velocity of every individual particle in a plasma, kinetic

theory divides the plasma into different classes of particles (or species) and describes the evolution of

the velocity distribution of each species of particles. Species are typically classified by particles with

the same charge and mass. Much of modern plasma kinetic theory was introduced by Landau starting

in 1936 [1]. Landau first derived his kinetic equation from the small-momentum-transfer-limit of the

Boltzmann equation (see section 1.1.3). Landau’s equation has proved to be very robust and it is still

frequently used today. Only minor modifications have been made to it and these are concerned with

more accurately treating physical arguments he made regarding particles interacting in the limits of

very short and very long impact parameters (see section 1.1). A theory that self-consistently accounts
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for long impact parameters is the Lenard-Balescu equation [2, 3], and theories that properly treat both

limits are called convergent kinetic theories. An important physical effect that kinetic theory captures,

but which conventional fluid and MHD approximations do not, is Landau damping [4] (although some

fluid models such as “gyrofluid” theories account for Landau damping in an approximate manner by

including kinetic corrections). Landau damping is a process by which waves can either damp, or grow,

in a plasma. Waves can damp or grow by different physical mechanisms in fluid descriptions as well,

which are also captured by kinetic theory, but Landau damping is fundamentally a kinetic process.

In stable plasmas all fluctuations damp, often by Landau damping, and scattering is dominated

by conventional Coulomb interactions between individual particles. Landau’s kinetic equation, as well

as the Lenard-Balescu equation, assume that the plasma is stable, but plasmas are not always stable.

The presence of a free energy source can cause fluctuations to grow. Growing fluctuations are called

instabilities and they are a collective wave motion of the plasma. If an instability amplitude becomes

large enough, the scattering of particles can be dominated by the interaction of particles with collective

waves, rather than the conventional Coulomb interaction between individual particles.

Theories that describe the scattering of particles from collective wave motion typically assume that

the instability amplitude is so large that conventional Coulomb interactions are negligible compared

to the wave-particle interactions, while stable plasma theories assume that Coulomb interactions dom-

inate. In this work we consider an intermediate regime: weakly unstable plasmas in which collective

fluctuations may be, but are not necessarily, the dominant scattering mechanism and for which the

collective fluctuation amplitude is sufficiently weak that nonlinear wave-wave interactions are subdomi-

nant. We emphasize convective instabilities that either leave the plasma (or region of interest) or modify

the particle distribution functions to limit the fluctuation amplitude before nonlinear amplitudes are

reached. We discuss applications for each of these cases and show that collective fluctuations can be

the dominant mechanism for scattering particles even when they are in a linear growth regime.

Kinetic equations for weakly unstable plasmas have also been developed by other authors. Frieman

and Rutherford [5] used a BBGKY hierarchy approach, but focused on nonlinear aspects such as mode-

coupling that enter the kinetic equation at higher order in the hierarchy expansion than we consider in

this work. The part of their collision operator that described collisions between particles and collective

fluctuations also depended on an initial fluctuation spectrum that must be determined external to the
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theory. Rogister and Oberman [6, 7] started from a test particle approach and focused on the linear

growth regime, but the fluctuation-induced scattering term in their kinetic equation also depended

on specifying an initial fluctuation spectrum external to the theory. Imposing an initial fluctuation

spectrum is also a feature of Vlasov theories of fluctuation-induced scattering, such as quasilinear

theory [8–10]. These theories can be applied in situations where fluctuations are externally applied

to the plasma. In such scenarios, the antenna exciting the waves determines the source fluctuation

spectrum. However, fluctuations often originate from within the plasma itself. In this case, the motion

of discrete particles creates a source of fluctuations that is not accounted for in these theories. A

distinguishing feature of the work presented in this dissertation is that the source fluctuation spectrum,

which becomes amplified and leads to instability-enhanced collisions, is self-consistently accounted for

by its association with discrete particle motion.

Related work by Kent and Taylor [11] used a WKB method to calculate the amplification of convec-

tive fluctuations from discrete particle motion. They focused on describing the fluctuation amplitude,

rather than a kinetic equation for particle scattering, and emphasized drift-wave instabilities in mag-

netized inhomogeneous systems. Baldwin and Callen [12] derived a kinetic equation accounting for the

source of fluctuations and their effects on instability-enhanced collisional scattering for the specific case

of loss-cone instabilities in magnetic mirror devices.

Our work develops a comprehensive collision operator for unmagnetized plasmas in which electro-

static instabilities that originate from discrete particle motion are accounted for. The resultant collision

operator consists of two terms. The first term is the Lenard-Balescu collision operator [2, 3] that de-

scribes scattering due to the Coulomb interaction acting between individual particles. The second term

is an instability-enhanced collision operator that describes scattering due to collective wave motion.

Each term can be written in the Landau form [1], which has both diffusion and drag components in

velocity space. The ability to write the collision operator in the Landau form allows proof of physical

properties such as the Boltzmann H-theorem and conservation laws for collisions between individual

species.

A prominent model used to describe scattering in weakly unstable plasmas is quasilinear theory [8–

10]. Quaslinear theory is “collisionless,” being based on the Vlasov equation, but has an effective

“collision operator” in the form of a diffusion equation that describes wave-particle interactions due to
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fluctuations. In the kinetic theory presented here, the instability-enhanced term of the total collision

operator for species s, which is a sum of the component collision operators describing collisions of s

with each species s′, C(fs) =
∑
s′ C(fs, fs′), fits into the diffusion equation framework of quasilinear

theory. This is because the drag term of the Landau form vanishes in the total collision operator (but

not necessarily in the component collision operators). The instability-enhanced contribution to the total

collision operator may also be considered an extension of quasilinear theory for the case that instabilities

arise within the plasma. Conventional quasilinear theory requires specification of an initial electrostatic

fluctuation spectrum by some means external to the theory itself. Our kinetic prescription provides this

by self-consistently accounting for the continuing source of fluctuations from discrete particle motion.

This determines the spectral energy density of the plasma, which is otherwise an input parameter in

conventional quasilinear theory.

We apply the new theory to two unsolved problems in low-temperature plasma physics. The first of

these is Langmuir’s paradox [13–15], which is a measurement of enhanced electron-electron scattering

above the Coulomb level for a stable plasma. We consider the role of instability-enhanced collisions

due to ion-acoustic instabilities in the presheath region of Langmuir’s discharge and show that they

significantly enhance scattering even though the instabilities propagate out of the plasma before reaching

nonlinear levels [16]. The second application we consider is determining the Bohm criterion (i.e., the

speed at which ions leave a plasma) in plasmas with multiple ion species. In this case, we show that

when ion-ion two-stream instabilities arise in the presheath they cause an instability-enhanced collisional

friction that is very strong and forces the flow speed of each ion species toward a common speed at the

sheath-presheath boundary [17].

The rest of this chapter will proceed in the following manner. A review of previous kinetic equations

for stable plasmas is provided in section 1.1. Previous kinetic and Vlasov theories for collisions from

wave-particle interactions in unstable plasmas are reviewed in section 1.2, along with a discussion of

previous work describing the kinetic (discrete particle) origin of fluctuations. In section 1.3, the utility

of the approach taken in this work is discussed. A description of the unsolved problems of Langmuir’s

paradox and determining the Bohm criterion in multiple-ion-species plasmas are described in sections

1.4 and 1.5, along with a description of how the basic theory developed in this work can be applied to

these problems.
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The remaining chapters of this dissertation are organized as follows. Our basic kinetic theory for

weakly unstable plasmas is derived in chapter 2 using both a dressed test particle approach and the

BBGKY hierarchy. In chapter 3, important physical properties of this collision operator are proven

and discussed. The connection between it and conventional quasilinear theory is also discussed in this

chapter. Chapter 4 presents an application of our basic theory to the Langmuir’s paradox problem,

where we calculate enhanced electron scattering due to ion-acoustic instabilities in the presheath. In

chapter 5 we discuss other kinetic effects in the plasma-boundary transition region, including a kinetic

formulation of the Bohm criterion. Finally, in chapter 6, we apply the basic theory to determining

the Bohm criterion in plasmas with more than one positive ion species. A brief conclusion follows in

chapter 7.

We have also published most of the work presented in this dissertation elsewhere. A derivation of the

basic kinetic theory using the dressed test particle method can be found in [18]. The BBGKY hierarchy

derivation of this, and its connection to conventional quasilinear theory were presented in [19]. The

Langmuir’s paradox application and the application of determining the Bohm criterion in multiple-ion-

species plasmas were published in [16] and [17].

1.1 Previous Kinetic Theories for Stable Plasmas

In this section, we review the prominent kinetic theories of stable plasmas. These all assume that the

dominant scattering mechanism is the Coulomb interaction between individual particles, and ignore

scattering from collective fluctuations. They also assume that no equilibrium electric, magnetic, or

gravitational fields are applied to the plasma (or, if they are present, that they are weak enough as to

not affect the collision operator). General Coulomb scattering theory is reviewed in section 1.1.1, along

with a brief derivation of the Boltzmann equation. The Lorentz collision operator is then reviewed in

section 1.1.2 by taking the small-momentum-transfer limit of the Boltzmann collision operator. The

Lorentz model is the simplest of those presented because it assumes that the plasma consists of only

two species, electrons and ions, and it makes two restrictive approximations: that the ions create a

stationary background, and that they are infinitely heavy compared to electrons. The Landau collision

operator is derived in section 1.1.3, also from the small-momentum-transfer limit of the Boltzmann
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equation, but without making the other assumptions of the Lorentz model. In section 1.1.4, it is shown

that the Landau collision operator can be written in the same form as the conventional Fokker-Planck

equation [20]. This form was first shown in [21], and we refer to it as the Rosenbluth collision operator.

The Lenard-Balescu equation is reviewed in section 1.1.5, which accounts for the collective effect of

dielectric screening in a plasma that is missed in theories based on the Boltzmann equation. A detailed

derivation of the Lenard-Balescu equation is deferred to chapter 2 where it is also generalized to account

for unstable plasmas. Finally, in section 1.1.6, convergent collision operators are discussed which account

for very small and very large impact parameters. One convergent method is to combine the Boltzmann

approach (which captures very small, but not very large, impact parameters) with the Lenard-Balescu

equation (which captures very large, but not very small, impact parameters).

1.1.1 The Boltzmann Equation for Coulomb Collisions

The Boltzmann equation achieved great success in the late nineteenth century by accurately describing

the kinetics of molecular gases. When the topic of ionized gases was introduced in the early twentieth

century, Boltzmann’s formalism presented a natural starting point from which to find a plasma kinetic

equation. Boltzmann’s equation considers only single particle interactions; it assumes that each particle

only interacts with one other particle at a time [22]. This assumption is especially good for molecular

gases because molecular forces fall off approximately as ∼ r−6 − r−7; hence, the interaction distance

is particularly short-range. Charged particles, on the other hand, have Coulomb electric fields that

fall off as only r−2; thus one may not expect a single particle interaction approximation to be as good

for a plasma. Nevertheless, the Boltzmann’s equation has been extended to plasmas and has achieved

considerable success in describing basic features of collision processes.

The Boltzmann equation describes the time evolution of the distribution function fs(x,v, t) for a

particular species s. The distribution function represents the probable number of particles of species s

that will be found at time t in an elemental volume element in the six-dimensional phase-space consisting

of physical space d3x and velocity space d3v. In a finite time element, dt, the particle coordinates change

to

x̂ = x + vdt and v̂ = v +
F

ms
dt (1.1)
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in which F is an external force. In the absence of collisions, we would have fs(x̂, v̂, t + dt)d3x̂ d3v̂ =

fs(x,v, t)d
3x d3v. Assuming that F is an “equilibrium” forcing function, meaning that it is approxi-

mately constant on the dt timescale, the Jacobian ∂(x̂, v̂)/∂(x,v) = 1, which implies d3x̂ d3v̂ = d3x d3v.

With collisions, the distribution function can change over dt, so

fs

(
x + vdt,v +

F

ms
dt, t+ dt

)
d3x d3v − fs(x,v, t)d3x d3v =

(
∂fs(x,v, t)

∂t

)

coll

d3x d3v dt. (1.2)

Dividing equation 1.2 by d3x d3v dt and taking the limit dt→ 0 yields the Boltzmann equation

∂fs
∂t

+ v · ∂fs
∂x

+
F

ms
· ∂fs
∂v

=

(
∂fs
∂t

)

coll

≡ CB(fs). (1.3)

Next, we need to determine the collision operator CB(fs). The Boltzmann collision operator is based

on the assumption that a particle interacts with only one other particle at a time, so the total deflection

of a particle can be approximated from a sum of two-body collisions. Working in the center of mass

frame, the two-body scattering problem takes the geometry of figure 1.1 where (v, v̂) are the initial

and final velocities of the test-particle of species s and (v′, v̂′) are the initial and final velocities of the

background particle of species s′. The s′ species can be any species in the plasma, including s = s′.

The position of the center of mass frame (i.e., scattering center) with respect to laboratory coordinates

of each particle (rs, rs′) is

rcm =
msrs +ms′rs′

ms +ms′
. (1.4)

With this, we can write the position of each particles as

rs = rcm −
ms′

ms +ms′
r and rs′ = rcm +

ms

ms +ms′
r, (1.5)

in which r ≡ rs− rs′ is the relative position of the particles. Applying the assumption that the equilib-

rium forcing function F is constant on the short collision time scale in equation 1.4 yields d2rcm/dt
2 = 0.

Newton’s equations in the laboratory frame can thus be written msd
2rs/dt

2 = −f and ms′d
2rs/dt

2 = f ,

in which f = f1,2 = −f2,1 is assumed to be a conservative central force. Each of these equations of motion

imply

mss′
d2r

dt2
= f (1.6)

in which

mss′ =
msms′

ms +ms′
(1.7)
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v – v

v – v

Figure 1.1: Scattering in the center-of-mass reference frame.

is the reduced mass. Equation 1.6 shows that working in the center of mass frame gives the geometry

shown in figure 1.1, where the origin is the scattering center (center of mass), θ is the scattering angle

and b is the impact parameter, which would be the distance of closest approach if the particles did not

interact.

The collision operator represents the change in fs from particles scattering into the range (v,v+dv),

balanced by the scattering of particles out of this range,

CB(fs) =

(
∂fs
∂t

)

in

−
(
∂fs
∂t

)

out

(1.8)

The number of particles into an element of area b db dφ is b db dφ fs(x,v, t)|v−v′|d3v′, while the number

of background particles in the range (v,v +dv) is, by definition,
∑
s′ fs′(x,v

′, t)d3v. Thus, the number

of collisions/time within the range (b, b+ db) and (φ, φ+ dφ) is

∑

s′

|v − v′| fs(x,v, t) fs′(x,v′, t) b db dφ d3v d3v′. (1.9)

We will also use the alternate notation

b db dφ =
dσ

dΩ
dΩ (1.10)
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in which dσ/dΩ is the differential scattering cross section, and the solid angle is dΩ = sin θ dθ dφ. The

rate of change of fs due to collisions that scatter particles out of the range (v,v + dv) is then

(
∂fs
∂t

)

out

=
∑

s′

∫
d3v′ |v − v′|

∫
dΩ

dσ

dΩ
fs(x,v, t) fs′(x,v

′, t). (1.11)

Analogously, the change of fs due to collisions that scatter particles into the range (v,v + dv) is

(
∂fs
∂t

)

in

=
∑

s′

∫
d3v̂′ |v̂ − v̂′|

∫
dΩ̂

dσ̂

dΩ̂
fs(x, v̂, t) fs′(x, v̂

′, t). (1.12)

By symmetry, dσ̂ = dσ. From conservation of momentum (or energy) |v−v′| = |v̂− v̂′|, and d3v d3v′ =

d3v̂ d3v̂′. By putting equations 1.11 and 1.12 into equation 1.8, we arrive at the Boltzmann collision

operator [22]

CB(fs) =
∑

s′

∫
d3v′

∫
dΩ

dσ

dΩ
|v − v′|

[
fs(x, v̂, t) fs′(x, v̂

′, t)− fs(x,v, t) fs′(x,v′, t)
]
. (1.13)

The Boltzmann equation 1.13 assumes that the force acting between particles is central and con-

servative, but nothing more specific. It is thus quite general and can be applied in diverse areas of

physics from molecular collisions to the gravitational interaction of stars. Here it will be applied to the

electrostatic interaction between charged particles. The forcing function for the electrostatic interaction

is

f = qsqs′
r

r3
, (1.14)

where we recall r ≡ x − x′. Thus, the equations of motion in the center of mass frame (equation 1.6)

can be written

mss′
du

dt
= qsqs′

r

r3
(1.15)

in which

u ≡ v − v′ (1.16)

and we use the notation r ≡ |r|. By definition, the center of mass velocity

ucm =
msv +ms′v

′

ms +ms′
(1.17)

is constant in time

ducm

dt
=

1

ms +ms′

(
ms

dv

dt
+ms′

dv′

dt

)
=

1

ms +ms′

(
f − f

)
= 0. (1.18)
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The velocity vectors of each particle after the collision can be written as

v̂ = v + ∆v and v̂′ = v′ + ∆v′. (1.19)

Thus, conservation of momentum, msv̂ +ms′ v̂
′ = msv +ms′v

′ implies

∆v′ = −ms

ms′
∆v and ∆v =

mss′

ms
∆u. (1.20)

Because of the long interaction distance that results from the 1/r2 dependence of the Coulomb

interaction, most scattering events produce small-angle collisions. Thus, we expand fs(v̂) and fs′(v̂
′)

in equation 1.13 in a Taylor series assuming that v� ∆v. This yields

fs(v̂) = fs(v) + ∆v · ∂fs(v)

∂v
+

1

2
∆v∆v :

∂2fs(v)

∂v∂v
+O

(
∆v∆v∆v

)
(1.21)

and

fs′(v̂
′) = fs′(v

′)− ms

ms′
∆v · ∂fs′(v

′)
∂v′

+
1

2

m2
s

m2
s′

∆v∆v :
∂2fs′(v

′)
∂v′∂v′

+O
(
∆v∆v∆v

)
, (1.22)

in which we have written ∆v′ in terms of ∆v using equation 1.20. Putting equations 1.21 and 1.22 into

equation 1.13, the small-momentum-transfer limit of the Boltzmann collision operator can be written

CB(fs) ≈
∑

s′

∫
d3v′ u

∫
dΩ

dσ

dΩ

[
fs′(v

′)∆v · ∂fs(v)

∂v
− ms

ms′
fs(v)∆v · ∂fs′(v

′)
∂v′

(1.23)

− ms

ms′
∆v∆v :

∂fs(v)

∂v

∂fs′(v
′)

∂v′
+

1

2
fs′(v

′)∆v∆v :
∂2fs(v)

∂v∂v
+

1

2
fs(v)

m2
s

m2
s′

∆v∆v :
∂2fs′(v

′)
∂v′∂v′

]
,

in which we use the notation u ≡ |v − v′|.

Equation 1.23 can be simplified by integrating by parts the terms with ∂/∂v′ derivatives. For

example, the first of these terms can be written

∫
d3v′ u

∫
dσ∆v·∂fs′(v

′)
∂v′

=

∫
d3v′

∂

∂v′
·
[
fs′(v

′)
∫
dσ∆v u

]

︸ ︷︷ ︸
=0

−
∫
d3v′ fs′(v

′)
∂

∂v′
·
∫
dσ∆v u. (1.24)

Then, using the fact that

∂

∂v′
·
∫
dσ∆v u = − ∂

∂v
·
∫
dσ∆v u, (1.25)

equation 1.24 can be written

∫
d3v′ u

∫
dσ∆v · ∂fs′(v

′)
∂v′

=
∂

∂v
·
∫
d3v′ u fs′(v

′)
∫
dσ∆v. (1.26)
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Likewise, the third and fifth terms of equation 1.23 can be written

∫
d3v′ u

∫
dσ∆v∆v :

∂fs(v)

∂v

∂fs′(v
′)

∂v′
=
∂fs
∂v
· ∂
∂v
·
∫
d3v′ u fs′(v

′)
∫
dσ∆v∆v (1.27)

and ∫
d3v′ u

∫
dσ∆v∆v :

∂2fs′(v
′)

∂v′v′
=

∂2

∂v∂v
:

∫
d3v′ u fs′(v

′)
∫
dσ∆v∆v. (1.28)

Putting equations 1.26, 1.27 and 1.28 into equation 1.23, gives the following expression for the small

momentum transfer limit of the Boltzmann collision operator:

CB(fs) =
∑

s′

{[
∂fs
∂v
· −ms

ms′
fs(v)

∂

∂v
·
] 〈∆v〉s/s′

∆t

+

[
1

2

∂2fs(v)

∂v∂v
: +

1

2

m2
s

m2
s′
fs(v)

∂2

∂v∂v
: − ms

ms′

∂fs(v)

∂v
· ∂
∂v
·
] 〈∆v∆v〉s/s′

∆t

}
(1.29)

in which we have defined

〈∆v〉s/s′

∆t
≡
∫
d3v′ fs′(v

′)u
∫
dΩ

dσ

dΩ

mss′

ms
∆u (1.30)

and

〈∆v∆v〉s/s′

∆t
≡
∫
d3v′ fs′(v

′)u
∫
dΩ

dσ

dΩ

m2
ss′

m2
s

∆u∆u. (1.31)

In equations 1.30 and 1.31, we have written ∆v in terms of ∆u by applying equation 1.20. If we can find

an explicit expression for equations 1.30 and 1.31, equation 1.29 will provide a usable collision operator

for a plasma.

One way to approach evaluating equations 1.30 and 1.31 is to find ∆u from equation 1.15, which

upon integrating, gives

mss′∆u = qsqs′

∫ ∞

−∞
dt

r

r3
, (1.32)

where t = 0 is set as the time at the distance of closest approach. From the geometry shown in figure

1.2, the position vector is r = b(x̂ cosφ+ ŷ sinφ)+utẑ, thus r =
√
b2 + u2t2. Equation 1.32 thus implies

∆u⊥ =
qsqs′

mss′

∫ ∞

−∞
dt
b (x̂ cosφ+ ŷ sinφ)

(b2 + u2t2)3/2
=

2qsqs′

mss′ u b

(
x̂ cosφ+ ŷ sinφ

)
. (1.33)

Energy conservation, mss′u
2/2 = mss′ |u + ∆u|2/2 = mss′(u

2 + 2u ·∆u + ∆u2)/2, implies

u ·∆u = −1

2
∆u ·∆u. (1.34)
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Figure 1.2: Relative velocity vectors after a scattering event in the center of mass frame.

The small angle scattering approximation implies that ∆u‖ � ∆u⊥, thus

u ·∆u = −1

2
∆u ·∆u = −1

2

(
∆u⊥ ·∆u⊥ + ∆u‖ ·∆u‖

)
≈ −1

2
∆u⊥ ·∆u⊥ (1.35)

and

∆u‖ =
u ·∆u

u

u

u
≈ −1

2

∆u⊥ ·∆u⊥
u

u

u
= − 2q2

sq
2
s′

m2
ss′ u

3 b2
u

u
. (1.36)

With equations 1.33 and 1.36, equations 1.30 and 1.31 can be evaluated. To do so, we go back to

the notation dΩ dσ/dΩ = b db dφ. In the 〈∆v〉/∆t term, only the ∆u‖ term contributes and yields

〈∆v〉s/s′

∆t
= − ms

mss′

∫
d3v′ fs′(v

′)
u

u3

(
4πq2

sq
2
s′

m2
s

∫
db

b

)
. (1.37)

Conversely, only ∆u⊥ will contribute to the 〈∆v∆v〉/∆t term because we enforce the approximaton

∆u ∆u ≈ ∆u⊥∆u⊥ =
4q2
sq

2
s′

m2
ss′ u

2 b2




cos2 φ cosφ sinφ 0

cosφ sinφ sin2 φ 0

0 0 0




(1.38)

Carrying out the integrals gives

〈∆v ∆v〉s/s′

∆t
=

∫
d3v′ fs′(v

′)
u2I − uu

u3

(
4πq2

sq
2
s′

m2
s

∫
db

b

)
. (1.39)
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In equations 1.37 and 1.39, we have deliberately not specified the limits of integration in the db

integral. Nominally, this integral should range over all values; b : 0 → ∞. However, if these limits of

integration are imposed the integral diverges for both the large and small b limits: ln(∞/0)→∞. The

divergence for large b is a consequence of the fact that the Boltzmann equation assumes that particles

only interact as two-body collisions. This results in neglect of collective effects because particles interact

with one another according to the 1/r potential. However, in a plasma polarization causes dielectric

screening of a charged particle, so the potential really scales as φ ∼ exp(−r/λD)/r. Debye shielding

implies that the electrostatic interaction between particles that are more than a Debye length apart is

so weak that the particles effectively do not interact. This suggests that the
∫
db/b integral for large b

should be truncated by

bmax = λD (1.40)

because of Debye shielding. The Lenard-Balescu formulation for a kinetic equation self-consistently

accounts for collective effects, and thus captures Debye shielding. The more rigorous Lenard-Balescu

result in theory can give a more complicated equation for bmax than equation 1.40, but for essentially all

applications it confirms that equation 1.40 is appropriate. In any case, the overall corrections are only

logarithmically dependent on bmax and thus small corrections have a negligible effect on the collision

operator.

The lower limit cutoff (bmin) should be accounted for by the Boltzmann equation because it can

describe large-angle scattering. However, it was not accounted for here because we later assumed small-

angle scattering through the approximation in equation 1.35. The bmin can be more rigorously accounted

for with the Rutherford scattering formula, which we show next, but a simple physical argument can

also provide a good estimate of bmin. We expect large angle scattering (near 90◦) when the electrostatic

potential energy for two particles interacting, |x−x′| = bmin, is approximately twice the average kinetic

energy mss′ ū2/2, which gives

bcl
min =

qs qs′

mss′ ū2
. (1.41)

Alternatively, quantum mechanical effects can induce large-angle scattering when bmin approaches the

de Broglie wavelength λh/2π ≈ h/(2πmss′
√
ū2). Setting bmin = (λh/2π)/2 gives a quantum-mechanical
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estimate for bmin

bqm
min = h/(4πmss′

√
ū2). (1.42)

In this work we will only be concerned with the classical case of equation 1.41, but in general one should

use [22]

bmin = max
{
bcl
min, b

qm
min

}
. (1.43)

With the understanding that the limits of integration are physically limited, the b integral in equa-

tions 1.37 and 1.39 can be evaluated

∫
db

b
=

∫ bmax

bmin

db

b
= ln

(
bmax

bmin

)
= ln Λss′ (1.44)

in which Λss′ = bmax/bmin is the Coulomb logarithm. One final assumption is also typically made,

which is to neglect the v′ dependence inside the Coulomb logarithm and take for the average energy ū

an average thermal speed ū2 ≈ v2
T,ss′ = v2

Ts + v2
Ts′ , in which v2

Ts = 2Ts/ms and Ts is the temperature.

This approximation is based upon the fact that the v′ variable is integrated in equations 1.30 and 1.31,

where the integrand is proportional to fs(v
′), so the characteristic speed of this integral is vTs. However,

it may be possible to find an example where this is not a good approximation (for example if there is a

very fast flow). In such a case the Coulomb logarithm may be modified. We will not be concerned with

finding such corrections in this work. As a testament to the robustness of this approximation, it should

also be noted that significant corrections to the Coulomb logarithm are rarely found in conventional

plasmas.

With the identifications above, equation 1.37 is

〈∆v〉s/s′

∆t
= − ms

mss′
Γss′

∫
d3v′ fs′(v

′)
u

u3
= Γss′

∂Hs′(v)

∂v
(1.45)

and equation 1.39 is

〈∆v ∆v〉s/s′

∆t
= Γss′

∫
d3v′ fs′(v

′)
u2I − uu

u3
= Γss′

∂2Gs′(v)

∂v ∂v
. (1.46)

In equations 1.45 and 1.46, we have defined

Γss′ ≡
4πq2

sq
2
s′

m2
s

ln Λss′ , (1.47)
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and the functions Hs′ and Gs′ are the Rosenbluth potentials

Hs′(v) ≡
(

1 +
ms

ms′

)∫
d3v′

fs′(v
′)

|v − v′| (1.48)

and

Gs′ ≡
∫
d3v′fs′(v

′)|v − v′|. (1.49)

It will be useful to work with the Rosenbluth potentials throughout this work, and their properties

are summarized in appendix A. Putting equations 1.45 and 1.46 into equation 1.29 yields a complete

collision operator that describes Coulomb interactions in a stable plasma.

A second way to obtain equations 1.45 and 1.46 that can self-consistently capture bmin, because

it does not depend on the small angle approximation of equation 1.35, is based on carrying out the

integrals of equations 1.30 and 1.31 using the Rutherford scattering formula for the differential cross

section in a Coulomb scattering event

dσ

dΩ
=

q2
s q

2
s′

4m2
ss′ u

4

1

sin4
(
θ/2
) . (1.50)

A derivation of the Rutherford scattering formula, first derived in [23], can be found in essentially any

classical mechanics book, see for example [24], so we do not repeat the derivation here.

From the geometry of figure 1.2, u + ∆u = u[sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ]. Thus, using the

identity cos θ − 1 = −2 sin2(θ/2), gives

∆u = u
[
sin θ cosφ x̂+ sin θ sinφ ŷ − 2 sin2(θ/2) ẑ

]
. (1.51)

Putting equation 1.51 into equation 1.30 with dΩ = sin θ dθdφ, yields

〈∆v〉s/s′

∆t
=

q2
sq

2
s′

4msmss′

∫
d3v′

fs′(v
′)

u2

∫
dθ

sin θ

sin4(θ/2)

∫ 2π

0

dφ
[
sin θ cosφ x̂+ sin θ sinφ ŷ − 2 sin2(θ/2) ẑ

]

(1.52)

= − πq2
sq

2
s′

msmss′

∫
d3v′

fs′(v
′)

u2

∫
dθ

sin θ

sin2(θ/2)
ẑ.

Likewise, putting equation 1.51 into equation 1.31 and also evaluating the dφ integral, yields

〈∆v∆v〉s/s′

∆t
=
πq2
sq

2
s′

4m2
s

∫
d3v′

fs′(v
′)

u

∫
dθ

sin θ

sin4(θ/2)




sin2 θ 0 0

0 sin2 θ 0

0 0 8 sin4(θ/2)



. (1.53)
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Again, we have deliberately not specified the limits of integration for the θ integral because we

expect it do diverge for long range (large b, small θ) collisions. Thus, we use for the lower limit of

integration θmin. Using the Rutherford equation 1.50 accounts for the large angle scattering; thus we

can still take θmax = π (which is equivalent to bmin = 0). In equation 1.52, we require the integral

∫ π

θmin

dθ
sin θ

sin2(θ/2)
= −4 ln

[
sin

(
θmin

2

)]
. (1.54)

Similarly, the x̂x̂ and ŷŷ components of equation 1.53 require the integral

∫ π

θmin

dθ
sin3 θ

sin4(θ/2)
= −8 cos2

(
θmin

2

)
− 16 ln

[
sin

(
θmin

2

)]
≈ −16 ln

[
sin

(
θmin

2

)]
(1.55)

in which we have anticipated that
∣∣ln[sin(θmin/2)]

∣∣� 1 in the last step.

Next, we determine θmin. From above, we argued that bmax ≈ λD, due to Debye screening. So, we

relate θmin to bmax by putting the Rutherford formula into the geometric relation b db dφ = (dσ/dΩ) dΩ,

and integrating

∫ bmax

0

db b =
q2
sqs′

4m2
ss′ u

4

∫ π

θmin

dθ
sin θ

sin4
(
θ/2
) =

q2
sq

2
s′

4m2
ss′u

4

[
2

sin2
(
θmin/2

) − 2

]
. (1.56)

Rearranging this result gives

sin2

(
θmin

2

)
=

1

1 + (m2
ss′u

4b2max)/(q2
sq

2
s′)
≈ q2

sq
2
s′

m2
ss′ u

4 b2max

. (1.57)

Thus, putting in bmax = λD, we find

sin

(
θmin

2

)
≈ qsqs′

mss′ u2λD
=
bclmin

bmax
=

1

Λss′
. (1.58)

So, ln[sin(θmin/2)] = − ln Λss′ .

Finally, putting equation 1.58 into equation 1.54 and the result into equations 1.52 and 1.53 gives

〈∆v〉s/s′

∆t
= − ms

mss′
Γss′

∫
d3v′ fs′(v

′)
u

u3
. (1.59)

and

〈∆v∆v〉s/s′

∆t
= Γss′

∫
d3v′

fs′(v
′)

u




1 0 0

0 1 0

0 0 1/ ln Λss′



. (1.60)



17

Assuming ln Λss′ � 1, the 1/ ln Λ term in the ẑẑ position can be neglected and equation 1.60 is

approximately

〈∆v∆v〉s/s′

∆t
= Γss′

∫
d3v′fs′(v

′)
u2I − uu

u3
. (1.61)

Equations 1.59 and 1.61 are identical to equations 1.45 and 1.46 that where obtained using the physical

arguments for bmin. Using the Rutherford scattering formula has provided a firm foundation for the

previous heuristic physical argument for bmin. Of course, the determination of Λss′ still required external

physical arguments to determine bmax. However, this limit too can be firmly established using the

Lenard-Balescu equation, which is discussed in section 1.1.5. It is also noteworthy that equation 1.60

shows that corrections to the small-angle scattering approximation come about as O(1/ ln Λ). Thus,

ln Λ� 1 is required for the small angle scattering approximation to be valid.

1.1.2 The Lorentz Collision Operator

The Lorentz collision model is a simple starting point that illustrates the basic effects of momentum

loss and velocity-space diffusion in plasmas. It assumes that the plasma consists of a single species

of positively charged ions and a single species of negatively charged electrons such that the ions are

infinitely heavy and stationary. The Lorentz collision operator then seeks to determine how the electron

distribution function evolves due to collisions with the stationary, infinitely heavy, background ion

population. The Lorentz approximations can thus be summarized as

ms = me, ms′ = mi →∞ and fs′(v) = niδ(v). (1.62)

With these assumptions, equation 1.29 becomes

CL(fe) =
∂fe(v)

∂v
· 〈∆v〉e/i

∆t
+

1

2

∂2fe(v)

∂v∂v
:
〈∆v∆v〉e/i

∆t
. (1.63)

Expanding the second term gives

1

2

∂2fe
∂v∂v

:
〈∆v∆v〉e/i

∆t
=

1

2

∂

∂v
·
[ 〈∆v∆v〉e/i

∆t
· ∂fe
∂v

]
− 1

2

∂fe
∂v
·
[
∂

∂v
· 〈∆v∆v〉e/i

∆t

]
. (1.64)

Recalling from equation A.4 that

∂

∂v
· 〈∆v∆v〉s/s′

∆t
= 2

mss′

ms

〈∆v〉s/s′

∆t
(1.65)
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and that mss′/ms = 1 in the Lorentz model, then putting equations 1.65 and 1.64 into 1.63, gives

CL(fe) =
Γeini

2

∂

∂v
·
(
v2I − vv

v3
· ∂fe
∂v

)
. (1.66)

Noting that v · (v2I − vv) = 0, the Lorentz collision operator can be written

CL(fe) =
νo
2

∂

∂v
·
[(
v2I − vv

)
· ∂fe
∂v

]
(1.67)

in which

νo(v) ≡ 4πZ2
i e

4ni
m2
e v

3
ln Λei (1.68)

is a reference collision frequency. The Lorentz equation can also be written in the convenient notation

CL(fe) = νoL{fe(v)} in which

L ≡ 1

2

∂

∂v
·
(
v2I − vv

)
· ∂
∂v

=
1

2

(
v × ∂

∂v

)
·
(

v × ∂

∂v

)
. (1.69)

1.1.3 The Landau Collision Operator

Landau was the first to apply the small scattering angle approximation to the Boltzmann collision

operator (equation 1.13) in order to apply it in a plasma physics context. However, rather than writing

the result in the form of equation 1.29, Landau wrote his collision operator in the form of the velocity-

space divergence of a collisional current

C(fs) = − ∂

∂v
· Jv. (1.70)

In this section, we show how equation 1.29 can be transformed into this form. In Landau’s original

work [1], he also introduced the physical arguments made in section 1.1.1 regarding truncation of the

logarithmically diverging b integral. His arguments gave equations 1.41 and 1.40 for bmin and bmax,

which led to determining the Coulomb logarithm.

We seek to write equation 1.29 in the form of a total divergence of the form suggested by equa-

tion 1.70. To do so, we will consider each of the five terms of equation 1.29 individually. Using the

property

∂

∂v
· 〈∆v〉s/s′

∆t
= −4π Γss′

ms

mss′
fs′(v) (1.71)
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from equation A.3, and differentiating, the first term can be written as

∂fs(v)

∂v
· 〈∆v〉s/s′

∆t
=

∂

∂v
·
(
fs(v)

〈∆v〉s/s′

∆t

)
+ 4π Γss′

ms

mss′
fs(v) fs′(v) (1.72)

and the second term as

ms

ms′
fs(v)

∂

∂v
· 〈∆v〉s/s′

∆t
= − m2

s

ms′mss′
4πΓss′fs(v)fs′(v). (1.73)

Using the property

∂2

∂v∂v
:
〈∆v∆v〉s/s′

∆t
= −8πΓss′fs′(v) (1.74)

from equation A.5, and differentiating, the third term becomes

1

2

∂2fs
∂v∂v

:
〈∆v∆v〉s/s′

∆t
=

1

2

∂

∂v
·
[
∂fs
∂v
· 〈∆v∆v〉s/s′

∆t

]
− 1

2

∂

∂v
·
[
fs

∂

∂v
· 〈∆v∆v〉s/s′

∆t

]
−4πΓss′fs(v)fs′(v),

(1.75)

the fourth term becomes

1

2

m2
s

m2
s′
fs(v)

∂2

∂v∂v
:
〈∆v∆v〉s/s′

∆t
= −4π

m2
s

m2
s′

Γss′fs(v)fs′(v), (1.76)

and the fifth, and final, term becomes

−ms

ms′

∂fs
∂v
· ∂
∂v
· 〈∆v∆v〉s/s′

∆t
= −ms

ms′

∂

∂v
·
(
fs(v)

∂

∂v
· 〈∆v∆v〉s/s′

∆t

)
− 8π

ms

ms′
Γss′fs(v)fs′(v). (1.77)

Plugging equations 1.72 – 1.77 into 1.29 yields

C(fs) =
∂

∂v
·
∑

s′

[
fs(v)

〈∆v〉s/s′

∆t
+

1

2

∂fs
∂v
· 〈∆v∆v〉s/s′

∆t
− 1

2

(
1+ 2

ms

ms′

)
fs(v)

∂

∂v
· 〈∆v∆v〉s/s′

∆t

]
. (1.78)

Using equation 1.65 to write 〈∆v〉/∆t in terms of 〈∆v∆v〉/∆t, the first and third terms can be combined

to give

C(fs) = − ∂

∂v
·
∑

s′

[
1

ms′
fs(v)

∂

∂v
· 〈∆v∆v〉s/s′

∆t
− 1

ms

∂fs
∂v
· 〈∆v∆v〉s/s′

∆t

]
. (1.79)

Inserting equation 1.46 for 〈∆v∆v〉/∆t, and using

∂

∂v
·
∫
d3v′fs′(v

′)
u2I − uu

u3
=

∫
d3v′fs′(v

′)
∂

∂v
·
(
u2I − uu

u3

)
(1.80)

= −
∫
d3v′fs′(v

′)
∂

∂v′
·
(
u2I − uu

u3

)
=

∫
d3v′

∂fs′

∂v′
· u

2I − uu

u3
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in the first term, yields the Landau form of the collision operator

CL(fs) = − ∂

∂v
·
∑

s′

∫
d3v′QL ·

(
1

ms′

∂

∂v′
− 1

ms

∂

∂v

)
fs(v)fs′(v

′), (1.81)

in which

QL ≡
2πq2

sq
2
s′

ms
ln Λss′

(
u2I − uu

u3

)
(1.82)

is the Landau collisional kernel.

The total Landau collision operator, CL(fs), consists of a sum of component collision operators,

CL(fs, fs′), that can each be written as a velocity-divergence of a collisional current

dfs(v)

dt
= CL(fs) =

∑

s′

CL(fs, fs′) = − ∂

∂v
·
∑

s′

J
s/s′

L (1.83)

in which

J
s/s′

L =

∫
d3v′QL ·

(
1

ms′

∂

∂v′
− 1

ms

∂

∂v

)
fs(v)fs′(v

′). (1.84)

1.1.4 The Rosenbluth (Fokker-Planck-like) Collision Operator

In the late 1950’s, Rosenbluth, MacDonald and Judd used the Fokker-Planck formalism to derive a

kinetic equation for stable plasmas [21]. Their result is commonly called the Fokker-Planck equation

for plasmas. The original Fokker-Planck treatment was for molecular gases [20]. The plasma result,

which we refer to as the Rosenbluth equation, is equivalent to the Landau collision operator 1.81. In

this section we will derive the Rosenbluth form from equation 1.81 and show how it can be written in

a form that looks like the classical Fokker-Planck equation.

To show this, we first add and subtract fs(v)∂fs′(v
′)/∂v′ inside the parentheses of the Landau

collisional current of equation 1.84. Then it can be written

Js/s
′

= Γs,s′

{
1

2

ms

mss′

∫
d3v′

u2I − uu

u3
· fs(v)

∂fs′(v
′)

∂v′
(1.85)

− 1

2

∫
d3v′

u2I − uu

u3
·
[
fs′(v

′)
∂fs(v)

∂v
− fs(v)

∂fs′(v
′)

∂v′

]}
.

Considering the first integral, integrating by parts gives

∫
d3v′

u2I − uu

u3
· ∂fs′(v

′)
∂v′

=

∫
d3v′

∂

∂v′
·
[
u2I − uu

u3
fs′(v

′)

]

︸ ︷︷ ︸
=0

−
∫
d3v′fs′(v

′)
∂

∂v′
· u

2I − uu

u3
. (1.86)
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Using the relations

∂

∂v′
· u

2I − uu

u3
= − ∂

∂v
· u

2I − uu

u3
(1.87)

and

∂

∂v
·
∫
d3v′

u2I − uu

u3
fs′(v

′) =
∂

∂v
·
(
∂2Gs′(v)

∂v∂v

)
= 2

mss′

ms

∂Hs′(v)

∂v
, (1.88)

the first integral can be written in terms of H. Similarly, for the second term we utilize

∂

∂v
·
[
fs(v)

∫
d3v′fs′(v

′)
u2I − uu

u3

]
=

∫
d3v′

u2I − uu

u3
·
[
fs′(v

′)
∂fs(v)

∂v
+ fs(v)

∂fs′(v
′)

∂v′

]
. (1.89)

Putting these into equation 1.85 leads to the Rosenbluth collision operator

CR(fs) = − ∂

∂v
·
∑

s′

Γs,s′

{
fs(v)

∂Hs′(v)

∂v
− 1

2

∂

∂v
·
[
fs(v)

∂2Gs′(v)

∂v∂v

]}
. (1.90)

Identifying equations 1.45 and 1.46, this can also be written in a Fokker-Planck form

CFP(fs) = − ∂

∂v
·
∑

s′

{
fs(v)

〈∆v〉s/s′

∆t
− 1

2

∂

∂v
·
[
fs(v)

〈∆v∆v〉s/s′

∆t

]}
, (1.91)

in which the right side is the sum of a dynamical friction and dispersion.

1.1.5 The Lenard-Balescu Collision Operator

An improvement over the Landau and Fokker-Planck equations has been provided by Lenard and

Balescu [2, 3]. The Lenard-Balescu equation accounts for physics of the collective nature of a plasma;

thus it accurately accounts for Debye shielding and resolves the bmax (or kmin in Fourier-space) integral

self-consistently. It still suffers the logarithmic divergence for hard collisions though, since it makes a

small angle collision approximation. A general plasma dielectric function is allowed in the theory, but

an adiabatic approximation ε̂ = 1 + 1/k2λ2
D is often used in practice; in this case the Lenard-Balescu

equation reduces to Landau’s equation. This is shown below. Chapter 2 extends Lenard-Balescu theory

to also include the collective effects of unstable plasmas. Since the Lenard-Balescu equation is easily

identified from the more general result that also includes wave-particle interactions, we defer a rigorous

derivation of the Lenard-Balescu equation to chapter 2.

The Lenard-Balescu collision operator also has the Landau form

CLB(fs) = − ∂

∂v
·
∑

s′

∫
d3v′QLB ·

(
1

ms′

∂

∂v′
− 1

ms

∂

∂v

)
fs(v)fs′(v

′), (1.92)
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but now the collisional kernel is given by

QLB ≡
2q2
sq

2
s′

ms

∫
d3k

kk

k4

δ[k · (v − v′)]
|ε̂(k,k · v)|2 . (1.93)

The Lenard-Balescu equation reduces to the Landau (or, equivalently the Rosenbluth) equation,

with the bmax = λD argument applied, if one assumes an adiabatic dielectric response

ε̂(k, ω) = 1 +
1

k2λ2
De

. (1.94)

Using cylindrical coordinates

kx = k⊥ cosϕ , ky = k⊥ sinϕ , kz = k‖ (1.95)

ux = u⊥ cosψ , uy = u⊥ sinψ , uz = u‖

in which ϕ is the angle between k⊥ and x̂ and ψ is the angle between u⊥ and x̂. Then the delta function

part can be written

δ(k · u) = δ[k⊥u⊥(cosϕ cosψ + sinϕ sinψ) + k‖u‖] = δ[k⊥u⊥ cos(ϕ− ψ) + k‖u‖]. (1.96)

Equation 1.93 can then be written

Q =
2q2
sq

2
s′

ms

∫ 2π

0

dϕ

∫ ∞

0

dk⊥ k⊥

∫ ∞

−∞
dk‖

δ[k‖u‖ + k⊥u⊥ cos(ϕ− ψ)]

(k2
‖ + k2

⊥ + λ−2
De)

2
(1.97)

×




k2
⊥ cos2 ϕ k2

⊥ sinϕ cosϕ k⊥k‖ cosϕ

k2
⊥ sinϕ cosϕ k2

⊥ sin2 ϕ k⊥k‖ sinϕ

k⊥k‖ cosϕ k⊥k‖ sinϕ k2
‖



.

After the k‖ integral this is

Q =
2q2
sq

2
s′

ms

∫ 2π

0

dϕ

∫ ∞

0

dk⊥
k3
⊥/u‖[

k2
⊥
(
1 +

u2
⊥
u2
‖

cos2(ϕ− ψ)
)

+ λ−2
De

]2 T (1.98)

in which T is the tensor

T ≡




cos2 ϕ sinϕ cosϕ −u⊥
u‖

cos(ϕ− ψ) cosϕ

sinϕ cosϕ sin2 ϕ −u⊥
u‖

cos(ϕ− ψ) sinϕ

−u⊥
u‖

cos(ϕ− ψ) cosϕ −u⊥
u‖

cos(ϕ− ψ) sinϕ
u2
⊥
u2
‖

cos2(ϕ− ψ)



. (1.99)
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Next, consider the the k⊥ integral, which must be truncated for large k at 1/bmin, and note that

∫ 1/bmin

0

dk⊥
k3
⊥

(k2
⊥a+ λ−2

De)
2

=
1

2a2

(
2 ln Λ + ln a− 1

)
≈ ln Λ

a2
(1.100)

in which a ≡ 1 + u2
⊥/u

2
‖ cos2(ϕ − ψ) is a number close to unity and a � Λ where Λ ≡ λDe/bmin. The

collisional kernel is then

Q =
2q2
sq

2
s′

ms
u3
‖

∫ 2π

0

dϕ
ln Λ

[
u2
‖ + u2

⊥ cos2(ϕ− ψ)
]2 T . (1.101)

Completing the ϕ integrals gives

Q =
2πq2

sq
2
s′

ms
ln Λ

1

u3




u2
‖ + u2

⊥ sin2 ψ −u2
⊥ cosψ sinψ −u⊥u‖ cosψ

−u2
⊥ cosψ sinψ u2

‖ + u2
⊥ cos2 ψ −u⊥u‖ sinψ

−u⊥u‖ cosψ −u⊥u‖ sinψ u2
⊥



, (1.102)

which is simply the Landau collisional kernel

QL =
2πq2

sq
2
s′

ms
ln Λss′

u2I − uu

u3
. (1.103)

1.1.6 Convergent Collision Operators

In the preceding sections, we have seen two fundamentally different approaches to developing a kinetic

theory of plasma: the small momentum transfer limit of the Boltzmann equation (∆v � v) and the

Lenard-Balescu equation based on a perturbation of the distribution itself δfs � fs. Both approaches

resulted in a kinetic equation that requires truncation of an otherwise divergent integral. This trun-

cation is provided by physical arguments external to the theories themselves. The necessity to do this

demonstrates limitations of each theoretical approach. The limitation of the small momentum transfer

limit of the Boltzmann equation is that it neglects Debye shielding and cannot resolve large impact

parameters. In this case, a maximum impact parameter is set at the Debye length bmax = λD. The

limitation of the Lenard-Balescu approach is that it does not resolve large-angle scattering for very

small impact parameters. In this case, a minimum impact parameter is set at bmin, based on classical

or quantum mechanical arguments (see equations 1.41 and 1.42). Both expansion procedures are based

on ln Λ� 1.

Convergent kinetic theories seek a unified approach that simultaneously captures both the large

and small impact parameter limits. In some sense, this is not really necessary since each of the two
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approaches resolves a different limit and thus provide a rigorous justification for both truncations of the

b integral. However, it seems useful from a theoretical perspective to have such a unified theory, and

it may be important to resolve each limit when considering higher order terms in the ln Λ expansion.

Indeed, the major practical application motivating such research is to describe “moderately coupled”

plasmas. Li and Petrasso [25] define a moderately coupled plasma as one in which 2 . ln Λ . 10.

Strongly coupled plasmas are those with ln Λ . 2 and weakly coupled plasmas have ln Λ & 10. In

the previous theories, we have assumed weakly coupled plasma; but, as one transitions to moderately

coupled plasmas higher order terms in the ln Λ expansion may need to be considered. Very high-density

plasmas, such as those produced in laser-produced inertial confinement fusion, can have regions in which

the plasma is moderately coupled (or, possibly, even strongly coupled).

With this motivation, Li and Petrasso [25] calculated the third order term in the Fokker-Planck

collision operator

CFP(fs, fs′) = − ∂

∂v
·
∑

s′

{
fs(v)

〈
∆v
〉s/s′

∆t
− 1

2

∂

∂v
·
[
fs(v)

〈
∆v∆v

〉s/s′

∆t

]
(1.104)

+
1

6

∂2

∂v ∂v
:

[
fs(v)

〈
∆v ∆v ∆v

〉s/s′

∆t

]}
.

They found the same equations for first

〈∆v〉s/s′

∆t
= Γss′

∂Hs′(v)

∂v
(1.105)

and second

〈∆v∆v〉s/s′

∆t
= Γss′

∂2Gs′(v)

∂v∂v
− Γss′

ln Λss′

[
3

2

∂2Gs′(v)

∂v∂v
− IHs′(v)

]
(1.106)

order that were discussed in section 1.1.4 (except that they also included the 〈∆v∆v〉‖/∆t term that

is typically neglected in the Fokker-Planck equation because it is higher order in 1/ ln Λss′). Here Hs′

and Gs′ are the Rosenbluth potentials from equations A.1 and A.2 . The new triplet order equation is

the third rank tensor

〈∆v∆v∆v〉s/s′

∆t
= −1

2

Γss′

ln Λss′

mss′

ms

∂2Φs′(v)

∂v∂v
(1.107)

in which

Φs′(v) ≡
∫
d3v′ u|u| fs′(v′) (1.108)
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is a new vector potential that is analogous to the Rosenbluth potentials. Equation 1.107 shows that at

third order in the Fokker-Planck expansion, there is no need to truncate any integrals. This is because

Γss′ ∝ ln Λss′ so equation 1.107 is independent of ln Λss′ . The third (and higher) order in the expansion

are thus dominated by large-angle (close interactions) rather than the typical small-angle Coulomb

collisions that dominate at lower order; a fact that could be anticipated from the basic expansion

technique. Thus, it seems that a convergent kinetic equation concerns only the typical low-order terms

that are dominant in weakly-coupled plasma.

With the understanding that the truncation of b is only required at lowest order (for the terms kept

in the conventional Landau and Lenard-Balescu equations), the contribution of a convergent kinetic

theory appears to be a unified approach for determining the Coulomb logarithm. We will find that the

collision terms describing wave-particle interactions from instabilities do not suffer from this logarithmic

divergence issue. However, we wish to briefly mention previous work on convergent kinetic equations,

because it is perhaps unsettling that traditional stable plasma kinetic theories do not self-consistently

account for both limits of this integral (although, as we have discussed above, the kinetic theory does

sit on a very firm foundation with rigorous approaches for determining each limit).

Hubbard [26], was the first to show that the small momentum transfer limit of the Boltzmann

equation and the Lenard-Balescu equation could be combined to provide a convergent equation. This

approach, in essence, adds the Boltzmann and Lenard-Balescu results, then subtracts the overlaying

Landau equation: C(fs) = CB(fs) +CLB(fs)−CL(fs), but does so early in the analysis so as to resolve

the integrals. Similar approaches were pursued by Aono [27], Baldwin [28], Frieman and Book [29] and

Gould and DeWitt [30], who used various methods including test-particle, BBGKY hierarchy, quantum

mechanical and ladder diagram. A summary of these approaches, which shows the equivalence of the

results, has been provided by Aono [31]. A more modern approach based on a quantum field theory

derivation has also been developed by Brown, Preston and Singleton [32]. The results of the theories

largely affirm the aforementioned truncation for the limits of b, especially for weakly coupled plasmas.

An area of possible contention arises as one approaches a strongly coupled plasma. However, in this

case the usual 1/ ln Λ expansion is no longer valid. One must use a fundamentally different approach to

deal with strongly coupled plasmas that is not based on the large magnitude of Λ ∼ nλ3
D. It must also

be quantum mechanical because the plasma density is necessarily large, and interactions close, in this
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regime. Conventionally, part of the definition of “plasma” has been that there must be many particles

in a Debye sphere: 4πnλ3
D � 1 [33]. Thus, at least according to this conventional definition, strongly

coupled plasmas are not plasmas at all. In the remainder of this work, we will be concerned only with

conventional weakly coupled plasmas.

1.2 Previous Theories for Unstable Plasmas

Next, we turn to the topic that will be the focus of this work: scattering in unstable plasmas. The bulk

of theory in this area is concentrated on turbulence, which assumes that fluctuation amplitudes are so

large that they dominate scattering processes and also that they have ceased to grow due to nonlinear

saturation mechanisms that arise when large amplitude fluctuations interact with one another. In

turbulence theories, fluctuations with small wavenumber (long wavelength) are typically unstable and

grow, but quickly break apart due to nonlinear interactions causing a cascade to larger and larger

wavenumbers. At large enough wavenumbers, these fluctuations subsequently dissipate and transfer

their energy back to the plasma. Such highly nonlinear states are what is typically studied because they

are common in many astrophysics and fusion applications where strongly growing fluid instabilities are

present. These instabilities are often absolute in the sense that they do not convect while they grow.

Convective instabilities have a finite group velocity and thus propagate while they grow. Often these

will convect out of the region of interest before reaching nonlinear amplitudes. Absolute instabilities,

on the other hand, grow in time at each fixed spatial location and quickly reach large amplitudes where

nonlinear saturation effects become important.

In this work we will be mainly concerned with fluctuations that do not interact with one another in

a nonlinear way. This is not to say that the theory is linear, because the collision operator is a nonlinear

expression in which instabilities can “feed back” to alter the “equilibrium” distribution function and

change the instability growth rate. However, evolution of the equilibrium is assumed to happen over

space and time scales much longer than those of fluctuations. Such approaches are often said to use a

quasilinear approximation, although the term “quasilinear theory” is associated with the specific theory

that we describe in the next section. Theories based on this new approach are best applied to plasmas

with convective instabilities that either propagate out of the plasma, or region of interest, or modify
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the equilibrium distribution to reduce the instability amplitude before nonlinear interactions between

the fluctuations themselves become prominent. In this section we summarize previous theories in this

area, which are commonly classified as theories of weakly unstable plasma.

1.2.1 Quasilinear Theory

The most prominent theory describing weakly unstable plasma is quasilinear theory. Quasilinear theory

is considered a “collisionless” theory because it is based on the Vlasov equation [34]

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

E · ∂fs
∂v

= 0, (1.109)

which is the same as the kinetic equations from section 1.1, but with the collision operator set equal to

zero. However, it is concerned with deriving an “effective” collision operator that describes scattering

by wave-particle interactions in weakly unstable plasma.

Quasilinear theory was first developed by Vedenov, Velikhov and Sagdeev [8, 9] and independently

by Drummond and Pines [10]. Other notable early references on quasilinear theory are Bernstein

and Englemann [35] and Vedenov and Ryutov [36]. A detailed derivation of quasilinear theory is

provided in section 3.1. The theory is based on separating fs such that fs = fs,o + fs,1 in which fs,o

is essentially stationary on the shorter time and spatial scales of the fluctuating component fs,1. It

is assumed that only electrostatic fluctuations are present (although one can generalize the theory to

include electromagnetic fluctuations). The result is the diffusion equation

∂fs,o
∂t

+ v · ∂fs,o
∂x

=
∂

∂v
· Dv ·

∂fs,o
∂v

,

in which the velocity-space diffusion coefficient is

Dv =
q2
s

m2
s

8π
∑

j

∫
d3k

kk

k4

γjEql
j (k)

[(ωR,j − k · v)2 + γ2
j ]
.

Here the subscript j represents the unstable modes and the spectral energy density is defined as

Eql
j (k) =

|Ê1(k, t = 0)|2
(2π)3V

e2γjt

8π
.

We will study the quasilinear equation in detail in chapter 3. The salient features to notice here

are that: (a) it is a diffusion equation; (b) it does not depend explicitly on each species in the plasma,
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but only on the fluctuation spectrum (i.e. k-dependence) and its initial amplitude; and (c) the fluc-

tuation source is taken as an input via the initial fluctuation amplitude |Ê1(k, t = 0)|2, which must

be determined external to the theory. Fluctuations in conventional quasilinear theory can be from any

electrostatic source, be it internally generated in the plasma, or from an externally applied wave. In

developing a kinetic theory, we will be interested in instabilities that arise internal to a plasma.

1.2.2 Kinetic Theories With Instabilities

Kinetic theories of weakly unstable plasmas have been developed by Friemann and Rutherford [5] and

Rogister and Oberman [6, 7]. Unlike quasilinear theory, these kinetic approaches are not based on

the Vlasov equation. Instead they develop a collision operator that accounts for both particle-particle

and wave-particle interactions. This basic idea is similar to what we will use in chapter 2 of this

work to develop a collision operator, but our results differ substantially from previous theories due to

specification of (or lack of specification of) the source of electrostatic fluctuations.

Rogister and Obermann [6, 7] used a discrete-particle approach, similar to what we will use in

section 2.1, to derive a kinetic theory for weakly unstable plasmas. Their result is a collision operator

that consists of a sum of terms. The part of this sum that describes particle-particle scattering is

the Lenard-Balescu equation and the rest describes wave-particle interactions. The salient difference

between Rogister and Obermann’s result and what we derive in chapter 2.1 is that they do not specify

a source of fluctuations, while we will associate the fluctuation source with discrete particle motion in

the plasma. As a result, the Rogister-Obermann theory requires external specification of the fluctuation

source; in a similar way to how quasilinear theory requires specification of |E1(k, t = 0)|2. The initial

fluctuation amplitude that must be specified in their theory comes about as Ik(0) in equation (22) of

reference [6].

Friemann and Rutherford [5] used a BBGKY hierarchy method, similar to what we will use in section

2.2, to derive a kinetic theory for weakly unstable plasmas. They focused on nonlinear aspects such as

mode coupling between unstable waves that enter the kinetic equation at higher order in the hierarchy

expansion than we consider in this work. The part of their collision operator that described collisions

between particles and collective fluctuations also depended on an initial fluctuation level that must be
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determined external to the theory, just like the the Rogister-Oberman theory and quasilinear theory.

Again, this is the main distinction between previous work and our approach.

1.2.3 Considerations of the Source of Fluctuations

Consideration of the discrete particle source of fluctuations in a plasma was first provided by Kent and

Taylor [11] in 1969 (after the Rogister-Oberman, Friemann-Rutherford and quasilinear theories had been

developed). Kent and Taylor used the WKB approximation to calculate the amplification of convective

fluctuations from discrete particle motion. They focused on describing the fluctuation amplitude, rather

than a kinetic equation for particle scattering, and emphasized drift-wave instabilities in magnetized

inhomogeneous systems.

Baldwin and Callen derived a kinetic equation (collision operator) accounting for the discrete particle

source of fluctuations and their effects on instability-enhanced collisional scattering for the specific case

of loss-cone instabilities in magnetic mirror devices [12]. In the present work, we consider electrostatic

instabilities in unmagnetized plasmas. However, the qualitative feature that the collision frequency due

to instability-enhanced interactions scales as the product of δ/ ln Λ and the energy amplification due to

fluctuations [exp(2γt)] is common to both. Here δ is typically a small number ∼ 10−2 − 10−3, which

depends on the fraction of wave-number space that is unstable. Although the Baldwin-Callen paper

describes a specific example instability in magnetized plasmas, it has much in common with the present

work because it developed a kinetic equation through a self-consistent treatment of fluctuations arising

internal to the plasma from discrete particle motion.

1.3 Advantages of the Approach Taken in This Work

As section 1.2 mentions, the advantage of the kinetic theory developed in chapter 2 of this work is

that it self-consistently accounts for a discrete particle source of fluctuations – which is the source

whenever instabilities arise internal to a plasma. Sections 1.2.1 and 1.2.2 described previous kinetic

and quasilinear theories where the collision operators required inputing the amplitude and spectrum of

the fluctuation source (|E1(k, t = 0)|2 in the quasilinear theory). These general formulations have the

advantage that they can, in principle, accommodate whatever electrostatic fluctuation source one can
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input; be it externally applied waves (e.g. from an antenna) or instabilities that are excited internal to

the plasma. They have the disadvantage that the source fluctuation spectrum is often unknown. When

these theories (especially quasilinear theory) are applied to situations where instabilities are excited

internally, the source spectrum is often taken as a constant with an amplitude characteristic of the

thermal fluctuation level. However, in these situations the source is due to discrete particles, and we

will see in section 3.3 that the source fluctuation spectrum is significantly more complicated than is

typically assumed (in particular it has a wave-number dependence that is determined by the instability).

This issue is important for many applications to which quasilinear theory is applied. For example, the

bump-on-tail instability is a textbook problem [37] where quasilinear theory is applied to an internally

generated instability with a discrete particle source of fluctuations.

Aside from explicitly determining |E1(k, t = 0)|2 for a discrete particle source, the collision operator

we derive has other important distinguishing features. One of these is that it captures the effects of

collisions in both stable and unstable plasmas (the kinetic theories of Rogister and Oberman [6] and

Frieman and Rutherford [5] also do this; quasilinear theory does not). The result is a collision operator

that consists of the sum of a stable plasma part (the Lenard-Balescu operator) and an instability-

enhanced part (the new term, which we call the instability-enhanced operator). It can thus describe

stable or unstable plasmas where one or the other term dominates, as well as marginally stable plasmas

where the two terms can be comparable in magnitude.

Another distinguishing feature is that the resultant total collision operator (both the Lenard-Balescu

and instability-enhanced terms) can be written as the sum of component collision operators for the

interactions between individual species: C(fs) =
∑
s′ C(fs, fs′) in which s is the test species and s′ are

all the plasma species (including s itself). Neither quasilinear theory nor the previous kinetic theories

have this feature; in section 3.5 we show that it requires specification of the discrete particle source

of fluctuations. It is an important feature because in many applications one is interested not only in

the total collisional interaction, but also in the collisional interaction between two (or more) particular

species. For example, in the Langmuir’s paradox problem we will be interested in electron-electron

collisions and in the multi-ion-species Bohm problem in s − s′ collisions where each is an ion species

with a different mass (or charge).

We will see in chapter 2 that the component collision operators have the Landau form with both
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diffusion and drag components. In section 2.3, we show that the total collision operator has only a

diffusion component because the sum of the drag terms over all s′ species cancel out. However, the drag

term is an important part of the component interaction, and this cannot be described by any previous

theory. In section 3.4 we show that the ability to resolve component collisions leads to more restrictive

conservation laws than quasilinear theory obeys, such as momentum lost by species s due to collisions

with s′ is gained by s′. It is also an important feature required to show that the unique equilibrium

for collisions between any two species are Maxwellians with equal flow speeds and temperatures. This

property will be essential in the Langmuir’s paradox application. It is not, however, a property of the

previous quasilinear or kinetic theories of unstable plasmas.

1.4 Application to Langmuir’s Paradox

Langmuir’s paradox is, perhaps, the oldest unsolved problem in plasma physics. In 1925, while devel-

oping the gas-filled incandescent lamp, Langmuir measured the electron distribution function in a 3 cm

diameter discharge to be Maxwellian at all energies he could diagnose with an electrostatic probe (in

excess of 50 eV) [13]. This was a surprising result because electrons with energy greater than the sheath

potential drop, e∆φs ≈ −Te ln
√

2πme/Mi (≈ 5Te for mercury), quickly escape the plasma and are

lost to the boundary walls. Langmuir’s experiment was a filament discharge creating a mercury plasma

with electron (plasma) density ne ≈ 1011 cm−3, neutral density ≈ 1013 cm−3 (0.3 mTorr), and ion and

electron temperatures of Ti ≈ 0.03 eV and Te ≈ 2 eV respectively. For these parameters, the electron-

electron collision length, using stable plasma theory, is approximately 30 cm which is much larger than

the plasma length. Thus, one should expect the electron distribution to be essentially absent of par-

ticles beyond the 10 eV energy corresponding to the sheath. Langmuir also pointed out that he could

attribute the vast majority of ionization events in the discharge to be due to the very same electrons on

the Maxwellian tail (rather than the filament-emitted electrons, which energized his plasma) that should

be missing according to the theory [13]. Since these electrons should rapidly escape, it was inexplicable

how his discharge remained lit, and it suggested that some unknown mechanism for electron scattering

was present. His measurements were named “Langmuir’s paradox” by Gabor in 1955 [15], and they have

remained a serious discrepancy in the kinetic theory of gas discharges.
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In chapter 4, we consider details of the plasma-boundary transition in order to explain this paradox.

This transition consists of the sheath potential drop, ∆φs, over a Debye length-scale λDe ≡
√
Te/4πene

region at the boundary surface, but also a much weaker presheath potential drop that extends further

into the plasma. In the presheath, the electric potential typically drops e∆φps ≈ Te/2 over a distance

characteristic of the ion-neutral collision mean free path λi/n � λDe. The presheath was shown by

Bohm [38] to be necessary in order to accelerate the ion fluid speed to a supersonic value Vi ≥ cs ≡
√
Te/Mi at the sheath edge. We show that in Langmuir’s discharge, ion-acoustic instabilities are present

in the presheath which lead to an instability-enhanced collective response, and hence fluctuations, that

cause electron-electron scattering to occur much more frequently than it does by Coulomb interactions

alone. The calculation predicts an electron-electron collision length at least 100 times shorter than that

calculated using stable plasma theory and the result is consistent with Langmuir’s measurements. Our

theory is well suited to this problem because the ion-acoustic instabilities are convective modes that

travel through the presheath and are lost from the plasma while still in a linear growth regime.

Features of the kinetic theory that are essential for application to this problem are the ability to

describe component interactions (electron-electron interactions in this case) and that Maxwellian is the

unique equilibrium solution to the electron-electron component collision operator. These properties are

both satisfied by the kinetic theory of chapter 2, but not by previous quasilinear or kinetic theories,

which we will show in chapter 3.

1.5 Application to Determining the Bohm Criterion

A second outstanding problem that we apply our plasma kinetic theory to is determining the Bohm

criterion for multiple-ion-species plasmas. This means determining the flow speed of each ion species,

Vi, as it leaves a plasma and enters a sheath. Generalizing the conventional Bohm criterion to a plasma

with multiple ion species (distinguished by different masses or charges) yields [39–41]

∑

i

nio
neo

c2s,i
V 2
i

≤ 1. (1.110)

Even when assuming equality holds, which is expected [42], equation 1.110 has an infinite number of

possible solutions for more than one ion species. Finding the correct physical solution is what we mean
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by determining the Bohm criterion. Previous theoretical work on this topic [43–47] predicts that the

solution of equation 1.110 is that each ion species obtains its individual sound speed at the sheath edge:

Vi = cs,i =
√
Te/Mi. However, experiments using laser-induced fluorescence have measured the speeds

to be significantly different than this and much closer to another solution of equation 1.110, which is

that each species obtains the same “system” sound speed

cs ≡
√∑

i

ni
ne
c2s,i

at the sheath edge [48–50]. Additional experimental evidence has been provided by ion-acoustic wave

measurements [51, 52]. Oksuz et al [52] have measured that for two ion species plasmas the ion-acoustic

wave speed at the sheath edge is typically twice what it is in the bulk plasma. Taking this observation

as an ansatz, Lee et al [53] have shown that it implies each ion species enters the sheath at the common

system sound speed. However, no physical mechanism has been suggested by which this solution is

established.

In chapter 6, we show that when the presheath electric field drives the speeds of each ion species

apart, due to their mass difference, a two-stream instability arises when their relative speed exceeds

a critical value characteristic of their thermal speeds. As this occurs, a strong instability-enhanced

collisional friction arises which pushes the speeds together. We calculate this instability-enhanced

friction using our collision operator accounting for the two-stream instabilities. This shows that the

two-stream instabilities create a very stiff system whereby if the relative flow between ion species exceeds

the threshold value, the friction rapidly dominates the momentum balance and forces the speeds back

to the critical relative flow. This provides a relation between the ion flow speeds, and thus determines

which solution of equation 1.110 is obtained.

The expression we obtain for the critical relative flow speed depends on the relative densities of

the ion species. It has the property that for very different densities, instabilities are not expected in

the presheath. In this case, the difference in flow speeds is simply the difference in sound speeds of

each species. For similar densities, however, the two-stream instability is strong when the difference in

flow speeds exceeds a critical value that is on the order of the ion thermal speeds. In this case, the

difference in flow speeds can be significantly smaller than it is when the density ratio of ion species is

very large or small. Our theoretical predictions have been measured independently by Yip, Hershkowitz
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and Severn [54] and they are in very good agreement with the experimentally measured values. We

show this comparison in section 6.5.

The most important physical properties of the kinetic theory in this application are the ability to

describe individual component collision operators and momentum conservation for collisions between

individual species. Again, these properties are obeyed in the kinetic theory of chapter 2, but not by

previous theories. It is also important that the fluctuation source be determined in order to calculate

the expected collisional friction between species.
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Chapter 2

Kinetic Theory of Weakly Unstable

Plasma

This chapter provides two derivations of a plasma kinetic equation that includes the effects of conven-

tional Coulomb collisions between particles as well as wave-particle collisions that arise from instabilities

in a linear growth regime. The two derivations are based on fundamentally different approaches to de-

scribing the statistical evolution of a large number of interacting particles. The derivation in section 2.1

uses the “dressed test particle” approach. This is based on an appropriate ensemble average of the exact

Klimontovich equation which describes the evolution of the 6-N dimensional distribution function of

N particles in real and velocity phase-space. “Dressed” means that the Coulomb electric field of each

particle is shielded due to polarization that is described by the plasma dielectric. The derivation in

section 2.2 uses the statistical approach of the BBGKY hierarchy. This is based on building a hierarchy

of equations from the exact Liouville equation which describes the evolution of the plasma described

as a single system, or point, in a 6-N dimensional phase space. Each method leads to the same plasma

kinetic equation, which includes the instability-enhanced collisional scattering.

2.1 Dressed Test Particle Approach

The dressed test particle approach, first developed by Dupree [55], starts by defining an exact distribu-

tion function for a particular species s as the sum over the location of each particle in a six-dimensional

phase-space for velocity and position

Fs ≡
Ns∑

i

δ[x− xi(t)] δ[v − vi(t)]. (2.1)
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Here x and v are the phase space coordinates while xi and vi represent the position of particle i (of

species s) in phase space. Fs is a spiky function that is zero everywhere except where there is a particle.

There are Ns of these spikes and in a typical plasma Ns is an extremely large number (∼ 1010 for a low

temperature laboratory plasma). Different species may be classified as particles with different charges

and masses in the plasma. A simple example would be to classify electrons and protons as separate

species in an electron-proton plasma.

2.1.1 Klimontovich Equation

An equation of motion for the distribution function Fs, called the Klimontovich equation [56], can be

derived by taking a partial time derivative of Fs

∂Fs
∂t

=
∂

∂t

Ns∑

i=1

δ[x− xi(t)]δ[v − vi(t)] (2.2)

=

Ns∑

i=1

(
dxi
dt
· ∂

∂xi
+
dvi
dt
· ∂

∂vi

)
δ[x− xi(t)]δ[v − vi(t)].

Neglecting gravity, particles are influenced only by the total electric and magnetic fields at each location,

so the free particle trajectories are given by the Lorentz force equation, dxi/dt = vi and dvi/dt =

(qi/mi)
[
E + (vi/c) ×B

]
. The electric and magnetic fields may consist of both fields produced by the

charged particles in the plasma as well as externally applied fields; for example E = E(xi, t) + Eapplied.

Under the assumption of only electric and magnetic forcing fields, equation 2.2 can be written

∂Fs
∂t

= −
Ns∑

i=1

{
vi ·

∂

∂xi
− qi
mi

[
E(xi, t) +

vi
c
×B(xi, t)

]
· ∂

∂vi

}
δ
[
x− xi(t)

]
δ
[
v − vi(t)

]
. (2.3)

Since the delta functions are zero everywhere except x = xi and v = vi, we can rearrange this

equation with xi ↔ x and vi ↔ v. Also, we assume that particles with different charge and/or mass

are classified as different species. With these, the Klimontovich equation for species s can be written

dFs
dt

=
∂Fs
∂t

+ v · ∂Fs
∂x

+
qs
ms

(
E +

v

c
×B

)
· ∂Fs
∂v

= 0 (2.4)

in which E = E(x, t), B = B(x, t). The quantity d/dt is the convective derivative in the six-dimensional

phase space (x,v). The fact that dFs/dt = 0 shows that along the free particle trajectories (character-

istics) Fs is constant.
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2.1.2 Plasma Kinetic Equation

The plasma kinetic equation can be derived from the Klimontovich equation 2.4 by an appropriate

average of Fs that separates the ensemble averaged and discrete particle components of Fs, Fs = fs+δfs

where fs ≡ 〈Fs〉 and 〈δfs〉 = 0. Here, the bracket denotes an ensemble average. Analogous notation

is used for the electric and magnetic fields, e.g., E → E + δE. The desired plasma kinetic equation

is obtained by putting these definitions into the Klimontovich equation, then ensemble averaging the

result. We will then use a linear closure scheme to determine the particle-discreteness distribution δfs

[22, 33].

Ensemble averaging the Klimontovich equation yields the plasma kinetic equation

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(
E +

v

c
×B

)
· ∂fs
∂v

= − qs
ms

〈(
δE +

v

c
× δB

)
· ∂δfs
∂v

〉
= C(fs) (2.5)

in which C(fs) is the total collision operator. The collision operator can be written in terms of the

collisional current Jv

C(fs) = − ∂

∂v
· Jv where Jv ≡

qs
ms

〈(
δE +

v

c
× δB

)
δfs

〉
. (2.6)

In equation 2.5 we have used the notation 〈E〉 = E and 〈B〉 = B.

Subtracting the plasma kinetic equation 2.5 from the Klimontovich equation 2.4 gives a kinetic

equation for the perturbed distribution function

[
∂

∂t
+ v · ∂

∂x
+

qs
ms

(
E +

v

c
×B

)
· ∂
∂v

]

︸ ︷︷ ︸
Vlasov operator

δfs = − qs
ms

(
δE +

v

c
× δB

)
· ∂fs
∂v︸ ︷︷ ︸

linear driving term

(2.7)

+
qs
ms

[〈(
δE +

v

c
× δB

)
· ∂δfs
∂v

〉
−
(
δE +

v

c
× δB

)
· ∂δfs
∂v

]

︸ ︷︷ ︸
nonlinear driving term

.

Equation 2.7, along with Maxwell’s equations, provides a closed system that exactly determines the

collision operator. However, in practice this would be extremely difficult to solve because equation 2.7

is a very complicated nonlinear equation.

The way we proceed is to neglect the nonlinear terms on the right side of equation 2.7 under the

assumption that O(δ) terms are much smaller than the ensemble averaged quantities: thus δEfs �

δEδfs, etc. This leaves

∂δfs
∂t

+ v · ∂δfs
∂x

+
qs
ms

(
E +

v

c
×B

)
· ∂δfs
∂v

= − qs
ms

(
δE +

v

c
× δB

)
· ∂fs
∂v

. (2.8)
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In a stable plasma, it can be shown that δfs/fs ∼ O(Λ−1) � 1 where Λ ∼ nλ3
D � 1 is the plasma

parameter [57]. Thus, for a stable plasma, neglecting the nonlinear terms is an excellent approximation.

Here we will be interested in unstable plasmas, and will find that in this case the small parameter is

multiplied by a factor characteristic of the amplification of collisional scattering due to instabilities.

Thus, the strength of this amplification factor will ultimately determine the limitation of our kinetic

theory. We refer to such large instability amplitudes as nonlinear because they imply that the nonlinear

terms, of O(δ2), are at least comparable in magnitude to the linear terms, of O(δ), in equation 2.7.

When this happens, nonlinear wave saturation mechanisms are expected to become important.

Even with the linearized approximation, solving equation 2.8 along with Maxwell’s equations for the

collision operator of equation 2.6 presents a very complicated problem. In this work we will only be

interested in electrostatic instabilities. Thus, we take δB = 0 and the only relevant Maxwell equation

becomes Gauss law; this elimination of electromagnetic instabilities provides a considerable simplifica-

tion. Aside from in appendix B, we also assume that there is no “ensemble averaged,” i.e., equilibrium,

electric or magnetic fields, 〈E〉 = 0 and 〈B〉 = 0. This is also assumed in Lenard-Balescu theory. How-

ever, plasmas often do generate equilibrium fields through currents and self-polarization in the plasma,

as well as from externally applied fields. In fact, in the applications portion of this work (chapters 4, 5

and 6) weak equilibrium fields will be expected. Appendix B provides derivations for collision operators

that include the effects of equilibrium electric and magnetic fields (these still assume electrostatic fluc-

tuations). The results of appendix B show that equilibrium electric fields modify the collision operator

when the gradient scale length of the potential is at least as short as k−1 where k−1 is the relevant

unstable wavelength (for unstable plasmas) or the Debye length (for stable plasmas). For equilibrium

magnetic fields, modifications to the analysis of this chapter occur when the gyroradius is comparable

to, or smaller than, k−1. The weak fields present in the applications we are interested in in this disser-

tation result in negligible modifications to the collision operator derived in this chapter; see appendices

B.2 and B.3 for details. For other applications, particularly where strong magnetic fields are present,

the collision operator may be modified and the methods of appendix B may be useful. The theory of

how equilibrium fields modify collision operators is a largely unexplored area of plasma kinetic theory.
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Applying the aforementioned assumptions to equation 2.5, the plasma kinetic equation for electro-

static fluctuations in equilibrium field-free plasma can then be written

dfs
dt

=
∂fs
∂t

+ v · ∂fs
∂x

= C(fs) (2.9)

where the collision operator and collisional current are now

C(fs) ≡ −
∂

∂v
· Jv, and Jv ≡

qs
ms

〈
δE δfs

〉
. (2.10)

Equation 2.7 can now be written

∂δfs
∂t

+ v · ∂δfs
∂x

= − qs
ms

δE · ∂fs
∂v

. (2.11)

In section 2.1.3 we will use equation 2.11 along with Gauss’s law,

∂

∂x
· δE = 4π

∑

s

qs

∫
d3v δfs, (2.12)

to derive a collision operator, C(fs), for plasmas that are either stable or unstable in a finite space-time

domain. This approach is formally valid as long as

∣∣∣∣δE ·
∂δfs
∂v
−
〈
δE · ∂δfs

∂v

〉∣∣∣∣�
∣∣∣∣δE ·

∂fs
∂v

∣∣∣∣. (2.13)

In section 2.5 we show that for ω � kvTe this is equivalent to qδφ/Te . 1. Absolute instabilities must

be confined to a finite time domain and convective instabilities to a finite space domain. If instabilities

are allowed to grow over a long enough domain to violate equation 2.13, then nonlinear or turbulence

methods must be used [58].

2.1.3 Collision Operator Derivation

To solve for the collision operator, we apply a combined Fourier transform in space and Laplace trans-

form in time according to the definitions [for an arbitrary function g(x, t)]

FL{g(x, t)} = ĝ(k, ω) =

∫
d3x

∫ ∞

0

dte−i(k·x−ωt)g(x, t), (2.14)

with the inverse given by

(FL)−1{ĝ(k, ω)} = g(x, t) =

∫
d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2π
ei(k·x−ωt)ĝ(k, ω). (2.15)
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We assume that the equilibrium fs evolves on much longer space and timescales (x̄, t̄) than δfs; thus,

fs is independent of the short space and time scales (x, t) of the transform defined in equations 2.14

and 2.15. Applying this combined transform to equation 2.11 yields

δf̂s(k,v, ω) =
i δf̃s(k,v, t

′ = 0)

ω − k · v − qs
ms

k · ∂fs
∂v

δφ̂

ω − k · v , (2.16)

where the “hat” denotes Fourier and Laplace transformed variables and the “tilde” denotes only Fourier

transformed variables. Here δfs(t = 0) is the initial condition determined from the “exact” distribution

δfs = Fs − fs. We have also written δE in terms of the electric potential (since we assume only

electrostatic fluctuations are present): δE(x, t) = −∂δφ(x, t)/∂x.

Substituting equation 2.16 into the Fourier-Laplace transform of Gauss’s law, equation 2.12, leads

to

δφ̂(k, ω) =
∑

s

4πqs
k2ε̂(k, ω)

∫
d3v

i δf̃s(t = 0)

ω − k · v , (2.17)

where

ε̂(k, ω) = 1 +
∑

s

4πq2
s

k2ms

∫
d3v

k · ∂fs/∂v

ω − k · v (2.18)

is the dielectric function for electrostatic fluctuations in equilibrium-field-free plasma. Equation 2.17

can be simplified by substituting in the combined transform of δfs(t = 0) = Fs(t = 0)− fs, which is

δf̃s(t = 0) =

N∑

i=1

e−ik·xioδ(v − vio)− (2π)3δ(k)fs, (2.19)

where vio ≡ vi(t = 0), to give

δφ̂(k, ω) =
N∑

j=1

4πqj
k2ε̂(k, ω)

i e−ik·xjo

ω − k · vjo
. (2.20)

Here we have used for the initial conditions that Fs satisfies Fs(t = 0) =
∑
j δ(x− xjo)δ(v − vjo) and

applied the assumption that fs is essentially uniform in space relative to spatial scales of δfs, which

implies that the Fourier terms of fs are given by (2π)3δ(k)fs. The term involving fs in equation 2.19

produces no contribution to δφ because of quasineutrality:

∑

s

qs

∫
d3v

δ(k)fs
ω − k · v =

δ(k)

ω

∑

s

nsqs = 0. (2.21)

Using equations 2.19 and 2.20, we find an expression for δf̂s(k,v, ω) from equation 2.16:

δf̂s = − i(2π)3δ(k)fs
ω − k · v +

N∑

i=1

[
ie−ik·xioδ(v − vio)

ω − k · v − 4πqsqi
msk2ε̂(k, ω)

ik · ∂fs/∂v

ω − k · v
e−ik·xio

ω − k · vio

]
, (2.22)
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which along with equation 2.20 determines the transform of the collision operator.

Since the transform of the collisional current, Ĵv, is the ensemble average of the convolution of

electric field and distribution perturbations, it is convenient to define different transform variables for

δÊ and δf̂s. Keeping the notation of equation 2.22 the same and changing that of equation 2.20, we

write

δÊ(k′, ω′) =

N∑

j=1

4πqj
k′2ε̂(k′, ω′)

k′e−ik
′·xjo

ω′ − k′ · vjo
. (2.23)

Then the transformed collisional current is defined by

Ĵv(k,k
′,v, ω, ω′) =

qs
ms

〈
δÊ(ω′,k′) δf̂s(ω,k,v)

〉
, (2.24)

where the ensemble average is [22]

〈. . .〉 ≡
N∏

l=1

∫
d3xlod

3vlo
fl(vlo)

(nV )N
(. . .), (2.25)

in which n denotes density and V denotes volume.

Taking the ensemble average of the product of equations 2.22 and 2.23 gives an array of terms:

Ĵv =
qs
ms

N∏

l=1

∫
dΓl

[ N∑

j=1

4πqj
k′2ε̂(k′, ω′)

k′e−ık
′·xjo

ω′ − k′ · vjo

]

︸ ︷︷ ︸
j

× (2.26)

×
{ N∑

i=1

ie−ık·xio

ω − k · v

[
δ(v − vio)−

4πqsqi
msk2ε̂(k, ω)

ik∂fs/∂v

ω − k · vio

]

︸ ︷︷ ︸
i

− i(2π)3fs(v)δ(k)

ω − k · v

}

in which

dΓl ≡
d3xlod

3vlo
(nV )N

fl(vlo). (2.27)

This array can be written term-by-term as

Ĵv =
qs
ms

∫
dΓ1

∫
dΓ2 . . .

∫
dΓN

{
1× 1 + 1× 2 + . . .+ 1× N (2.28)

+ 2× 1 + 2× 2 + . . .+ 2× N

...

+ N× 1 + N× 2 + . . .+ N× N

+ [1 + 2 + . . .+ N]

[
−i(2π)3δ(k)fs(v)/(ω − k · v)

]}
.
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For unlike particle terms, i 6= j (the off-diagonal terms in equation 2.28), the xlo integral yields

(2π)3δ(k′). Since the rest of these terms tend to zero in the limit that k′ → 0, the“unlike”particle terms

vanish upon inverse Fourier transforming. This can be shown explicitly by first inverting the Laplace

transforms, then using the definition of ε̂ from equation 2.18. The k′ integral becomes h(k′)k′δ(k′),

where h(k′) → c in which c is a constant as k′ → 0. Thus, these terms are zero upon integrating over

k′. For the same reason, the terms in the bottom row of equation 2.28 vanish as well. We are then

left with only “like” particle correlations (i = j ) after the ensemble average. After the trivial N − 1

integrals where i 6= l, we are left with

Jv =
4πi qsk

′

ms k′2ε̂(k′, ω′) (ω − k · v)

N∑

i=1

qi
nV

∫
d3vio

fio(vio)

ω′ − k′ · vio
δ(v − vio)

∫
d3xioe

−i(k+k′)·xio (2.29)

− (4π)2q2
s ik

′k · ∂fs/∂v

m2
s k

2k′2 ε̂(k′, ω′)ε̂(k, ω)(ω − k · v)

N∑

i=1

q2
i

nV

∫
d3vio

fio(vio)

(ω′ − k′ · vio)(ω − k · vio)

∫
d3xioe

−i(k+k′)·xio

The xio integrals in equation 2.29 are

∫
d3xio exp

[
−i(k + k′) · xio

]
= (2π)3δ(k + k′), (2.30)

and vio is a dummy variable of integration. The sum over all particles becomes simply the total number

of particles in the volume,
∑N
i=1 /V = N/V = n. Labeling vio = v′ and

∑
l q

2
l fl =

∑
s′ q

2
s′fs′ , and

noting that the terms with δ(v − vlo) obey
∫
d3vlofl(vlo)δ(v − vlo) =

∫
d3v′ fs(v′)δ(v − v′) (since the

v is associated with species s not s′), the transformed collisional current is

Ĵv =
4πq2

s

msk2

∫
d3v′

i(2π)3k′δ(k + k′)
ε̂(k′, ω′)(ω′ − k′ · v′)

[
fs(v

′) δ(v − v′)
ω − k · v −

∑

s′

4πq2
s′

k2ms

fs′(v
′) k · ∂fs/∂v

(ω − k · v)(ω − k · v′)ε̂(k, ω)

]
.

(2.31)

Symmetry between the two terms in this expression becomes explicit by evaluating the trivial v′ integral

in the first term, then multiplying this term by ε̂/ε̂ where the numerator is written in terms of equation

2.18, but with the substitutions of the dummy variables v↔ v′ and s↔ s′. This yields

Ĵv =
∑

s′

(4π)2q2
s′q

2
s

msk4

∫
d3v′

i(2π)3k′δ(k + k′)
ε̂(k′, ω′)ε̂(k, ω)(ω − k · v)(ω − k · v′) (2.32)

×
[
fs(v) k · ∂fs′(v′)/∂v′

ms′(ω′ − k′ · v)
− fs′(v

′) k · ∂fs(v)/∂v

ms(ω′ − k′ · v′)

]

+
4πq2

s

msk2

i(2π)3k′δ(k + k′)fs(v)

ε̂(k′, ω′)(ω′ − k′ · v)(ω − k · v)ε̂(k, ω)
.
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The last term in equation 2.32 vanishes upon inverse Fourier transforming because it has odd parity in

k after the k′ integral.

Next, multiplying the first term in equation 2.32 by (ω′ − k′ · v′)/(ω′ − k′ · v′), the term with k′ · v′

in the numerator will vanish upon performing the d3k integrals because it is an odd function of k.

Similarly, for the second term we multiply by (ω′ − k′ · v)/(ω′ − k′ · v), and the k′ · v term vanishes.

Rearraning the result, we find that we can write the collisional current in the “Landau” form [1]

Jv =

∫
d3v′Q(v,v′) ·

(
1

ms′

∂

∂v′
− 1

ms

∂

∂v

)
fs(v)fs′(v

′) (2.33)

where Q is the tensor kernel

Q(v,v′) ≡ (4π)2q2
sq

2
s′

ms

∫
d3k

(2π)3

−ikk

k4
p1(k)p2(k), (2.34)

in which p1 and p2 are defined by

p1(k) ≡
∫ ∞+iσ

−∞+iσ

dω

2π

e−iωt

ε̂(k, ω)(ω − k · v)(ω − k · v′) (2.35)

and

p2(k) ≡
∫ ∞+iσ

−∞+iσ

dω′

2π

ω′e−iω
′t

ε̂(−k, ω′)(ω′ + k · v)(ω′ + k · v′) . (2.36)

Writing Jv in the Landau form of equation 2.33 will be convenient for illuminating the physics embedded

in the collision operator as well as for proving important physical properties of the collision operator in

section 3.4.

The integrals in p1 and p2 can be evaluated along the Landau contour using Cauchy’s integral

theorem to give

p1 = i

[∑

j

e−iωjt

∂ε̂(k, ω)/∂ω|ωj (ωj − k · v)(ωj − k · v′) −
iπδ[k · (v − v′)]
ε̂(k,k · v)

e−ik·v
′t

]
(2.37)

where j denotes each mode, i.e., the dispersion relations, which are the roots of the dielectric function

ε̂(k, ωj) = 0 from equation 2.18. In equation 2.37 we have combined the last two terms which come

from the inverse Laplace transform by using the fact that exp
[
−ik · (v− v′)t

]
is rapidly oscillating for

large t, except at v = v′, so ε̂(k,k · v′) ≈ ε̂(k,k · v). Furthermore, we have identified the relation

− e−ik·v
′t

ε̂(k,k · v′)

(
1− e−ik·(v−v′)t

k · (v − v′)

)
≈ − iπδ[k · (v − v′)]

ε̂(k,k · v)
e−ik·v

′t (2.38)
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where the Dirac delta function definition is strictly correct only in the limit t → ∞. However, it is a

good approximation here because the timescale for variations in fs, is much longer than the timescale

for fluctuations [(k · v)−1 here]. By similar arguments as used in 2.37, equation 2.36 becomes

p2 = i

[∑

j

ω′j e
−iω′

jt

∂ε̂(−k,ω′)
∂ω′

∣∣
ω′
j

(ω′j + k · v)(ω′j + k · v′)
+

eik·vt

ε̂(−k,−k · v)
+
iπk · v′δ[k · (v − v′)]eik·vt

ε̂(−k,−k · v)

]
(2.39)

in which ω′j solves ε̂(−k, ω′) = 0.

Putting the product of equations 2.37 and 2.39 into equation 2.34 gives an integral expression with

six terms in the integrand. One term, which is the product of the last terms from equations 2.37 and

2.39, is an odd function of k and therefore vanishes after integration. Three of the terms are rapidly

oscillating in time ∼ exp(±ik · vt) and provide negligible contributions after integration compared to

the remaining two terms which survive. We are then left with the following expression:

Q =
2q2
sq

2
s′

ms

∫
d3k

kk

k4

[
δ[k · (v − v′)]

ε̂(k,k · v)ε̂(−k,−k · v)
(2.40)

+
i

π

∑

j

ω′je
−iω′

jt

∂ε̂(−k, ω′)/∂ω′
∣∣
ω′
j

(ω′j + k · v)(ω′j + k · v′)
e−iωjt

∂ε̂(k, ω)/∂ω
∣∣
ωj

(ωj − k · v)(ωj − k · v′)

]
.

Equation 2.40 can be further simplified by applying the reality conditions: ε̂(−k,−k · v) = ε̂∗(k,k · v),

where ∗ denotes the complex conjugate, and ωj = ωR,j + iγj (where ωR,j and γj are the real and

imaginary parts of the jth solution of the dispersion relation) obey the properties that ωR,j is an odd

function of k while γj is an even function of k. It follows then that ω′j = −ω∗j , and

∂ε̂(−k, ω′)
∂ω′

∣∣∣∣
ω′
j

= − ∂ε̂∗(k, ω)

∂ω

∣∣∣∣
ωj

. (2.41)

Writing ωj in terms of its real and imaginary parts in the last term of equation 2.40, we find that

since the real part has odd parity in k, it vanishes upon integrating. So, only the imaginary part of ω′j

survives in the second term of equation 2.40, and this term can be written

∑

j

e2γjt

π γj
∣∣∂ε̂(k,ω)

∂ω

∣∣2
ωj

[
γj

(ωR,j − k · v)2 + γ2
j

][
γj

(ωR,j − k · v′)2 + γ2
j

]
. (2.42)

Thus, the collisional kernel can be written as the sum of two terms: Q = QLB +QIE. The first is

the Lenard-Balescu term

QLB =
2q2
sq

2
s′

ms

∫
d3k

kk

k4

δ[k · (v − v′)]∣∣ε̂(k,k · v)
∣∣2 (2.43)
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that describes the conventional Coulomb scattering of individual particles that are Debye shielded due

to the plasma polarization. The second is the instability-enhanced term

QIE =
2q2
sq

2
s′

πms

∫
d3k

kk

k4

∑

j

γj exp
(
2γjt

)

[(ωR,j − k · v)2 + γ2
j ][(ωR,j − k · v′) + γ2

j ]
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

(2.44)

that describes the scattering of particles by collective fluctuations that arise due to discrete particle

motion, and become amplified due to the dielectric nature of the plasma. In the stable plasma limit,

γj < 0, the instability-enhanced interaction term rapidly decays and is entirely negligible, thus returning

the Lenard-Balescu equation. The plasma kinetic equation is then dfs/dt =
∑
s′ C(fs, fs′) where

C(fs, fs′) = − ∂

∂v
·
∫
d3v′ Q ·

(
1

ms′

∂

∂v′
− 1

ms

∂

∂v

)
fs(v)fs′(v

′), (2.45)

with Q given by equations 2.43 and 2.44. We will discuss further how the exp(2γjt) term needs to be

evaluated in the reference frame of the unstable waves (for convective instabilities) in section 2.4.

The small k integration limit (corresponding to large b) is resolved in the Lenard-Balescu equation

2.43 because it accounts for plasma polarization, i.e., Debye shielding. This is a main result of the

generalization that the Lenard-Balescu equation provides over the Landau and Rosenbluth equations

from section 1.1. However, the integral logarithmically diverges in the large k limit because we have

not properly accounted for large-angle scattering when two point particles are in very close proximity

to one another. This was accounted for in the Boltzmann approach, from section 1.13, which showed

that the appropriate cutoff is 1/bmin where bmin is the minimum impact parameter of equation 1.41.

If necessary, the same cutoff would also be appropriate for the instability-enhanced term of equation

2.44 because in either case it describes the interaction between individual particles which is limited

in closeness by bmin. However, equation 2.44 typically does not diverge in either the large or small k

limit because waves are stabilized in these limits; so no cutoff is required. Wave damping mechanisms

typically exist for large k that effectively truncate the upper limit of integration at a value smaller than

1/bmin.

A simplification of equation 2.44 can also be formed for the very common case of weakly growing

instabilities, which satisfy γj � |ωR,j − k · v|. In this case, the v and v′ terms of equation 2.44 can be

approximated using the Lorentzian representation for a Dirac delta function

∆

x2 + ∆2
≈ πδ(x) if

∆

x
� 1. (2.46)
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Applying this approximation to equation 2.44 gives the expression

QIE ≈
∑

j

2q2
sq

2
s′

ms

∫
d3k

kk

k4

π δ[k · (v − v′)] δ(ωR,j − k · v) exp(2γjt)

γj
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

. (2.47)

We will see in section 3.4.7 that equation 2.47 can be very useful for determining the equilibrium state

of a weakly unstable plasma.

An alternative, but equivalent, form for the kernel Q = QLB +QIE (from equations 2.43 and 2.47)

is

Q =
q2
s

ms

∫
d3k

(2π)3
δiẼ(k, t) δiẼ(k, t) δ

[
k · (v − v′)

]
(2.48)

where δiẼ is the inverse Laplace transform of equation 2.23. The equivalence of equations 2.48 and Q

from equations 2.43 and 2.44 can be checked by an analysis similar to what is provided above, including

the neglect of rapidly oscillating “cross” terms in k space, but without the ensemble average. This

alternative form for Q shows explicitly that it is the “discrete particle” electric fields around individual

particles that causes scattering. When instabilities are not present, these fields are the usual Coulomb

fields of the charged particles Debye shielded due to plasma polarization. In this case, scattering

is effectively limited to particles within a Debye sphere of each other. The presence of instabilities,

however, gives rise to a longer range interaction between particles mediated by waves excited through

the plasma dielectric. In this manner, scattering between two particles can reach well beyond a Debye

sphere.

2.2 BBGKY Hierarchy Approach

In section 2.1 we used the Klimontovich equation which accounted for each particle individually in

a six-dimensional position-velocity phase space. Using the test particle approach, which followed the

trajectory of each particle and appropriately averaged the exact distribution, a plasma kinetic equation

was derived. In this section, we use an approach based on the Liouville equation. Instead of considering

each particle individually, the Liouville equation considers all N particles in the plasma to be represented

by a single point in a 6N -dimensional phase space. The phase space consists of the position and velocity

of each particle. In analogy to the density of particles, F , in the 6-dimensional phase space from section

2.1, we will now be concerned with the density of systems, DN , in a 6N-dimensional phase space.
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Reduced distribution functions fi will be defined as integrals of DN over 6(N − i) dimensions of the

phase space. The evolution equations of these reduced distribution functions constitutes the BBGKY

hierarchy, which is named after Bogoliubov [59], Born [60], Green [60], Kirkwood [61, 62], and Yvon

[63]. Ultimately, the evolution equation of f1 is the lowest-order plasma kinetic equation that we are

interested in. However, an exact solution of the f1 equation of the BBGKY hierarchy requires the

solution of the f2 equation which, in turn, requires the f3 solution and so on for all of the fi equations

in the hierarchy; it is not a closed set of equations. The Mayer cluster expansion [64] provides a method

for relating the fi and leads to the formulation for a truncation scheme.

After applying the truncation suggested by the Mayer cluster expansion, the BBGKY hierarchy

reduces to two equations; one for f1, which is analogous to f from section 2.1, and one for P which is

the pair correlation and is analogous to δf from section 2.1. A solution to the P evolution equation is

obtained and leads to a collision operator for the f1 equation that is equivalent to the one derived in

section 2.1. Like section 2.1, the new part of this derivation is to allow for instabilities; the Lenard-

Balescu term has been derived from the BBGKY hierarchy before [22, 33, 57].

2.2.1 The Liouville Equation and BBGKY Hierarchy

Consider a plasma with N particles. The present dynamical state of the plasma, referred to here as

a system, is the point (x1,x2, . . . ,xN ; v1,v2, . . . ,vN ) which we will denote as (X1,X2, . . . ,XN ) where

Xi = (xi,vi) is a six-dimensional phase-space vector. The location of this point is, of course, dependent

on time as the individual particles move around. The individual particle trajectories are

dxi(t)

dt
= vi(t) and

dvi(t)

dt
= ai. (2.49)

Let DN (X1,X2, . . . ,XN ) ≥ 0 denote the probability distribution function of the system in the 6N-

dimensional phase space. We assume that no states are created or destroyed, so the system evolves

from one phase space position [X1(t1),X2(t1), . . . ,XN (t1)] to another [X1(t2),X2(t2), . . . ,XN (t2)] in

time. Thus, the probability of finding the system in some given state must be conserved

DN [X1(0), . . . ,XN (0)]d6X1(0) . . . d6XN (0) = DN [X1(t), . . . ,XN (t)]d6X1(t) . . . d6XN (t). (2.50)

Since the phase space coordinates themselves do not depend on time, d6Xi(t) = d6Xi(0), the probability
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distribution satisfies

DN [X1(0),X2(0) . . . ,XN (0)] = DN [X1(t),X2(t) . . . ,XN (t)]. (2.51)

This is called Liouville’s theorem, see e.g. [33]; it states that the probability distribution function for

the system, DN , is constant along the path that the system follows in phase space. Taking the total

time derivative of equation 2.51 gives

d

dt
DN [X1(0), . . . ,XN (0)]

︸ ︷︷ ︸
=0

=
d

dt
DN [X1(t), . . . ,XN (t)]. (2.52)

Using the chain rule, the total time derivative can be written

d

dt
=

∂

∂t
+
∂X1

∂t
· ∂

∂X1
+ · · ·+ ∂XN

∂t
· ∂

∂XN
(2.53)

=
∂

∂t
+

N∑

i=1

[
vi ·

∂

∂xi
+ ai ·

∂

∂vi

]
.

Putting equation 2.53 into equation 2.52 gives the evolution equation for the probability density of the

system, called the Liouville equation 1 [33],

∂DN

∂t
+

N∑

i=1

[
vi ·

∂DN

∂xi
+ ai ·

∂DN

∂vi

]
=
dDN

dt
= 0. (2.54)

Applying the Coulomb approximation, we assume no applied electric or magnetic fields, and neglect

the magnetic fields produced by charged particle motion. For more on the effects of equilibrium fields,

see appendix B. Since we only consider forces due to the electrostatic interaction between particles, the

acceleration vector can be identified as

ai =
∑

j,j 6=i
aij(xi − xj) =

∑

j,j 6=i

qi qj
mi

xi − xj
|xi − xj |3

. (2.55)

Next, to form the BBGKY hierarchy, we define the following reduced probability distributions [33]

fα(X1,X2, . . . ,Xα, t) ≡ Nα

∫
d6Xα+1 . . . d

6XN DN (X1,X2, . . . ,XN ). (2.56)

1This equation has been attributed to Liouville in essentially every statistical mechanics textbook (and article) to this
day. However, Nolte has recently made a strong case that this is a missattribution [65]. Liouville’s contribution [66] was
purely mathematical and was related to taking derivatives of the general form of equation 2.53. He did not apply the rule
to a physical system. Nolte [65] makes the point that physical applications were introduced later by such luminaries as
Fermat, Boltzmann and Poincaré, and that Boltzmann deserves primary credit for it’s application in statistical mechanics.
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Equation α of the BBGKY hierarchy of equations is formed by integrating equation 2.54 over the

6(N − α) phase-space coordinates,
∫
d6Xα+1 . . . d

6XN :

∫
d6Xα+1 . . . d

6XN

[
∂DN

∂t
+

N∑

i=1

(
vi ·

∂DN

∂xi
ai ·

∂DN

∂vi

)]
= 0. (2.57)

Consider each of the three terms individually. The first is simply

∫
d6Xα+1 . . . d

6XN
∂DN

∂t
=

1

Nα

∂fα
∂t

. (2.58)

The second term is

∫
d6Xα+1 . . .d

6XN

N∑

i=1

vi ·
∂DN

∂xi
(2.59)

=

∫
d6Xα+1 . . . d

6XN

α∑

i=1

vi ·
∂DN

∂xi
+

∫
d6Xα+1 . . . d

6XN

N∑

i=α+1

vi ·
∂DN

∂xi

=

α∑

i=1

vi ·
∂

∂xi

∫
d6Xα+1 . . . d

6XNDN

︸ ︷︷ ︸
=fα/Nα

+

N∑

i=α+1

∫
d6Xα+1 . . . d

6XN
∂

∂xi
·
(
viDN

)

︸ ︷︷ ︸
=0

=
1

Nα

α∑

i=1

vi ·
∂fα
∂xi

,

in which the surface integral term vanishes by the assumption that there are no particles at the infinitely

distant boundaries. For the third term, we first note that ai does not depend on vi, then we find

∫
d6Xα+1 . . .d

6XN

N∑

i=1

ai ·
∂DN

∂vi
(2.60)

=

∫
d6Xα+1 . . . d

6XN

α∑

i=1

ai ·
∂DN

∂vi
+

∫
d6Xα+1 . . . d

6XN

N∑

i=α+1

∂

∂vi
·
(
aiDN

)

︸ ︷︷ ︸
=0

=

α∑

i=1

∂

∂vi
·
∫
d6Xα+1 . . . d

6XN

( α∑

j=1

aij +

N∑

i=1+α

aij

)
DN

=
1

Nα

α∑

i=1

α∑

j=1

aij ·
∂fα
∂vi

+

α∑

i=1

∂

∂vi
· (Nα)

∫
d6Xα+1ai,α+1

∫
d6Xα+2 . . . d

6XN DN

=
1

Nα

α∑

i=1

α∑

j=1

aij ·
∂fα
∂vi

+
(N − α)

Nα+1

α∑

i=1

∫
d6Xα+1ai,α+1 ·

∂fα+1

∂vi
.

Putting the results of equations 2.58, 2.59 and 2.60, back into equation 2.57, we find that equation

α of the BBGKY hierarchy is

∂fα
∂t

+

α∑

i=1

vi ·
∂fα
∂xi

+

α∑

i=1

α∑

j=1

aij ·
∂fα
∂vi

+
N − α
N

α∑

i=1

∫
d6Xα+1ai,α+1 ·

∂fα+1

∂vi
= 0. (2.61)
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The evolution equation for each fα depends on fα+1, so we need a truncation scheme in order to solve for

any of the reduced probability distributions (we are interested in f1, which represents the lowest-order

smoothed distribution function). Thus, a closure scheme is required to solve equation 2.61.

2.2.2 Plasma Kinetic Equation

In the two-body interaction approximation, the reduced distribution functions f1, f2, . . . f3 would be

statistically independent and we could write the two-particle distribution as the product of single-

particle distributions f2(X1,X2) = f1(X1)f1(X2). Because particles in a plasma do not only interact

in a two-body fashion, we want to account for collective effects as well. So, we write the two particle

distribution function in terms of the sum of the statistically independent part and a pair correlation.

Continuing this process for multiple particle correlations leads to the Mayer cluster expansion [64]:

f1(X1) = f(X1), (2.62)

f2(X1,X2) = f(X1)f(X2) + P1,2(X1,X2),

f3(X1,X2,X3) = f(X1)f(X2)f(X3) + f(X1)P2,3(X2,X3)

+ f(X2)P1,3(X1,X3) + f(X3)P1,2(X1,X2) + T (X1,X2,X3),

which can continue to fN . P is called the pair correlation and T is the triplet correlation.

An essential feature of the cluster expansion is that the higher order correlations have smaller and

smaller contribution to the evolution equation of f1. In fact, it can be shown that in a stable plasma

T/(fP ) ∼ O(Λ−1) where Λ ∼ nλ3
D is the plasma parameter. For a detailed discussion of this, see

chapter 8 of reference [57]. The truncation scheme we apply is simply that T = 0. In unstable plasmas,

such as we consider here, the small parameter characterizing higher-order terms becomes Λ−1 times the

amplification of collisions due to instabilities. After the instability amplitude becomes too large, this

parameter is no longer small and T , as well as higher order terms, must be included. Some nonlinear

effects, such as mode coupling, enter the hierarchy at the triplet correlation T level [5].

Recalling from equation 2.55 that ai,i = 0 and putting the Mayer cluster expansion of equation 2.62

into the α = 1 equation of the BBGKY hierarchy of equation 2.61 gives

∂f(X1)

∂t
+ v1 ·

∂f(X1)

∂x1
+ a1 ·

∂f(X1)

∂v1
= −

∫
d6X2 a1,2 ·

∂P1,2

∂v1
, (2.63)
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which is the lowest order kinetic equation and the right side is the collision operator that we will solve

for using the α = 2 equation. In equation 2.63 we have used the notation Pi,j = P (Xi,Xj) and have

identified

ai(xi, t) ≡
∫
d6Xj ai,j f(Xj , t), (2.64)

which is an average of the electrostatic fields surrounding individual particles (equation 2.55 for a

continuous charge distribution). Also, since N � α we have assumed that (N − α)/N ≈ 1. We will

also use this for the α = 2 equation.

Solving the α = 2 equation

∂f2

∂t︸︷︷︸
(1)

+ v1 ·
∂f2

∂x1
+ v2 ·

∂f2

∂x2︸ ︷︷ ︸
(2)

+ a1,2 ·
∂f2

∂v1
+ a2,1 ·

∂f2

∂v2︸ ︷︷ ︸
(3)

+

∫
d6X3 a1,3 ·

∂f3

∂v1
+

∫
d6X3 a2,3 ·

∂f3

∂v2︸ ︷︷ ︸
(4)

= 0

(2.65)

is a bit more involved. Putting in the cluster expansion with T = 0 into each of these terms gives

(1) = f(X1)
∂f(X2)

∂t︸ ︷︷ ︸
(e)

+ f(X2)
∂f(X1)

∂t︸ ︷︷ ︸
(a)

+
∂P1,2

∂t
, (2.66)

(2) = f(X2) v1 ·
∂f(X1)

∂x1︸ ︷︷ ︸
(b)

+v1 ·
∂P1,2

∂x1
+ f(X1) v2 ·

∂f(X2)

∂x2︸ ︷︷ ︸
(f)

+v2 ·
∂P1,2

∂x2
, (2.67)

(3) = f(X2) a1,2 ·
∂f(X1)

∂v1
+ a1,2 ·

∂P1,2

∂v1
+ f(X1) a2,1 ·

∂f(X2)

∂v2
+ a2,1 ·

∂P1,2

∂v2
, (2.68)

(4) =

∫
d6X3

[
f(X2)f(X3)a1,3 ·

∂f(X1)

∂v1︸ ︷︷ ︸
(c)

+P2,3a1,3 ·
∂f(X1)

∂v1
+ f(X2) a1,3 ·

∂P1,3

∂v1︸ ︷︷ ︸
(d)

+f(X3) a1,3 ·
∂P1,2

∂v1

+ f(X1)f(X3) a2,3 ·
∂f(X2)

∂v2︸ ︷︷ ︸
(g)

+ f(X1)a2,3 ·
∂P2,3

∂v2︸ ︷︷ ︸
(h)

+P1,3 a2,3 ·
∂f(X2)

∂v2
+ f(X3) a2,3 ·

∂P1,2

∂v2

]
. (2.69)

But, from equation 2.63, we find that (a) + (b) + (c) + (d) = 0 and (e) + (f) + (g) + (h) = 0. If we also

apply equation 2.64 in term (4) where

∫
d6X3 a1,3f(X3) = a1 and

∫
d6X3 a2,3f(X3) = a2, (2.70)
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equation 2.65 reduces to

[
∂

∂t
+

2∑

i=1

(
vi ·

∂

∂xi
+ ai ·

∂

∂vi
+

2∑

j=1

j 6=i

ai,j ·
∂

∂vi

)]
P1,2 +

2∑

i=1

2∑

j=1

j 6=i

∂f(Xi)

∂vi
·
∫
d6X3 ai,3Pj,3 (2.71)

= −
2∑

i=1

2∑

j=1

j 6=i

ai,j ·
∂

∂vi
f(Xi)f(Xj).

We assume that acceleration due to ensemble averaged forces (i.e., equation 2.64), which are from

potential variations over macroscopic spatial scales, are small. Thus the ai · ∂/∂vi terms in equations

2.63 and 2.71 can be neglected. Also, the ai,j · ∂/∂vi terms on the left side of equation 2.71 can be

neglected because they are Λ−1 smaller than the ∂/∂t+ vi · ∂/∂xi terms. This scaling can be obtained

by putting ∆x ∼ λD into equation 2.55, which gives

ai,j
∂/∂vi
∂/∂t

∼ e2

mλ2
D

1/vT
ωp
∼ Λ−1. (2.72)

Also, since we only consider electrostatic interactions between particles, Pi,j(xi,xj) = Pi,j(xi − xj).

With these approximations the plasma kinetic equation becomes

∂f(X1)

∂t
+ v1 ·

∂f(X1)

∂x1
= −

∫
d6X2 a1,2 ·

∂P1,2

∂v1
(2.73)

and the pair correlation equation is

∂P1,2

∂t
+

2∑

i=1

vi ·
∂P1,2

∂xi
+

2∑

i=1

2∑

j=1

j 6=i

∂f(Xi)

∂vi
·
∫
d6X3 ai,3Pj,3 = −

2∑

i=1

2∑

j=1

j 6=i

ai,j ·
∂

∂vi
f(Xi)f(Xj). (2.74)

Next, we apply the Bogoliubov hypothesis: the characteristic time and spatial scales for relaxation

of the pair correlation P are much shorter than that for f [59]. We denote the longer time and

spatial scales (x̄, t̄) and Fourier transform (F) with respect to the shorter spatial scales on which f is

approximately constant. We use the same Fourier transform definition as equation 2.14: F{g(x)} =

ĝ(k) =
∫
d3x exp(−ik · x)g(x) with inverse g(x) = (2π)−3

∫
d3k exp(ik · x)ĝ(k). The double Fourier

transform is then

F1,2{h(x1,x2)} = ĥ(k1,k2) =

∫
d3x1d

3x2 e
−i(k1·x1+k2·x2)h(x1,x2). (2.75)

Before applying the Fourier transform to equations 2.73 and 2.74, it is useful to note the following

three properties for the transform of arbitrary functions h1 and h2:



53

(P1): F1,2{h(x1 − x2)} = (2π)3δ(k1 + k2)ĥ(k1).

Proof:

F1,2

{
h(x1 − x2)

}
=

∫
d3x1 d

3x2 e
−i(k1·x1+k2·x2)h(x1 − x2). (2.76)

Setting x ≡ x1 − x2, so d3x = d3x1 yields

F1,2

{
h(x1 − x2)

}
=

∫
d3x e−ik1·xh(x)

︸ ︷︷ ︸
ĥ(k1)

∫
d3x2 e

−i(k1+k2)·x2

︸ ︷︷ ︸
(2π)3δ(k1+k2)

= (2π)3δ(k1 + k2)ĥ(k1). (2.77)

(P2):
∫
d3x h1(x)h2(x) = (2π)−3

∫
d3k1 ĥ1(k1) ĥ2(−k1).

Proof:

∫
d3xh1(x)h2(x) =

∫
d3x

[∫
d3k1

(2π)3
eik1·xĥ1(k1)

][∫
d3k2

(2π)3
eik2·xĥ2(k2)

]
(2.78)

=
1

(2π)6

∫
d3k1

∫
d3k2 ĥ1(k1)ĥ2(k2)

∫
d3x ei(k1+k2)·x

=
1

(2π)3

∫
d3k1 ĥ1(k1)

∫
d3k2 ĥ2(k2) δ(k1 + k2)

=
1

(2π)3

∫
d3k1 ĥ1(k1) ĥ2(−k1).

(P3): F1,2{
∫
d3x3 h1(x1 − x3)h2(x2 − x3)} = (2π)3δ(k1 + k2)ĥ1(k1)ĥ2(k2).

Proof:

F1,2

{∫
d3x3h1(x1−x3)h2(x2−x3)

}
=

∫
d3x3d

3x1d
3x2e

−i(k1·x1+k2·x2)h1(x1−x3)h2(x2−x3), (2.79)

let u ≡ x1 − x3 and w ≡ x2 − x3, then

F1,2

{
. . .
}

=

∫
d3x3 e

−i(k1+k2)·x3

∫
d3u e−ik1·uh1(u)

∫
d3w e−ik2·wh2(w) (2.80)

= (2π)3δ(k1 + k2) ĥ1(k1) ĥ2(k2).

With Bogoliubov’s hypothesis, equation 2.73 is

(
∂

∂t̄
+ v1 ·

∂

∂x̄1

)
f(x̄1,v1, t̄) = − ∂

∂v1
·
∫
d3v2

∫
d3x2 a1,2P1,2. (2.81)

Recalling from (P2) that

∫
d3x2 a1,2(x1 − x2)P1,2(x1 − x2) =

1

(2π)3

∫
d3k1 â1,2(−k1) P̂1,2(k1), (2.82)
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and noting from equation 2.55 that

â1,2(k1) =
q1q2

m1

4πik1

k2
1

, (2.83)

the plasma kinetic equation is
(
∂

∂t̄
+ v1 ·

∂

∂x̄1

)
f(x̄1,v1, t̄) = − ∂

∂v
·
[

4πq1q2

m1

∫
d3k1

(2π)3

−ik1

k2
1

∫
d3v2 P̂1,2(k1)

]
. (2.84)

Thus we require P̂1,2 in order to determine the collision operator. If we apply properties (P1) − (P3)

and equation 2.83, we find that equations 2.73 and 2.74 can be written
(
∂

∂t̄
+ v1 ·

∂

∂x̄1

)
f(x̄1,v1, t̄) = C(f1) = − ∂

∂v1
· Jv (2.85)

and [
∂

∂t
+ L1(k1) + L2(−k1)

]
P̂1,2(k1,v1,v2, t) = Ŝ(k1,v1,v2, t̄). (2.86)

Here Jv is the collisional current

Jv ≡
4πq1q2

m1

∫
d3k1

(2π)3

−ik1

k2
1

∫
d3v2P̂1,2(k1,v1,v2, t), (2.87)

Lj is the integral operator

Lj(k1) ≡ ik1 · vj − i
4πq1q2

mj

k1

k2
1

· ∂f(vj)

∂vj

∫
d3vj (2.88)

and Ŝ is the source term for the pair correlation function equation

Ŝ(k1,v1,v2) = 4πiq1q2
k1

k2
1

·
(

1

m1

∂

∂v1
− 1

m2

∂

∂v2

)
f(v1)f(v2). (2.89)

We next use equations 2.86 and 2.87 to solve for the collision operator, which is the right side of equation

2.85.

After Laplace transforming with respect to the fast timescale t, equation 2.86 can be written formally

as

P̂1,2(k1, ω) =
P̃1,2(k1, t = 0)− Ŝ/iω
−iω + L1(k1) + L2(−k1)

(2.90)

in which the velocity dependence of P̂1,2, Ŝ and L has been suppressed for notational convenience. In

the following, we neglect the initial pair correlation term P̃1,2(t = 0) because it is smaller in plasma

parameter than the continually evolving collisional source term Ŝ. In Davidson’s approach to quasilinear

theory, which is a collisionless description of wave-particle interactions, the collisional source term (Ŝ/iω)

is neglected [58]. Keeping the initial pair correlation term leads to a diffusion equation [58], which will

be discussed in section 3.2. Here we are interested in a collision operator.
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2.2.3 A Collision Operator From the Source Term

For the collision operator, we require evaluation of

P̂1,2(k1, ω) = − 1

−iω + L1(k1) + L2(−k1)

Ŝ(k1,v1,v2)

iω
. (2.91)

The 1/[−iω + L1(k1) + L2(−k1)] part of equation 2.91 is an operator that acts on Ŝ/iω. It can be

written [5]

1

−iω + L1(k1) + L2(−k1)
=

1

(2π)2

∫

C1

∫

C2

dω1 dω2

−i(ω − ω1 − ω2)
(2.92)

· 1

[−iω1 + L1(k1)]

1

[−iω2 + L2(−k1)]

in which the contours C1 and C2 must be chosen such that ={ω} > ={ω1 + ω2}. Frieman and Ruther-

ford [5] showed that

1

−iω1 + L1(k1)
=

i

ω1 − k1 · v1

{
1− 4πq1q2

m1k2
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

∫
d3v1

ω1 − k1 · v1

}
(2.93)

in which

ε̂(k1, ω1) ≡ 1 +
4πq1q2

m1k2
1

∫
d3v1

k1 · ∂f(v1)/∂v1

ω1 − k1 · v1
. (2.94)

The equivalent expressions for 1/[−iω2 + L2(−k1)] and ε̂(−k1, ω2) are obtained by the substitutions

v1 ↔ v2, ω1 ↔ ω2, m1 ↔ m2 and k1 ↔ −k1.

We can check equation 2.93 by applying the operator [1 + L1(k1)] to it and confirming that the

result is unity. Recall from equation 2.88 that

−iω1 + L1(k1) = −iω + ik1v1 − i
4πq1q2

m1

k1

k2
1

· ∂f(v1)

∂v1

∫
d3v1. (2.95)

Thus, we can confirm

[
−iω1 + L1(k1)

]{ 1

−iω1 + L1(k1)

}
(2.96)

= −
[
i(ω − k1 · v1) + i

4πq1q2

m1

k1

k2
1

· ∂f(v1)

∂v1

∫
d3v1

]
i

ω1 − k1 · v1

{
1− 4πq1q2

m1k2
1

k1∂f/∂v1

ε̂(k1, ω1)

∫
d3v1

ω1 − k1 · v1

}

= 1− 4πq1q2

m1k2
1

k1 · ∂f/∂v1

ε̂(k1, ω1)

∫
d3v1

ω1 − k1 · v1
+

4πq1q2

m1k2
1

k1 ·
∂f

∂v1

∫
d3v1

ω1 − k · v1

− 4πq1q2

m1k2
1

k1

k2
1

· ∂f
∂v1

4πq1q2

m1k2
1

∫
d3v1

k1 · ∂f/∂v1

ω1 − k1 · v1︸ ︷︷ ︸
ε̂(k1,ω1)−1

1

ε̂(k1, ω1)

∫
d3v1

ω1 − k1 · v1
= 1.
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We call R ≡ 1/[−iω1 + L1(k1)][−iω2 + L2(−k1)] the Frieman-Rutherford operator [5] and require

R{Ŝ}. Using equation 2.93, the equivalent form for the 1/[−iω2 +L2(−k1)] term, and the source term

of equation 2.89, produces an expression for R{Ŝ} of the form

R
{
Ŝ
}

= − [(1) + (2) + (3) + (4)]

(ω1 − k1 · v1)(ω2 + k1 · v2)
(2.97)

in which each of the numbered pieces consists of two terms. These are

(1) = Ŝ =
i4πq1q2

m1k2
1

f(v2) k1 ·
∂f(v1)

∂v1︸ ︷︷ ︸
(a)

+
−i4πq1q2

m2k2
1

f(v1)k1 ·
∂f(v2)

∂v2︸ ︷︷ ︸
(b)

, (2.98)

(2) =
4πq1q2

m2k2
1

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)

∫
d3v2

Ŝ

ω2 + k1 · v2
(2.99)

=
i(4π)2q2

1q
2
2

m1m2k4
1

k1 ·
∂f(v2)

∂v2
k1 ·

∂f(v1)

∂v1

1

ε̂(−k1, ω2)

∫
d3v2

f(v2)

ω2 + k1 · v2

+
i4πq1q2

m2k2
1

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)
f(v1)

4πq1q2

m2k2
1

∫
d3v2

(−k1) · ∂f(v2)/∂v2

ω2 + k1 · v2︸ ︷︷ ︸
ε̂(−k1,ω2)−1

=
i(4π)2q2

1q
2
2

m1m2k4
1

k1 ·
∂f(v2)

∂v2
k1 ·

∂f(v1)

∂v1

1

ε̂(−k1, ω2)

∫
d3v2

f(v2)

ω2 + k1 · v2︸ ︷︷ ︸
(c)

+
i4πq1q2

m2k2
1

f(v1)k1 ·
∂f(v2)

∂v2︸ ︷︷ ︸
(d)

+
−i4πq1q2

m2k2
1

f(v1)
k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)︸ ︷︷ ︸
(e)

,

and, after identifying ε̂(k1, ω1) in an analogous way,

(3) = −4πq1q2

m1k2
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

∫
d3v1

Ŝ

ω1 − k1 · v1
(2.100)

=
i(4π)2q2

1q
2
2

m1m2k4
1

k1 ·
∂f(v2)

∂v2
k1 ·

∂f(v1)

∂v1

1

ε̂(k1, ω1)

∫
d3v1

f(v1)

ω1 − k1 · v1︸ ︷︷ ︸
(f)

+
−i4πq1q2

m1k2
1

f(v2) k1 ·
∂f(v1)

∂v1︸ ︷︷ ︸
(g)

+
i4πq1q2

m1k2
1

f(v2)
k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)︸ ︷︷ ︸
(h)

.
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Making the ε̂ identification twice in (4) yields

(4) = − (4π)2q2
1q

2
2

m1m2k4
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω1)

∫
d3v1

ω1 − k1 · v1

∫
d3v2

ω2 + k1 · v2
Ŝ (2.101)

=
−i(4π)2q2

1q
2
2

m1m2k4
1

k1 ·
∂f(v1)

∂v1

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)

∫
d3v2

f(v2)

ω2 + k1 · v2︸ ︷︷ ︸
(i)

+
i(4π)2q2

1q
2
2

m1m2k4
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)

∫
d3v2

f(v2)

ω2 + k1 · v2︸ ︷︷ ︸
(j)

+
−i(4π)2q2

1q
2
2

m1m2k4
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)
k1 ·

∂f(v2)

∂v2

∫
d3v1

f(v1)

ω1 − k1 · v1︸ ︷︷ ︸
(k)

+
i(4π)2q2

1q
2
2

m1m2k4
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)

∫
d3v1

f(v1)

ω1 − k1 · v1︸ ︷︷ ︸
(l)

.

With the letter identifications, we find that the four numbered terms can be written as the sum of

the twelve lettered terms: (1) + (2) + (3) + (4) = (a) + . . . + (l). However, (a) = −(g), (b) = −(d),

(c) = −(i), and (f) = −(k), so these twelve terms reduce to four (1)+(2)+(3)+(4) = (e)+(h)+(j)+(l),

which, when put into equation 2.97, yields

R{Ŝ} =
−4πiq1q2/k

2
1

(ω1 − k1 · v1)(ω2 + k1 · v2)

{
f(v2) k1 · ∂f(v1)/∂v1

m1ε̂(k1, ω1)
− f(v1) k1 · ∂f(v2)/∂v2

m2ε̂(−k1, ω2)
(2.102)

+
4πq1q2

m1m2k2
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)

[∫
d3v2

f(v2)

ω2 + k1 · v2
+

∫
d3v1

f(v1)

ω1 − k1 · v1

]}
.

Noting that in the last term we can use

∫
d3v2

f(v2)

ω2 + k1 · v2
+

∫
d3v1

f(v1)

ω1 − k1 · v1
= (ω1 + ω2)

∫
d3v2

f(v2)

(ω2 + k1 · v2)(ω1 − k1 · v2)
, (2.103)

the Frieman-Rutherford operator acting on the source Ŝ is

R{Ŝ} =
−4πiq1q2/k

2
1

(ω1 − k1 · v1)(ω2 + k1 · v2)

{
f(v2) k1 · ∂f(v1)/∂v1

m1ε̂(k1, ω1)
− f(v1) k1 · ∂f(v2)/∂v2

m2ε̂(−k1, ω2)
(2.104)

+
4πq1q2

m1m2k2
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)

∫
d3v2

f(v2)(ω1 + ω2)

(ω2 + k1 · v2)(ω1 − k1 · v2)

}
.

For Jv in equation 2.87, we need
∫
d3v2P̂1,2(k1, t) which is

∫
d3v2P̂12(k, t) =

∫
dω1

2π

∫
dω2

2π

∫
d3v2R{Ŝ}

∫
dω

2π

e−iωt

ω(ω − ω1 − ω2)
(2.105)

=

∫
dω1

2π

∫
dω2

2π

∫
d3v2

(−i)R{Ŝ}
ω1 + ω2

[
1− e−i(ω1+ω2)t

]
.
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Identifying an ε̂(−k1, ω2)− 1 in the last term of
∫
d3v2R{Ŝ}, we find

∫
d3v2R{Ŝ} = (2.106)

− 4πiq1q2

m1k2
1

∫
d3v2

f(v2) k1 · ∂f(v1)/∂v1

[
(ω1 − k1 · v2)ε̂(−k1, ω2)− (ω1 + ω2)

(
ε̂(−k1, ω2)− 1

)]

ε̂(k1, ω1)ε̂(−k1, ω2)(ω1 − k1 · v1)(ω1 − k1 · v2)(ω2 + k1 · v2)

+
4πiq1q2

m2k2
1(ω1 − k · v1)

∫
d3v2

f(v1)k1 · ∂f(v2)/∂v2

ε̂(−k1ω2)(ω2 + k1 · v2)
.

For the first term in equation 2.106, the part in square brackets is

(ω1 − k1 · v2)ε̂(−k1, ω2)− (ω1 + ω2)[ε̂(−k1, ω2)− 1] = −ε̂(−k1, ω2)(ω2 + k1 · v2) + (ω1 + ω2). (2.107)

For the second term in equation 2.106, note that

f(v1)

ε̂(−k1, ω2)

∫
d3v2

k1 · ∂f(v2)/∂v2

ω2 + k1 · v2
=
−f(v1)

ε̂(−k1, ω2)

m2k
2
1

4πq1q2

[
ε̂(−k1, ω2)− 1

]
(2.108)

= − k2
1m2

4πq1q2

f(v1)
[
ε̂(−k1, ω2)− 1

]

ε̂(−k1, ω2)

1

ε̂(k1, ω1)

[
1 +

4πq1q2

m2k2
1

∫
d3v2

k1 · ∂f(v2)/∂v2

ω1 − k1 · v2

]

=
f(v1)

ε̂(k1, ω1)ε̂(−k1, ω2)

[∫
d3v2

k1 · ∂f(v2)/∂v2

ω2 + k1 · v2
−
[
ε̂(−k1, ω2)− 1

] ∫
d3v2

k1 · ∂f(v2)/∂v2

ω1 − k1 · v2

]

=
f(v1)

ε̂(k1, ω1)ε̂(−k1, ω2)

∫
d3v2

k1 · ∂f(v2)/∂v2

{
ω1 − k1 · v2 −

[
ε̂(−k1, ω2)− 1

]
(ω2 + k1 · v2)

}

(ω2 + k1 · v2)(ω1 − k1 · v2)
,

and that in the last line of equation 2.108, the part in braces is equal to equation 2.107:

ω1 − k1 · v2 −
[
ε̂(−k1, ω2)− 1

]
(ω2 + k1 · v2) = −ε̂(−k1, ω2)(ω2 + k1 · v2) + (ω1 + ω2). (2.109)

Putting the results of equations 2.107, 2.108 and 2.109 into 2.106 yields

∫
d3v2R{Ŝ} =

4πiq1q2

k2
1

∫
d3v2k1 ·

(
1

m1

∂

∂v1
− 1

m2

∂

∂v2

)
f(v1)f(v2) (2.110)

· ε̂(−k1, ω2)(ω2 + k1 · v2)− (ω1 + ω2)

ε̂(k1, ω1)ε̂(−k1, ω2)(ω1 − k1 · v1)(ω1 − k1 · v2)(ω2 + k1 · v2)
.

When inserting equation 2.110 into 2.105, the terms with ε̂(−k1, ω2)(ω2 + k1 · v2) in the numerator

vanish upon completing the ω2 integral. Then, finally putting the result the into the collisional current

of equation 2.87, we find that the collisional current can be written in the Landau form

Jv =

∫
d3v2Q(v1,v2) ·

(
1

m2

∂

∂v2
− 1

m1

∂

∂v1

)
f(v1)f(v2), (2.111)

which has both a diffusion component (due to the ∂/∂v1 term) and a drag component (due to the
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∂/∂v2 term). Here Q is the tensor kernel

Q(v1,v2) =
(4π)2q2

1q
2
2

m1

∫
d3k1

(2π)3

−ik1k1

k4
1

∫
dω1

2π

∫
dω2

2π
(2.112)

· (1− e−i(ω1+ω2)t)(ω2 + k1 · v1)

ε̂(k1, ω1)(ω1 − k1 · v1)(ω1 − k1 · v2)ε̂(−k1, ω2)(ω2 + k1 · v2)(ω2 + k1 · v1)
.

Of the four terms in the numerator of equation 2.112, the two proportional to k1 · v1 have overall

odd parity in k1 and vanish upon doing the k1 integral. The term with just ω2 vanishes for stable

plasmas and is much smaller than the exponentially growing terms for unstable plasmas. Thus, it can

be neglected. The collisional kernel can then be written in the form

Q(v1,v2) =
(4π)2q2

1q
2
2

m1

∫
d3k1

(2π)3

−ik1k1

k4
1

p1(k1)p2(k1) (2.113)

in which p1 and p2 are defined by

p1(k1) =

∫
dω1

2π

e−iω1t

ε̂(k1, ω1)(ω1 − k1 · v1)(ω1 − k1 · v2)
(2.114)

and

p2(k1) =

∫
dω2

2π

ω2 e
−iω2t

ε̂(−k1, ω2)(ω2 + k1 · v1)(ω2 + k1 · v2)
. (2.115)

Equations 2.113, 2.114 and 2.115 are identical to equations 2.34, 2.35 and 2.36 that were derived

in section 2.1.3 using the test particle method. Thus, the same collision operator has been found. We

carry out the inverse Laplace transforms in the same way as shown in equations 2.37 – 2.39. In doing

so, we account for the poles at ω = ±k · v, which leads to the conventional Lenard-Balescu collisional

kernel, and for poles at ε̂ = 0. If instabilities are present, the poles at ε̂ = 0 produce temporally growing

responses.

We make a final substitution in which we identify the species that we have labeled f(v1) as species

s. The species that interacts with s, which has been labeled f(v2) up to now, we label s′. The species s′

represent the entire plasma (including s itself) and can be split into different components (i.e., individual

s′). Thus, the total s response is due to the sum of the s′ components. We also drop the subscripts on

k1 and v1 and label v2 as v′.

After these substitutions, the final kinetic equation for species s is ∂fs/∂t + v · ∂fs/∂x = C(fs) =

∑
s′ C(fs, fs′) in which

C(fs, fs′) = − ∂

∂v
·
∫
d3v′Q ·

(
1

ms′

∂

∂v′
− 1

ms

∂

∂v

)
fs(v)fs′(v

′) (2.116)
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is the component collision operator describing collisions between species s and s′ and Q = QLB +QIE

is the collisional kernel. The collisional kernel consists of the Lenard-Balescu term

QLB =
2q2
sq

2
s′

ms

∫
d3k

kk

k4

δ[k · (v − v′)]
|ε̂(k,k · v)|2 (2.117)

that describes the conventional Coulomb scattering of individual particles and the instability-enhanced

term

QIE =
2q2
sq

2
s′

πms

∫
d3k

kk

k4

∑

j

γj exp(2γjt)

[(ωR,j − k · v)2 + γ2
j ][(ωR,j − k · v′)2 + γ2

j ]|∂ε̂(k, ω)/∂ω|2ωj
(2.118)

that describes the scattering of particles by collective fluctuations. We can also write the dielectric

function in the familiar form

ε̂(k, ω) = 1 +
∑

s′

4πq2
s′

k2ms′

∫
d3v

k · ∂fs′(v)/∂v

ω − k · v . (2.119)

We have used the notation ωj = ωR,j + iγj where ωR,j and γj are the real and imaginary parts of the

jth root of the dielectric function equation 2.119. Equations 2.116, 2.117 and 2.118 provide a BBGKY

hierarchy derivation of the same collision operator that was derived in section 2.1 (equations 2.43, 2.44

and 2.45) using a discrete particle approach.

2.3 Total Versus Component Collision Operators

The total collision operator C(fs) for the evolution equation of species s is a sum of the collision operators

describing collisions between s and each species s′ (including itself, s′ = s); thus C(fs) =
∑
s′ C(fs, fs′).

This total collision operator appears from equations 2.43, 2.44 and 2.45 (or, equivalently 2.116, 2.117

and 2.118) to have four terms: terms for “drag” and “diffusion” (from the ∂/∂v′ and ∂/∂v derivatives

respectively) using both the Lenard-Balescu collisional kernel of equation 2.43, and the instability-

enhanced collisional kernel of equation 2.44. However, there are actually only three non-zero terms

because the total instability-enhanced contribution to drag vanishes. To show this, we write the total

instability-enhanced collision operator as

CIE(fs) = − ∂

∂v
·
∑

s′

∫
d3v′QIE ·

(
1

ms′

∂

∂v′
− 1

ms

∂

∂v

)
fs(v)fs′(v

′) (2.120)

=
∂

∂v
·
[
DIE,diff ·

∂fs(v)

∂v

]
− ∂

∂v
·
[
DIE,dragfs(v)

]
(2.121)
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in which

DIE,diff ≡
∑

s′

∫
d3v′QIE

fs′(v
′)

ms
(2.122)

and

DIE,drag ≡
∑

s′

∫
d3v′QIE ·

1

ms′

∂fs′(v
′)

∂v′
. (2.123)

Evaluating the dielectric function, equation 2.18, at it’s roots (ωj) and multiplying by (ωj − k ·

v)∗/(ωj − k · v)∗ inside the integral gives

ε̂(k, ωj) = 1 +
∑

s′

4πq2
s′

k2ms′

∫
d3v′

(ωR,j − k · v′ − iγj)k · ∂fs′/∂v′

(ωR,j − k · v′)2 + γ2
j

. (2.124)

The real and imaginary parts of equation 2.124 individually vanish; <{ε̂(k, ωj)} = ={ε̂(k, ωj)} = 0.

The imaginary part is

={ε̂(k, ωj)} =
∑

s′

4πq2
s′

k2ms′

∫
d3v′

(−γj)k · ∂fs′(v′)/∂v′

(ωR,j − k · v′)2 + γ2
j

. (2.125)

Equation 2.125 shows that the term proportional to ωR,j in equation 2.124 is zero; thus the real part

of equation 2.124 can be written

<{ε̂(k, ωj)} = 1−
∑

s′

4πq2
s′

k2ms′

∫
d3v′

k · v′ k · ∂fs′(v′)/∂v′

(ωR,j − k · v′)2 + γ2
j

. (2.126)

Putting equation 2.44 into DIE,drag in equation 2.123, we find DIE,drag(fs) ∝ ={ε̂(k, ωj)} = 0:

DIE,drag(fs) = − q2
s

2π2ms

∫
d3k

k

k2

exp(2γjt)

[(ω2
R,j − k · v)2 + γ2

j ]
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

={ε̂(k, ωj)} = 0. (2.127)

Thus, only a diffusion term survives in the instability-enhanced portion of the total collision operator

CIE(fs).

Although the instability-enhanced drag is zero in the total collision operator C(fs), it is not necessar-

ily zero in each component collision operator C(fs, fs′). Identifying the component collision operators in

the form of equation 2.45 is particularly useful because they do not each cause evolution of fs on similar

time scales. For example, like-particle collisions (s = s′) tend to dominate unlike-particle collisions

for short times. The time scale for which unlike-particle collisions matter may be longer than those of

interest, or those of mechanisms external to the plasma theory such as neutral collisions or losses to

boundaries. Thus, although the instability-enhanced contribution to drag in the total collision operator

vanishes, it remains a useful term in describing the individual collision operator components.
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Figure 2.1: Illustration of how (a) absolute instabilities grow in time at a fixed spatial locations and
how (b) convective instabilities move as they grow so that fluctuations grow in the reference frame of
the wave.

2.4 Interpretation of e2γt

A proper interpretation of time, t, in equation 2.44 requires consideration of the nature of instabilities

present in the plasma. If the instabilities are absolute, i.e., the modes grow continually in time at a

fixed spatial location with a vanishing group velocity, one can consider the collision operator at a fixed

location to be dependent on time and hence fs would evolve in time at that location. For example, if

an absolute instability were to be turned on at some time to, the time t in equation 2.44 would simply

refer to the progression of time, at some location, after the instability is present. In this case, the above

analysis will hold only for a few growth times, τ ∼ 1/γ, before nonlinear effects become important.

The linear theory, however, would be valid for the short time scale evolution of plasmas with absolute

instabilities.

Convective modes, on the other hand, propagate through the plasma with a finite group velocity

vg. For these instabilities the fluctuation level at a fixed location in space does not grow or decay in

time; rather, the waves grow as they propagate and thus the fluctuation amplitude changes for different

spatial locations. See the illustration in figure 2.1. In this case, time t in equation 2.44 is the time it

takes a growing mode to travel from its origin to the spatial location of interest. For convective modes,
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fs does not evolve in time at a fixed spatial location; rather, it evolves in space along the direction of

propagation of the convective modes. Time is interpreted in a frame of reference moving with the group

velocity of the wave to yield

2γt = 2

∫ x

xo(k)

dx′ · vgγ

|vg|2
(2.128)

in which xo(k) is the location where the mode with wavenumber k becomes unstable, x is the measure-

ment location, and x′ is the path between xo and x that the mode with wavenumber k follows.

For convective instabilities in a homogeneous finite domain, the same k are unstable throughout

the region since the plasma dielectric function is uniform. In this case the coordinate system can be

chosen such that xo(k) = 0. However, if small spatial inhomogeneities are present in the equilibrium,

or if scattering by either the convective instabilities or Coulomb interactions alters the plasma dielec-

tric, different k may be unstable at different locations in the domain and care has to be taken when

determining the spatial integration limits.

2.5 Validity of the Kinetic Theory

To estimate the domain length over which instabilities can grow (either in time for absolute instabilities

or space for convective instabilities) before nonlinear effects become important we need to consider

equation 2.13. A conservative estimate for the maximum domain length can be obtained by considering

just a single term from its left side, which implies the requirement |δf |/f . 1. Equations 2.20 and 2.22

lead to the scaling relationship

δf̂ ∼ q

m

k · ∂f/∂v

ω − k · v δφ̂. (2.129)

Typically for electrons, ω−k ·v ∼ kvTe for a characteristic thermal electron speed vTe. Using this, one

finds the validity condition for the linear model reduces to the intuitive requirement that the Coulombic

potential energy level of the fluctuations cannot exceed the ambient thermal energy of the plasma,

qδφ/Te . 1. The more general condition is

4πe2

m

1

f

∂f

∂v
·
∫
d3k

k

k2

[
δ
[
k · (v − v′)

]

ε̂(k,k · v)
+
∑

j

eγjt

(ωj − k · v)(ωj − k · v′)∂ε̂(k, ω)/∂ω
∣∣
ωj

]
. 1. (2.130)

It is difficult to extract any more information from equation 2.130 without specifying the nature of

particular instabilities. To check that equation 2.130 is consistent with that of previous models when
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the the plasma is stable, consider a typical illustrative example of the Lenard-Balescu equation when

Debye shielding is included, ε̂ = 1 + 1/k2λ2
De. In this case, equation 2.130 reduces to ln Λ/nλ3

De . 1,

which is consistent with previous analysis which used the BBGKY hierarchy to justify the derivation

of the Lenard-Balescu equation using the test particle method [57].



65

Chapter 3

Properties of C(fs) and Comparison

to Quasilinear Theory

Since its introduction in the early 1960’s, “quasilinear theory” has become an umbrella term for a host of

different theories. For example, it has been applied in theories describing the interaction of particles and

applied waves [67], to anomalous particle transport in fusion plasmas [68] and to the diffusion of magnetic

field in fusion devices [68]. Here we use the term“conventional quasilinear theory”to refer to the original

theories of Vedenov, Velikhov and Sagdeev [8, 9, 36], Drummond and Pines [10], and Bernstein and

Englemann [35], which used the collisionless Vlasov equation to develop an effective “collision operator”

that describes wave-particle scattering due to plasma fluctuations. In conventional quasilinear theory,

the origin of fluctuations is not specified and the final effective collision operator requires input of an

initial fluctuation level (or spectral energy density) that must be determined external to the theory.

The effective collision operator yields a diffusion equation.

In this chapter, we show that the instability-enhanced term of the total collision operator for species

s, which is a sum of the component collision operators describing collisions of s with each species s′

C(fs) =
∑
s′ C(fs, fs′), fits into the diffusion equation framework of quasilinear theory. The instability-

enhanced contribution to the total collision operator may be considered an extension of conventional

quasilinear theory for the case that instabilities arise within the plasma. This is because the kinetic

prescription determines the spectral energy density by self-consistently accounting for the continuing

source of fluctuations from discrete particle motion. This leads to important extensions of the physical

properties of the resultant operator such as conservation laws between individual species, that the

BoltzmannH-theorem is satisfied, and that internal instabilities drive the individual species distribution

functions toward Maxwellians. We provide proofs of these properties, and others, in section 3.4.
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3.1 Conventional Quasilinear Theory

Conventional quasilinear theory can be derived in a manner similar to the test-particle approach that

was used in chapter 2 to derive a kinetic theory. However, it is a “collisionless” theory because it is

based on the Vlasov equation [34]

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

E · ∂fs
∂v

= 0 (3.1)

in which fs is the same “ensemble averaged” distribution function that we used in chapter 2. We again

assume a magnetic-field-free plasma: B = 0. The Vlasov equation 3.1 is the plasma kinetic equation

neglecting the collision operator.

The conventional derivation of quasilinear theory proceeds by separating spatially-smoothed and

fluctuation-scale components of fs: fs = fso + fs1. The smoothed components are defined by the

volume average

fso(x̄,v, t) ≡
1

V

∫
d3x fs = 〈fs〉. (3.2)

It is assumed that 〈fs1〉 = 0. The V in equation 3.2 refers to a macroscopic volume over which the d3x

integral of the spatial average is taken. The quasilinear theory equations describe the evolution of fso;

thus it assumes that the plasma is uniform on the spatial scales characteristic of the volume average.

The smoothed distribution fso can only vary on spatial scales larger than the characteristic scale of V

and this spatial scale is denoted x̄.

Appendix B shows that the effect of equilibrium electrostatic fields affect the collision operator (or

“effective” collision operator in this case) only when the electrostatic potential satisfies

1

kφo

∂φo
∂x

& 1, (3.3)

which implies that the electric field is strong and, as a consequence, that the plasma is not quasineutral.

We assume only weak fields are present and thus take Eo = 0. Applying the assumptions 〈E1〉 = 0,

〈fs1〉 = 0 and spatially averaging equation 3.1 (using equation 3.2) yields

∂fso
∂t

+ v · ∂fso
∂x̄

= − qs
ms

∂

∂v
·
〈
E1 fs1

〉
. (3.4)

An equation for fs1 is obtained by putting fs = fso+fs1 into equation 3.1, then subtracting equation 3.4
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from the result. With this, we find

∂fs1
∂t

+ v · ∂fs1
∂x

= − qs
ms

(
E1 ·

∂fso
∂v

+ E1 ·
∂fs1
∂v
−
〈

E1 ·
∂fs1
∂v

〉)
. (3.5)

Just as we did in the test particle method in chapter 2.1, we assume that the quasilinear approxi-

mation
∣∣∣∣E1 ·

∂fs1
∂v
−
〈

E1 ·
∂fs1
∂v

〉∣∣∣∣�
∣∣∣∣E1 ·

∂fso
∂v

∣∣∣∣ (3.6)

holds. With this assumption we neglect nonlinear wave effects such as mode coupling, nonlinear satu-

ration, and turbulence. Like the kinetic theory of chapter 2, quasilinear theory is limited to describing

the effects of instabilities in a linear growth regime. Dropping the nonlinear terms in equation 3.5 yields

∂fs1
∂t

+ v · ∂fs1
∂x

= − qs
ms

E1 ·
∂fso
∂v

. (3.7)

The original quasilinear references [8–10] solve equation 3.7 by assuming that the time dependence of

fs1 and E1 obey

fs1(x,v, t) =
∑

j

f̄s1(x,v)e−iωjt and E1 =
∑

j

Ē(x)e−iωjt (3.8)

in which ωj(k) is the dispersion relation, i.e., the roots of ε̂ = 0.

It is, perhaps, beneficial at this point to compare this foundation for quasilinear theory to what we

used in developing the instability-enhanced collision operator. The quasilinear theory starting point is

the Vlasov equation, which describes the evolution of the ensemble averaged distribution fs, whereas

the linear kinetic theory started from the Klimontovich equation, which describes the evolution of the

more fundamental discrete particle distribution F . So at first, it seems that the theories must describe

the evolution of quite different quantities. However, comparing equations 2.9 and 2.11 to equations 3.4

and 3.7, shows that formally the equations are quite similar. In fact, if fso → fs, fs1 → δf , E1 → δE,

and the spatial average of equation 3.2 were replaced with the ensemble average of equation 2.25, the

two sets of equations would be precisely the same. The neglect of nonlinear terms in equations 2.11 and

3.5 also suggest that the two theories are confined to similar fluctuation levels. However, quasilinear

theory does not account for discrete particle effects and results of the two theories will be different.

Also, quasilinear theory does not use any of Maxwell’s equations to relate density fluctuations to field

fluctuations. In the kinetic approach, this connection was made through Gauss’s law (equation 2.12).
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For this reason, the plasma dielectric function does not naturally come into the quasilinear theory, and

the ωj are imposed from an external determination of the dielectric function.

Using the assumption of equation 3.8 and Fourier transforming, equation 3.7 can be written

f̂s1(k,v) = −i qs
ms

∑

j

Ê1(k) · ∂fso/∂v

ωj − k · v (3.9)

in which the “hat” denotes Fourier transformed variables. The right side of equation 3.4 is

〈
E1 fs1

〉
=

1

V

∫
d3xE1 fs1 =

1

V

∫
d3x

∫
d3k

(2π)3
e−ik·xf̂s1(k)

∫
d3k′

(2π)3
e−ik

′·xÊ1(k′) (3.10)

=
1

(2π)3V

∫
d3kf̂s1(k)

∫
d3k′Ê1(k′)δ(k + k′) =

1

(2π)3V

∫
d3k f̂s1(k) Ê1(−k).

Inserting equation 3.9 into equation 3.10 gives

〈
E1 fs1

〉
=

1

(2π)3V

qs
ms

∑

j

∫
d3k

Ê(−k)Ê(k) · ∂fso/∂v

i(ωj − k · v)
. (3.11)

Since E1 is assumed to be electrostatic fluctuations, it can be written in terms of a potential, Ê1(k) =

−ikφ(k). Thus, Ê1(k)Ê1(−k) = Ê1(k) · Ê1(−k)kk/k2. We next define the spectral energy density as

Eql(k) ≡ 1

(2π)3V

Ê1(k) · Ê1(−k)

8π
=
∑

j

|E1(k, t = 0)|2
(2π)3V

e2γjt

8π
, (3.12)

in which the last step follows from equation 3.8 and the reality condition ω(k) = −ω∗(−k). Putting

equation 3.11 into equation 3.4 yields the quasilinear diffusion equation

∂fso
∂t

+ v · ∂fso
∂x̄

=
∂

∂v
· Dv ·

∂fso
∂v

(3.13)

in which the quasilinear diffusion tensor is

Dv ≡
q2
s

m2
s

8π
∑

j

∫
d3k

kk

k2

i Eql
j (k)

ωj − k · v . (3.14)

The diffusion tensor is often simplified by multiplying equation 3.14 by (ω∗j − k · v)/(ω∗j − k · v) to give

Dv = 8π
q2
s

m2
s

∑

j

∫
d3k

kk

k2

i Eql
j (k)[

(ωR,j − k · v)2 + γ2
](ωR,j − k · v − iγ

)
(3.15)

in which the integrals with ωR,j − k · v will vanish because they have odd parity in k [in which we use

the property ωR,j(−k) = −ωR,j(k)]. This leaves

Dv =
q2
s

m2
s

8π
∑

j

∫
d3k

kk

k2

γj Eql
j (k)

[(ωR,j − k · v)2 + γ2
j ]
. (3.16)
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For γ � ωR,j , the Lorentzian in equation 3.16 is approximately a δ-function (recall equation 2.46), and

the diffusion tensor has the approximate form

Dv ≈ 8π2 q
2
s

m2
s

∑

j

∫
d3k

kk

k2
δ
(
ωR,j − k · v

)
Eql
j (k). (3.17)

Equations 3.13 and 3.16 or 3.17 constitute quasilinear theory.

3.2 Davidson’s Quasilinear Theory

In section 2.2, a collision operator was derived using the BBGKY hierarchy. During the analysis,

specifically at equation 2.90, contributions arose from both a source term (Ŝ), due to discrete particle

fluctuations, and from an initial pair correlation term [P̃12(t = 0)]. According to the BBGKY hierarchy

ordering, the pair correlation term is higher order than the source term; thus it was neglected in

comparison to the source term. However, Davidson [58] has considered taking only the initial pair

correlation as a way to derive a quasilinear theory from the BBGKY hierarchy. Like conventional

quasilinear theory, it is “collisionless” since it neglects the discrete particle source term. In this section,

we will review Davidson’s approach and give a brief comparison of his result to that of the conventional

quasilinear theory.

Dropping the source term, S, in equation 2.90 and only considering the initial pair correlation,

P̃12(t = 0), leaves

P̂1,2(k1,v1,v2, ω) =
P̃1,2(k1,v1,v2, t = 0)

−iω + L1(k1) + L2(−k1)
. (3.18)

Substituting equation 2.92 for 1/[−iω + L1(k1) + L2(−k1)], we find

P̂1,2(k1,v1,v2, ω) =
1

(2π)2

∫

C1

∫

C2
dω1dω2

R
{
P̃12(t = 0)

}

−i(ω − ω1 − ω2)
. (3.19)

Inverting the Laplace transform yields

P̂1,2(k1,v1,v2, t) =
−1

(2π)2

∫

C1

∫

C2
dω1dω2 e

−i(ω1+ω2)tR
{
P̃1,2(k1,v1,v2, t = 0)

}
. (3.20)
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Applying the Frieman-Rutherford operator from equations 2.93 and 2.94, gives

P̂1,2 = −
[∫

dω1

2π
e−iω1t

i

ω1 − k1 · v1

{
1− 4πq1q2

m1k2
1

k1 · ∂f(v1)/∂v1

ε̂(k1, ω1)

∫
d3v1

ω1 − k1 · v1

}]

︸ ︷︷ ︸
≡h1

(3.21)

×
[∫

dω2

2π
e−iω2t

i

ω2 + k1 · v2

{
1 +

4πq1q2

m2k2
1

k1 · ∂f(v2)/∂v2

ε̂(−k1, ω2)

∫
d3v2

ω2 + k1 · v2

}]

︸ ︷︷ ︸
≡h2

P̃1,2(k1,v1,v2, t = 0).

Evaluating the ω1 integral to calculate h1, yields

h1 = −e−ik1·v1t +
4πq1q2

m1k2
1

k1 ·
∂f(v1)

∂v1

∫
d3v′1

[
e−ik1·v1t

k1 · (v1 − v′1)ε̂(k1,k1 · v1)
(3.22)

− e−ik1·v′
1t

k1 · (v1 − v′1)ε̂(k1,k1 · v′1)
+
∑

j

e−iωjt

(ωj − k1 · v1)(ωj − k1 · v′1)[∂ε̂(k1, ω1)/∂ω1]ωj

]
.

The h2 term can be evaluated analogously. It is the same as the h1 term except that v1 → v2, k1 → −k1,

and ωj → ω′j where ω′j solves ε̂(−k1, ω2) = 0 and obeys the relation ω′j = −ω∗j . This yields

h2 = −eik1·v2t − 4πq1q2

m2k2
1

k1 ·
∂f(v2)

∂v2

∫
d3v′2

[
− eik1·v2t

k1 · (v2 − v′2)ε̂(−k1,−k1 · v2)
(3.23)

+
eik1·v′

2t

k1 · (v2 − v′2)ε̂(−k1,−k1 · v′2)
+
∑

j

e−iω
′
jt

(ω′j + k1 · v2)(ω′j + k1 · v′2)[∂ε̂(−k1, ω2)/∂ω2]ω′
j

]
.

In Davidson’s derivation [58], he states that the rapidly oscillating terms proportional to eik·vt can

be neglected because they phase-mix to a negligible level upon the appropriate k1 and velocity space

integrals. In the kinetic theory of chapter 2, we were interested in a stable plasma collision operator

in addition to the possibly strongly growing term. Here we keep only the strongest growing terms [i.e.,

those ∝ exp(−iωjt)] of equations 3.22 and 3.23, which gives

P̂1,2(k1,v1,v2, t) =
∑

j

(
4πq1q2

m1k2
1

k1 · ∂f(v1)/∂v1

(ωj − k1 · v1)

)(
4πq1q2

m2k2
1

k1 · ∂f(v2)/∂v2

(ω′j + k · v2)

)
(3.24)

×
∫
d3v′1 d

3v′2
exp[−i(ωj + ω′j)t] P̃1,2(k1,v

′
1,v
′
2, t = 0)

(ωj − k1 · v′1)(ω′j + k1 · v2)
[
∂ε̂(k1, ω1)/∂ω1

]
ωj

[
∂ε̂(−k1, ω2)/∂ω2

]
ω′
j

.

Recall from equations 2.85 and 2.87 that the kinetic equation is

∂f

∂t
+ v1 ·

∂f

∂x̄
= − ∂

∂v1
· 4πq1q2

m1

∫
d3k1

(2π)3

−ik1

k2
1

∫
d3v2 P̂1,2(k1,v1,v2, t). (3.25)

Thus, we are interested in
∫
d3v2 P̂12. Noticing that

∑

j

4πq1q2

m2k2
1

∫
d3v2

k1 · ∂f(v2)/∂v2

ω′j + k1 · v2
= ε̂(−k1, ω

′
j) + 1 = 1, (3.26)



71

where by definition ε̂(−k, ω′j) = 0. Thus, the d3v2 integral of equation 3.24 results in the second term

in parenthesis becoming 1. We also recall from the definition of ε̂ that

∂ε̂(k1, ω1)

∂ω1

∣∣∣∣
ωj

∂ε̂(−k1, ω2)

∂ω2

∣∣∣∣
ω′
j

= −
∣∣∣∣
∂ε̂(k1, ω)

∂ω

∣∣∣∣
2

ωj

(3.27)

and that ωj + ω′j = 2iγj . With these, we find that the evolution equation is

df

dt
= − ∂

∂v
· (4π)2q2

1q
2
2

m2
1(2π)3

∑

j

∫
d3k1

k1k1/k
4
1

ωj − k1 · v1

∫
d3v′1d

3v′2 e
2γjt iP̃1,2(k1,v

′
1,v
′
2, t = 0)

(ωj − k1 · v′1)(ω′j + k1 · v′2)
∣∣∂ε̂(k1, ω)/∂ω

∣∣2
ωj

. (3.28)

Finally, as in section 2.2.3, we again identify the species that we have labeled f(v1) as species s.

The species that interacts with s, which has been labeled f(v2) up to now, we label s′. The species

s′ represents the entire plasma (including s itself) and can be split into different components (i.e.,

individual s′). Thus, the total s response is due to the sum of the s′ components. We also drop the

subscripts on k1 and v1 and label v2 as v′.

After these substitutions, we find that Davidson’s quasilinear theory is a diffusion equation of the

same form as equation 3.13

∂fs
∂t

+ v · ∂fs
∂x̄

=
∂

∂v
· Dv ·

∂fs
∂v

(3.29)

with the same diffusion tensor

Dv ≡
q2
s

m2
s

8π
∑

j

∫
d3k

kk

k2

iEdv
j (k)

ωj − k · v , (3.30)

but where the spectral energy density is redefined as

Edv
j (k) =

∑

s′

q2
s′

4π2k2
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

∫
d3v

∫
d3v′

P̃ (k,v,v′, t = 0)e2γjt

(ωj − k · v)(ω∗j − k · v′) . (3.31)

Davidson’s formulation is identical to the conventional quasilinear theory of equations 3.12, 3.13

and 3.14 except that the definitions of the spectral energy density (equation 3.12 in the conventional

theory and equation 3.31 in Davidson’s) are different. In the conventional model, an initial electric

field fluctuation level is specified, whereas in Davidson’s model it is an initial pair correlation. It is not

obvious how the two relate to one another. In particular, Davidson’s spectral energy density depends

explicitly on the plasma dielectric function.
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3.3 Comparison of Quasilinear and Kinetic Theories

In section 2.3 it was shown that although the component instability-enhanced collision operators

CIE(fs, fs′) consist of both diffusion and drag terms, that the total instability-enhanced collision op-

erator CIE(fs) =
∑
s′ CIE(fs, fs′) has only a diffusion term. This is because the sum over species s′

of all the drag components vanishes. The resultant total instability-enhanced collision operator can be

written in the same form as the effective collision operator of the quasilinear theory of equations 3.13

and 3.14, which are

C(fs) =
∂

∂v
· Dv ·

∂fs
∂v

(3.32)

and

Dv ≡
q2
s

m2
s

8π
∑

j

∫
d3k

kk

k2

γj Ej(k)

(ωR,j − k · v)2 + γ2
j

. (3.33)

However, in each of the three cases: conventional quasilinear theory, Davidson’s quasilinear theory

and in the instability-enhanced kinetic theory, the spectral energy density is defined differently. In

conventional quasilinear theory it is

Eql
j (k) =

|Ê1(k, t = 0)|2
(2π)3V

e2γjt

8π
, (3.34)

in Davidson’s quasilinear theory it is

Edv
j (k) =

∑

s′

q2
s′

4π2k2
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

∫
d3v

∫
d3v′

P̃ (k,v,v′, t = 0)e2γjt

(ωj − k · v)(ω∗j − k · v′) , (3.35)

and in the instability-enhanced term of the kinetic theory, it is

Ekin
j (k) =

∑

s′

q2
s′

4π2k2
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

∫
d3v′

fs′(v
′) e2γjt

(ωR,j − k · v′)2 + γ2
j

. (3.36)

An important feature of equation 3.36 is that it does not depend on specifying an initial electrostatic

fluctuation level, as equation 3.34 requires, or an initial pair correlation function, as equation 3.35

requires. This is because the source of fluctuations, which the spectral energy density describes, is

self-consistently accounted for from discrete particle motion in the plasma. In the quasilinear theories,

the fluctuation source in not specified. Equation 3.36 also shows that when fluctuations originate from

discrete particle motion, the spectral energy density has a particular dependence on k that is determined

by the plasma dielectric function. This k dependence cannot be captured by the conventional quasilinear
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theory, equation 3.34, which typically proceeds by specifying a constant for |Ê1(t = 0)|2 to determine

the spectral energy density.

3.4 Physical Properties of the Collision Operator

The kinetic equation derived in chapter 2 obeys certain physical properties such as conservation laws

and the Boltzmann H-theorem. An overview of these properties is provided in this section along with

a discussion of how the plasma evolves to equilibrium and how these properties relate to those of the

effective collision operator in conventional quasilinear theory. The analogous properties for the stable

plasma case, when CIE is negligible compared to CLB, were first provided by Lenard [2] and many of

the derivations that follow in this section are similar to what was given in his paper.

3.4.1 Density Conservation

Collisions do not create or destroy particles or cause them to change species. For collisions between

species s and s′, this can be expressed mathematically as

∫
d3v C(fs, fs′) = 0, (3.37)

which also implies the less restrictive conditions that the species s density is conserved
∫
d3vdfs/dt =

∫
d3v

∑
s′ C(fs, fs′) = 0 and the total plasma density is conserved

∫
d3v

∑
s dfs/dt = 0. This is true of

both the CLB and CIE terms individually, since each can be written as a velocity-space divergence.

Proof: Equation 3.37 follows directly from writing C(fs, fs′) in the form of a divergence of the colli-

sional current C(fs, fs′) = −∇v · Js/s
′

v . The integral over velocity space vanishes due to the divergence

theorem since J
s/s′
v is zero at infinite velocity.

The conventional quasilinear theory, summarized in section 3.1, does not distinguish each of the

species s′, so one cannot show that equation 3.37 is satisfied; recall that there is only a total collision

operator C(fs) in the quasilinear theory, not individual collision operators C(fs, fs′). In section 3.5 we

discuss why it is not possible to adapt quasilinear theory to describe component collisions. However,

the total effective collision operator in quasilinear theory can be written in the form of a velocity-space

divergence, and thus it does satisfy that the species s and total plasma density are conserved.
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3.4.2 Momentum Conservation

Momentum lost from species s due to collisions of species s with species s′ is gained by species s′.

Mathematically, this is expressed as

∫
d3vmsvC(fs, fs′) +

∫
d3vms′vC(fs′ , fs) = 0. (3.38)

Equation 3.38 implies that the total momentum is conserved:
∫
d3v

∑
smsvdfs/dt = 0.

Proof: Equation 3.38 follows from first integrating by parts to show that
∫
d3v msvC(fs, fs′) =

ms

∫
d3vJ

s/s′
v , which is

∫
d3v msvC(fs, fs′) = −

∫
d3v

∫
d3v′msQs,s′ · Xs,s′ , (3.39)

where we have defined

Xs,s′(v,v′) =
fs′(v

′)
ms

∂fs(v)

∂v
− fs(v)

ms′

∂fs′(v
′)

∂v′
. (3.40)

An expression for
∫
d3v ms′vC(fs′ , fs) is obtained by the substitutions s↔ s′ and v↔ v′ in equation

3.39. Using the properties ms′Qs′,s = msQs,s′ and Xs,s′(v,v′) = −Xs′,s(v′,v) in the result and adding

it to equation 3.39 yields the conservation of momentum expression of equation 3.38.

Since conventional quasilinear theory does not resolve component collision operators, it does not

satisfy equation 3.38. In quasilinear theory, only the total plasma momentum can be shown to be

conserved. To show this, first note that

∫
d3v

∑

s

msv
dfs
dt

=
∑

s

ms

∫
d3vDv ·

∂fs
∂v

(3.41)

= −1

2

∑

j

∫
d3k k Eql

j (k)
∑

s

4πq2
s

k2ms

∫
d3v

(−γj)k · ∂fs/∂v

(ωR,j − k · v)2 + γ2
j

,

in which we have first integrated by parts, then substituted equation 3.16 for Dv. From equation 2.125,

the definition of ωj implies that

={ε̂(k, ωj)} =
∑

s

4πq2
s

k2ms

∫
d3v

(−γj)k · ∂fs/∂v

(ωR,j − k · v)2 + γ2
j

= 0. (3.42)

Thus,
∫
d3v

∑
smsvdfs/dt ∝ ={ε̂(k, ωj)} = 0 proves that total momentum is conserved in conventional

quasilinear theory.
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3.4.3 Energy Conservation

The sum of particle and wave energy is conserved. The energy lost by species s due to conventional

Coulomb collisions of s with s′ (described by the Lenard-Balescu operator) is gained by s′. Mathemat-

ically this can be written

∫
d3v

1

2
msv

2CLB(fs, fs′) +

∫
d3v

1

2
ms′v

2CLB(fs′ , fs) = 0, (3.43)

and it implies that
∫
d3v

∑
smsv

2CLB(fs)/2 = 0. The instability-enhanced portion of the collision

operator shows that a change in total energy in the plasma is balanced by a change in wave energy.

Thus we find that the total energy conservation relation is given by

∫
d3v

∑

s

1

2
msv

2C(fs) = − ∂

∂t

∫
d3k
E(k)

k2
(3.44)

in which the spectral energy density is defined in terms of equation 3.36. Equation 3.44 is also satisfied

in conventional quasilinear theory (if equation 3.34, instead of 3.36, is used to define the spectral energy

density).

Proof: Conservation of energy from the Lenard-Balescu collision operator, equation 3.43, follows

from first integrating by parts to show
∫
d3vmsv

2C(fs, fs′)/2 =
∫
d3vmsv · Js/s

′
v . Putting in J

s/s′

LB

and using the same method that was used in the proof of momentum conservation for obtaining an

expression for
∫
d3vms′v

2CLB(fs′ , fs)/2 yields

∫
d3v

v2

2

[
msCLB(fs, fs′) +ms′CLB(fs′ , fs)

]
= −

∫
d3v

∫
d3v′msQLB · (v − v′) · Xs,s′ . (3.45)

Since QLB · (v − v′) = 0, the right side of equation 3.45 vanishes, which proves equation 3.43 and by a

trivial extension
∫
d3v

∑
smsv

2CLB(fs)/2 = 0.

The only nonvanishing component of the conservation of energy relation is the instability-enhanced

portion which can be written
∫
d3v

∑
smsv

2CIE(fs)/2 = −
∫
d3v

∑
smsv · DIE,diff · ∂fs/∂v. Inserting

DIE,diff from equation 2.122, identifying equations 3.33 and 3.36, gives

∫
d3v

∑

s

1

2
msv

2CIE(fs) = −
∫
d3k

2γE(k)

k2

[∑

s

4πq2
s

k2ms

∫
d3v

k · v k · ∂fs/∂v

(ω2
R,j − k · v)2 + γ2

j

]
. (3.46)

Equation 2.126, describing <{ε̂(k, ωj)} = 0, shows that the term in square brackets in equation 3.46 is

equal to 1. Identifying 2γjE = ∂E/∂t in equation 3.46, from equation 3.36, and adding the condition

∫
d3v

∑
smsv

2CLB(fs)/2 = 0 to the result completes the proof of equation 3.44.
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Finally, it is interesting to point out that if the approximate expression 2.47 for QIE is used in place

of the more fundamental expression 2.44, then QIE · (v−v′) = 0 implies that conservation of energy for

collisions between individual species, i.e. equation 3.43, can also be extended to the instability enhanced

term. In this case, the change in wave energy is missed. Making the approximation of equation 2.47

leads to neglect of the change in wave energy, which is a result of the wave energy being much smaller

than the plasma energy. This demonstrates an instance where caution must be taken when applying

the δ-function approximation to equation 2.44, and using the result, which is equation 2.47.

3.4.4 Positive-Definiteness of fs

If fs(v) ≥ 0 initially, fs(v) ≥ 0 for all time. This property is meant to check that unphysical distribution

functions (that have a negative number of particles for some velocity) cannot arise as an initially

physically meaningful fs(v) evolves in time.

Proof: The proof of this for C(fs) = CLB(fs) + CIE(fs) is essentially the same as that for just

C(fs) = CLB(fs) that was first provided by Lenard [2]. It goes as follows: If fs(v) > 0 for all v initially,

but at a later time fs(v) < 0 for some v, there must be an instant when the minimum value of fs first

becomes negative. At this point in velocity-space, the following four conditions must be satisfied:

(i) fs(v) = 0 (there must be a zero of fs itself)

(ii) ∂fs(v)/∂v = 0 (the derivative of fs is zero at its minimum)

(iii) ∂2fs(v)/∂v∂v is a non-negative definite tensor (so that fs will have a minimum instead of a

maximum or a saddle point), and

(iv) dfs/dt < 0 (fs must decrease as t increases in order to become negative).

The plasma kinetic equation is

dfs
dt

= −
∑

s′

∂

∂v
·
∫
d3v′Q ·

(
fs(v)

ms′

∂fs′(v
′)

∂v′
− fs′(v

′)
ms

∂fs(v)

∂v

)
(3.47)

= −
∑

s′

∫
d3v′

(
∂

∂v
· Q
)
·
(
fs(v)

ms′

∂fs′(v
′)

∂v′
− fs′(v

′)
ms

∂fs(v)

∂v

)

−
∑

s′

∫
d3v′Q :

(
1

ms′

∂fs(v)

∂v

∂fs′(v
′)

∂v′
− fs′(v

′)
ms

∂2fs(v)

∂v∂v

)
.
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Applying (i) and (ii) at the point of interest in velocity space, this reduces to

dfs
dt

=
∑

s′

∫
d3v′

fs′(v
′)

ms
Q :

∂2fs(v)

∂v∂v
. (3.48)

However, Q = QLB + QIE is a non-negative definite tensor and, from (iii), so is ∂2fs/∂v∂v. Thus,

equation 3.48 implies that df/dt ≥ 0, which contradicts condition (iv). Hence, if fs ≥ 0 initially, then

fs ≥ 0 for all time.

For conventional quasilinear theory, since Dv (equation 3.16) is also a non-negative definite tensor

when the plasma is unstable (γj ≥ 0), the positive definiteness of fs is also obeyed in quasilinear theory.

However, one criticism of quasilinear theory is that it does not transition to stable plasmas [69]. If

γj < 0, the diffusion coefficient can have negative components and an unphysical equation results, with

the consequence that fs can become negative. This would be a misapplication of quasilinear theory

because it is based on the assumption that the plasma is unstable; but it also illustrates the limits

of quasilinear theory because a Coulomb collision operator [i.e., CLB(fs)] is required near marginal

stability. In the kinetic theory, when γ is near zero (or negative), the Lenard-Balescu term dominates,

which ensures that the total Q remains non-negative-definite regardless of whether instabilities are

present.

3.4.5 Galilean Invariance

The component collision operators C(fs, fs′), and consequently the total collision operator C(fs) are

Galilean invariant.

Proof : Transforming coordinates to w ≡ v −Vf and w′ ≡ v′ −Vf introduces a Doppler shift into

equations 2.16, 2.17 and 2.18 where ω ↔ ω + k ·Vf when v↔ w. By defining the variables

ω̄ ≡ ω + k ·Vf and ω̄′ ≡ ω′ + k ·Vf (3.49)

which satisfy d3ω = d3ω̄ and ∂/∂ω̄ = ∂/∂ω, we can replace ω with ω̄, ω′ with ω̄′, v with w, v′

with w′ and the entire analysis of section 2.1 can be repeated in these new coordinates. Thus, the

collision operator, equation 2.45, is Galilean invariant. Therefore the kernel satisfies Galilean invariance,

Q(v,v′) = Q(w,w′), as well.
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3.4.6 The Boltzmann H-Theorem

The H-functional for each species s is defined as Hs ≡
∫
d3v fs(v) ln fs(v) and the total H is the sum

of the component species H =
∑
sHs. The Boltzmann H-theorem states that the total H satisfies

dH/dt ≤ 0. It is equivalent to stating that entropy always increases until equilibrium in reached.

Proof: The time derivative of Hs is dHs/dt =
∫
d3v
[
1 + ln fs(v)

]
dfs(v)/dt. Using the conservation

of density property from section 3.4.1 gives dHs/dt = −
∫
d3v

∑
s′ ln(fs)(∂/∂v) · Js/s

′
v . Integrating by

parts yields dHs/dt =
∑
s′
∫
d3v J

s/s′
v · ∂ ln fs/∂v. We then identify the components of Hs such that

Hs =
∑
s′ Hs,s′ . Putting in the kinetic equation 2.45 gives

dHs,s′
dt

= −
∫
d3v

∫
d3v′

1

ms

∂ ln fs(v)

∂v
·
(
msQs,s′

)
· Xs,s′ . (3.50)

By interchanging the species s↔ s′ and dummy integration variables v↔ v′ an expression for Hs′,s is

obtained

dHs′,s
dt

=

∫
d3v

∫
d3v′

1

ms′

∂ ln fs′(v
′)

∂v′
·
(
ms′Qs′,s

)
· Xs,s′ , (3.51)

in which we have used Xs′,s = −Xs,s′ . Using msQs,s′ = ms′Qs′,s in equation 3.51, along with equation

3.50, in 2H =
∑
s

∑
s′
(
Hs,s′ +Hs′,s

)
yields

2
dH
dt

= −
∑

s

∑

s′

∫
d3v

∫
d3v′
Xs,s′ ·

(
msQs,s′

)
· Xs,s′

fs(v)fs′(v′)
. (3.52)

Since the Qs,s′ = QLB + QIE (from equations 2.43 and 2.44) is positive-semidefinite (a non-negative-

definite tensor) and fs, fs′ ≥ 0 (see section 3.4.4), each term on the right side of equation 3.52 is

negative-semidefinite. Thus, we find that the Boltzmann H-theorem is satisfied: dH/dt ≤ 0.

3.4.7 Uniqueness of Maxwellian Equilibrium

The unique equilibrium distribution function is Maxwellian and the approach to equilibrium is hastened

by instabilities. Equilibrium is established when dH/dt = 0. In the analysis below, we first show from

CLB that the unique equilibrium state of a plasma is a Maxwellian in which each species has the same

temperature and flow velocity. Since instabilities require a free energy source, they cannot be present

near thermodynamic equilibrium. Thus, the final equilibrium state of the plasma is determined by

CLB. However, bounded plasmas are rarely in true thermodynamic equilibrium. A much more common
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concern is to determine the timescales for which equilibration between individual species occurs. The

fastest timescales are typically for self-equilibration within species. For example, electrons and ions in

a plasma may be in equilibrium with themselves, in which case dHe,e/dt = 0 and dHi,i/dt = 0, but not

in equilibrium with each other, so dHi,e/dt 6= 0. In this case, electrons and ions will individually have

Maxwellian distributions, but their temperature and flow velocities will not necessarily be the same and

instabilities may be present. In the second part of the analysis below, we show that instabilities can

significantly shorten the timescale for which individual species reach a unique Maxwellian equilibrium

(such that dHs,s/dt = 0, but where dHs,s′/dt is not necessarily 0 for all s′).

Analysis: First, we consider the final equilibrium state of the plasma from the CLB term of the

collision operator. Since each term of equation 3.52 is negative-semidefinite, each must vanish indepen-

dently in order to reach equilibrium at dH/dt = 0. The terms that tend to zero on the fastest time

scale are those describing like-particle collisions s = s′. Considering these first, dHs,s/dt = 0 implies

that Xs,s ∝ v − v′ [because QLB · (v − v′) = 0]. From equation 3.40, we have

Xs,s =
fs(v)fs(v

′)
ms

[
∂ ln fs(v)

∂v
− ∂ ln fs(v

′)
∂v′

]
. (3.53)

Thus, the condition Xs,s ∝ v − v′ implies

∂ ln fs(v)

∂v
− ∂ ln fs(v

′)
∂v′

= −A(v,v′)(v − v′) (3.54)

in which A is some function of v and v′. Applying the curls (∂/∂v)× and, separately (∂/∂v′)×, to

equation 3.54 yields

∂A

∂v
× (v − v′) = 0 and

∂A

∂v′
× (v − v′) = 0. (3.55)

Thus, given v or v′, A is spherically symmetric in v − v′. Furthermore, equation 3.54 shows that

A(v,v′) = A(v′,v). This, combined with the spherically symmetric property, implies that A depends

only on the distance between the two points in velocity space

A = A(|v − v′|). (3.56)

By setting v = 0, then v′ = 0, equations 3.54 and 3.56 imply

∂ ln fs(v
′)

∂v′
= −v′A(|v′|) + K1 and

∂ ln fs(v)

∂v
= −vA(|v|) + K2, (3.57)
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in which K1 = ∂ ln fs(v
′)/∂v′|v′=0 and K2 = ∂ ln fs(v)/∂v|v=0 are constants. Putting equation 3.57

into equation 3.54 gives

vA(|v|)− v′A(|v′|) = (v − v′)A(|v − v′|) + (K2 −K1). (3.58)

Considering the velocity-dependent parts, the only continuous solution of this is A = constant and

K1 = K2. We will define K1 = K2 = B. Then, equation 3.57 gives

∂ ln fs(v)

∂v
+Av = B. (3.59)

Integrating equation 3.59 shows that fs(v) has the general Maxwellian form fMs(v) = exp
(
−Av2/2 +

B · v + C
)
, where C is an additional constant of integration.

Applying the conventional definitions for density ns =
∫
d3vfs, flow velocity Vs =

∫
d3vvfs/ns

and thermal speed v2
Ts = 2

3

∫
d3v(v − Vs)

2fs/ns = 2Ts/ms, the five constants A, B and C can be

written in terms of ns, Vs and Ts. These definitions yield: A = ms/(2Ts), B = msVs/Ts and

exp(−C) = ns/(π
3/2v3

Ts) exp(−V 2
s /v

2
Ts). Then, the Maxwellian for species s can be written in the

familiar form

fMs(v) =
ns

π3/2v3
Ts

exp

[
− (v −Vs)

2

v2
Ts

]
. (3.60)

On a longer time scale the unlike particle terms (s 6= s′) of equation 3.52 must also vanish for

equilibrium to be reached. This implies Xs,s′ ∝ v − v′. Putting the individual species Maxwellians of

equation 3.60 into this condition gives

(
v

Ts
− v′

Ts′

)
+

(
Vs′

Ts′
− Vs

Ts

)
∝ v − v′, (3.61)

which is satisfied only if Ts = Ts′ and Vs = Vs′ . Thus, the unique equilibrium state of the plasma

is that each species have a Maxwellian distribution of the form of equation 3.60 with the same flow

velocity and temperature.

Next, we consider the role of instability-enhanced collisions in the equilibration process. The analysis

just considered could be repeated by substituting QIE for QLB, except that unlike QLB, QIE (equation

2.44) is not proportional to δ[k · (v − v′)] and does not satisfy QIE · (v − v′) = 0. However, QIE has a

Lorentzian form in velocity space that is very peaked around k · (v − v′) = 0 and the dominant term

can be written in the delta function form. Substituting QIE into equation 3.52 gives an expression
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that depends on velocity-space integrals in v and v′ over Lorentzian distributions. We assume that the

instabilities are weakly growing and thus satisfy γj � ωR,j − k · v. These velocity-space integrals are

of the form
∫
dx g(x)∆/[(x− a)2 + ∆2] where ∆ � a. Here the appropriate substitutions are ∆ = γj ,

a = ωR,j and x = k · v (or x = k · v′). They can be approximated by

∫ ∞

−∞
dx g(x)

∆

(a− x)2 + ∆2
≈
∫ n∆

−n∆

dy g(y + a)
∆

y2 + ∆2
(3.62)

where n is a number large enough to span most of the integrand. Expanding g(x) about the peak at x =

a, g(x) ≈ g(a) + g′(a)y+ g′′(a)y2/2 + . . ., the lowest order term in equation 3.62 gives g(a)2arctan(n) ≈

πg(a). The second term is zero. The third term gives g′′(a)∆2[n− arctan(n)] ∼ O(∆2/a2). Thus, these

integrals satisfy ∫
dx g(x)

∆

(a− x)2 + ∆2
≈
∫
dxπg(x)δ(x− a) +O

(
∆2

a2

)
. (3.63)

Using equation 3.63 and the property δ(x − a)δ(x − b) = δ(x − a)δ(a − b), we find that within the

velocity-space integrals of equation 3.52, the QIE term can be written in the form

QIE =
∑

j

2q2
sq

2
s′

ms

∫
d3k

kk

k4

πδ[k · (v − v′)]δ(ωR,j − k · v)e2γjt

γj |∂ε̂(k, ω)/∂ω|2ωj
+O

(
γ2
j

ω2
R,j

)
. (3.64)

Since the lowest order term of equation 3.64 satisfies QIE · (v− v′) = 0, one can repeat the analysis

used for the Lenard-Balescu term to show that the instability-enhanced term drives the distribution

of individual species to unique Maxwellian distributions (from like particle, s = s collisions). The

correction terms in equation 3.64 will not obey this property and can be expected to cause some deviation

from a Maxwellian. However, if the distribution is non-Maxwellian, the lowest order term in equation

3.64 drives the distribution toward a Maxwellian on a faster timescale, by a factor of O(ω2
R,j/γ

2
j ), than

the correction terms cause a deviation from Maxwellian. Thus, if instabilities are present from the

interaction of two different species, for example flow-driven instabilities, the instabilities can shorten

the timescale for which each species will self-equilibrate to a Maxwellian.

On a longer time scale, the different species will also equilibrate with one another. For the electron-

ion plasma example, and if Ti ≈ Te, the fastest equilibration timescale is the electron-electron. The

ion-ion collision frequency is a bit smaller at νi−i ∼ νe−e
√
me/Mi, and at the slowest timescale, the

ions and electrons equilibrate with one another according to the frequency νi−e ∼ νe−e(me/Mi). These

scalings are obtained directly from νs−s
′ ∼ C(fs, fs′)/fs and are the same for both the Lenard-Balescu
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term and the instability-enhanced term. Before the final equilibrium state can be established (in which

each species is Maxwellian with the same temperature and flow velocity) the plasma can be in a state

where individual species have come to be in Maxwellian equilibrium, but where the flow speed and

temperature of different species have not yet equilibrated. In this state, instabilities can persist. In

chapters 4, 5 and 6, applications are considered where flow-driven instabilities cause like-particle species

to become Maxwellian, but where the timescale for different species to equilibrate with one another

(where the flow velocities and temperatures would be the same) remain much longer than the time it

takes the plasma to flow out of the system.

The fact that QIE · (v − v′) is only approximately zero is not unique to the instability-enhanced

term. Recall from section 1.1.1 that QLB has components that are O(1/ ln Λ) which are neglected.

These also apparently lead to modifications to the equilibrium because the ẑẑ component of equation

1.60 will prevent the strict QLB · (v − v′) = 0 property. The O(γ2/ω2
R,j) terms are typically even

smaller than 1/ ln Λ. Thus, the property of a unique Maxwellian equilibrium is obeyed as strictly by

the instability-enhanced term, in a weakly unstable plasma, as it is by the Lenard-Balescu term.

It may also be worth pointing out that one cannot show from conventional quasilinear theory that

instability-enhanced collisions drive the plasma to a unique Maxwellian equilibrium. This can be shown

within the kinetic theory because it distinguishes the origin of fluctuations and thus determines the

spectral energy density E(k) (see equation 3.36). Specification of E(k) is required in order to show that

QIE can be written in a form proportional to δ[k · (v− v′)]. This property is required in order to show

that Maxwellian is the unique equilibrium.

3.5 Attempt to Reconcile Elements of Kinetic and Quasilinear

Theories

Throughout this chapter, we have discussed similarities and differences between the kinetic theory of

chapter 2 and conventional quasilinear theory (section 3.1). Although the basic equations of each theory

look formally similar, we have seen that the resultant evolution equations have important differences

that also effect the physical properties that each equation obeys. One difference is that the kinetic
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approach associates the source of fluctuations with discrete particle motion, while quasilinear theory

does not specify the source of fluctuations. A related difference is that the ensemble average in kinetic

theory is an average over initial particle positions in the six-dimensional (x,v) phase-space, while the

quasilinear average is simply a spatial average. The kinetic theory uses Gauss’s law and the dielectric

function ε̂ consequently appears self-consistently in the analysis. In quasilinear theory, Gauss’s law is

not explicitly used. It must, however, be used externally in order to determine the dispersion relations,

which determine the ωj that are assumed from the outset of the model derivation.

A result of the different approaches is that the kinetic theory distinguishes individual collision

operators that describe the collisional interaction between individual species s and s′. The quasilinear

approach can only access a total collision operator because the fluctuation source is unknown. We have

seen in section 3.4 that the ability of the kinetic theory to distinguish individual collision operators

leads to more restrictive conservation laws, and is a necessary component in proving that a Maxwellian

is the unique equilibrium when instabilities are present. In this section, we address the question: is

there a way to reformulate conventional quasilinear theory so that individual species interactions are

resolved, without necessarily restricting the discussion to instabilities that originate from a discrete

particle source (which the kinetic theory assumes)? We will find that the answer is no. Although this

is not possible, the question is often raised when this work is discussed, and it is instructive to show

why conventional quasilinear is unable to distinguish individual species collision operators.

A major difference in the mathematics used in the kinetic and quasilinear derivations is that the

kinetic approach uses formal definitions for Fourier and Laplace integral transforms, while the quasilinear

theory assumes that first-order quantities in the perturbation scheme satisfy f1 =
∑
j f̄1 exp(−iωjt) (see

equation 3.8) in which the ωj are roots of the dielectric function ε̂(k, ωj) = 0. The dielectric function

does not arise internal to the theory, but is assumed to be determined from a proper Fourier-Laplace

transform solution of the Vlasov equation. Instead of making this assumption, we will use the same

Fourier and Laplace integral transforms, defined in equation 2.14, that were used in the kinetic approach

of chapter 2 to solve the quasilinear equations.

Recall that the quasilinear equations consist of the evolution equation

∂fso
∂t̄

+ v · ∂fso
∂x̄

= − ∂

∂v
· qs
ms

〈
E1 fs1

〉
(3.65)
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and the first-order perturbation equation

∂fs1
∂t

+ v · ∂fs1
∂x

= − qs
ms

E1 ·
∂fso
∂v

(3.66)

which is used to solve for right side of equation 3.65. Unlike conventional quasilinear theory, we will

also need Gauss’s law

∂

∂x
·E1 = 4π

∑

s

qs

∫
d3v fs1 (3.67)

to close the system of equations when using the integral transform technique.

Using the Fourier-Laplace integral transformation, defined in equations 2.14 and 2.15, equation 3.66

can be written

f̂s1(k,v, ω) =
i f̃s1(k,v, t = 0)

ω − k · v − qs
ms

φ̂1
k · ∂fso/∂v

ω − k · v , (3.68)

and equation 3.67 as

k2 φ̂1(k, ω) = 4π
∑

s

qs

∫
d3v f̂s1(k,v, ω), (3.69)

in which we have applied the electrostatic approximation Ê1 = −ikφ̂1. Putting equation 3.69 into

equation 3.68 yields

φ̂1(k, ω) =
∑

s

4πqs
k2ε̂(k, ω)

∫
d3v

if̃s1(t = 0)

ω − k · v , (3.70)

in which

ε̂(k, ω) = 1 +
∑

s

4πq2
s

k2ms

∫
d3v

k · ∂fso/∂v

ω − k · v (3.71)

is the dielectric function, which comes about self-consistently when using the integral transform method.

Equations 3.68 and 3.70 thus yield

Ê1(k′, ω′)f̂s1(k, ω) =
if̃s1(k,v, t = 0)

ω − k · v
∑

s′′

4πqs′′k
′

k′2ε̂(k′, ω′)

∫
d3v′′

f̃s′′1(k′,v′′, t = 0)

ω′ − k′ · v′′ (3.72)

− qs
ms

k · ∂fso/∂v

ω − k · v

(∑

s′

4πqs′

k2ε̂(k, ω)

∫
d3v′

f̃s′1(k,v′, t = 0)

ω − k · v′
)(∑

s′′

4πqs′′

k′2ε̂(k′, ω′)

∫
d3v′′

f̃s′′1(k′,v′′, t = 0)

ω′ − k′ · v′′
)
.

In conventional quasilinear theory, the first term on the right side of equations 3.68 and 3.72 is

absent; see equation 3.9. This is an artifact of using the series assumption of equation 3.8, rather than

a proper integral transform. The series assumption does not account for the initial condition fs1(t = 0),

but the integral transform does. Thus, it seems the absence of this initial condition term is a fault of

the conventional quasilinear theory. One argument to justify its absence may be that it has only one
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ε̂ in its denominator, while the second term has two. This will lead to exp(2γt) growth of the second

term, rather than exp(γt) for the first; thus the second term should be larger. However, this is not

always a valid argument. In the kinetic approach of chapter 2, the first term was multiplied by one in

the form of ε̂/ε̂ where the numerator is written explicitly in terms of equation 3.71. Doing the same

here yields the following expression with three terms:

Ê1(k′, ω′)f̂s1(k, ω) = (3.73)

if̃s1(k,v, t = 0)

ω − k · v

(∑

s′

4πq2
s′

k2ms′ ε̂(k, ω)

∫
d3v′

k · ∂fs′o/∂v′

ω − k · v′
)(∑

s′′

4πqs′′k
′

k′2ε̂(k′, ω′)

∫
d3v′′

f̃s′′1(k′,v′′, t = 0)

ω′ − k′ · v′′
)

− qs
ms

k · ∂fso/∂v

ω − k · v

(∑

s′

4πqs′

k2ε̂(k, ω)

∫
d3v′

f̃s′1(k,v′, t = 0)

ω − k · v′
)(∑

s′′

4πqs′′

k′2ε̂(k′, ω′)

∫
d3v′′

f̃s′′1(k′,v′′, t = 0)

ω′ − k′ · v′′
)

+
if̃s1(k,v, t = 0)

ω − k · v
1

ε̂(k, ω)

∑

s′′

4πqs′′k
′

k′2ε̂(k′, ω′)

∫
d3v′′

f̃s′′1(k′,v′′, t = 0)

ω′ − k′ · v′′ .

From inspection of equation 3.73, we can see explicitly how differences in the quasilinear versus

kinetic formulations lead to different collision operators. Recall that there are three distinctions between

the kinetic and quasilinear approaches:

(1) The kinetic theory applied Fourier-Laplace integral transforms, while conventional quasilinear the-

ory assumes that fs1(x,v, t) =
∑
j f̄s1(x,v) exp(−iωjt) where the ωj solve ε̂(k, ωj) = 0.

(2) The kinetic theory associates fluctuations with discrete particle motion,

f̃s1(k,v, t = 0) =

N∑

i=1

e−ik·xioδ(v − vio)− (2π)3δ(k) fso(v),

while the quasilinear theory does not specify a source for fluctuations [neither f̃s1(t = 0), nor

φ̂(t = 0)].

(3) The kinetic theory uses a definition for ensemble average that integrates the initial particle positions

〈. . .〉 ≡
N∏

l=1

∫
d3xlod

3vlo
fl(vlo)

(nV )N
(. . .),

while quasilinear theory uses a spatial average over the fluctuation scale-length

〈. . .〉 =
1

V

∫
d3x (. . .).
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Difference (1) results in the neglect of the first and third terms of equation 3.73 in conventional

quasilinear theory, because the initial f̃s1(t = 0) is not accounted for by the series assumption for the

timescale of fs1(x,v, t). It is, of course, kept when using Fourier-Laplace integral transforms such as the

kinetic theory uses. In fact, in the kinetic theory, the first term of equation 3.73 becomes the drag term

for individual collision operators. Difference (1) can easily be eliminated by using the equation 3.73,

instead of equation 3.11, in the quasilinear collision operator. Is it then possible to capture individual

collision operators within quasilinear theory? The answer is still no, because of differences (2) and (3).

In the kinetic theory, after inserting the discrete particle source for f̃s1(t = 0), and applying the

ensemble average to equation 3.73, all the terms from the homogeneous part of f̃s1(t = 0) [that is the

(2π)3δ(k)fso(k) part] vanish. Also, all of the “unlike” particle terms with s′ 6= s′′ vanish (this was shown

in equation 2.28). Likewise, all of the third term of equation 3.73 vanishes. Here, the terms with s 6= s′′

vanish after the ensemble average and the remaining s′′ = s term vanishes because it has odd-parity in

k-space. However, if the origin of fluctuations is not specified, and/or a spatial average is used instead

of the kinetic ensemble average, one cannot show that the “unlike” particle correlation terms vanish; in

this case, many additional nonzero terms are left beyond the kinetic theory result.

Unless the discrete particle source is specified, the result from averaging equation 3.73 cannot be split

into individual component collision operators. This is because the first and second terms will depend on

the product of field quantities, and the cross-term contributions to these (s′′ 6= s′) will remain. These

do not remain in the kinetic theory, allowing the result to be written in terms of a sum over individual

species interactions [s with s′, giving a total effect of
∑
s′ C(fs, fs′)]. That “unlike” particle correlations

vanish is the essential difference between the kinetic and quasilinear formulations. Without specifying

the origin of fluctuations, this identification cannot be made. This fundamental difference with the

kinetic approach prevents conventional quasilinear theory from being written in terms of individual

collision operators. The ability to do so is a distinctly kinetic result.
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Chapter 4

Langmuir’s Paradox

Irving Langmuir’s most acclaimed contributions to science were for his foundational work in surface

chemistry. He was awarded the 1932 Nobel Prize in Chemistry “for his discoveries and investigations

in surface chemistry.” But Langmuir had broad interests and he was also a founder of another field:

plasma physics. That Langmuir was a true founder of plasma physics is evidenced by the fact that he

named the state of matter in 1928 [70]. Although much of his published work concerned fundamental

characteristics of plasma, Langmuir was an industrial physicist (at General Electric) and his work was

motivated by a practical device: the gas-filled incandescent lamp.1 In this chapter, we will study

an anomaly that Langmuir discovered in his incandescent lamps (first reported in 1925 [13, 14]) that

remains unresolved to this day. It is now referred to as Langmuir’s paradox [15].

4.1 Introduction to Langmuir’s Paradox

Langmuir’s paradox is a measurement of anomalously fast equilibration of the electron distribution

function to Maxwellian in low-temperature gas-discharge plasma. In 1925, Langmuir reported [13] that

despite the fact that the shortest collision length for electron scattering (from binary Coulomb collisions,

or collisions with neutrals) was much longer than the diameter of his plasma, the electron distribution

was Maxwellian at all energies. This was a surprising result because sheaths near the plasma boundaries

selectively remove high energy electrons. Without a means to scatter electrons to higher energy and

replete the otherwise missing tail, it was inexplicable how the entire distribution remained Maxwellian.

Thirty years later, Gabor named this phenomena Langmuir’s paradox [15].

In section 4.1.1, we review the experimental devices and measurements used by Langmuir in his

1For a history and tribute to Langmuir’s work in the foundation of plasma physics, see the February 2009 issue of
Plasma Sources Science and Technology.
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original work on this topic. Gabor’s definition of Langmuir’s paradox is discussed in section 4.1.2.

Previous attempts to resolve this discrepancy (including Langmuir’s own attempts as well as those of

Gabor and others) are reviewed in section 4.1.3. Finally, in section 4.1.4, we show how the kinetic

theory of instability-enhanced interactions developed in chapter 2 may be used to resolve Langmuir’s

paradox.

4.1.1 Langmuir’s Seminal Measurements

A few years before introducing the term plasma, Langmuir studied electron scattering in low-pressure

gas-discharges. In his 1925 Physical Review article “Scattering of Electrons in Ionized Gases” [13], Lang-

muir reported seminal measurements of the properties of electrons in these plasmas. His experimental

apparatus was a spherical discharge tube approximately 3 cm in diameter, which was made of glass and

energized by electrons emitted from a hot filament [13, 14]; see figure 4.1. He discovered that nearly all

of the discharge was a quasi-neutral plasma, but that because electrons diffused to the boundaries much

faster than the more massive positively charged ions (by about 400 times), a thin electric field, which

he later named a sheath [70], surrounded the plasma and acted to reflect most of the incident electrons

(about 399/400 of them) so that the electron and ion fluxes balanced at the boundary. The presence

of sheaths allows a plasma to remain in quasi-netural in steady-state operation. For such an ambipolar

ion sheath, the potential drops e∆φs ≈ −Te ln
√

2πme/Mi (≈ 5Te for mercury) over a few electron

Debye lengths λDe ≡
√
Te/4πene. In Langmuir’s discharge, the electron temperature was Te ≈ 2 eV

and the electron density was ne ≈ 1011 cm−3, so the sheath potential drop was e∆φs ≈ 10 eV, and

the Debye length was λDe ≈ 3 × 10−3 cm. It was later shown that an additional, but much weaker,

presheath electric field is also present in plasmas which accelerates the ion fluid speed to the sound

speed, Vi ≥ cs ≡
√
Te/Mi at the presheath-sheath boundary. This result is commonly attributed to

Bohm [38] (it is called the Bohm criterion), but it was also appreciated in Langmuir’s earlier works

deriving the “plasma balance equation” [72]. The potential in the presheath of these discharges typ-

ically drops e∆φps ≈ Te/2 over a distance characteristic of the ion-neutral collision mean free path

λi/n � λDe, see figure 4.2.

In his apparatus, Langmuir measured the electron velocity distribution function (EVDF) using an
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Figure 4.1: Photograph of Langmuir’s discharge reproduced from reference [71], and one of his probe
traces reproduced from reference [13]. Copyright 1929 and 1925 by The American Physical Society.
This probe trace shows a Maxwellian distribution for energies in excess of 50 V, which is approximately
five times the sheath energy.

electrostatic probe (now called a Langmuir probe). The Langmuir probe technique scans the bias on a

conductor inserted into a plasma and can be used to infer the EVDF based on the measured current-

voltage characteristic. A Maxwellian EVDF shows up as a straight line on a semi-log current-voltage

trace; see figure 4.1. Surprisingly, Langmuir found that the EVDF was Maxwellian at all velocities

despite the fact that his calculated electron-electron scattering length, λe/e, was much longer than the

tube diameter. The electron-ion and electron-neutral scattering lengths where also much longer than

the tube diameter. Langmuir thus expected significant depletion of the EVDF for electrons with energy

large enough to escape the sheath; in particular electrons with v‖ & v‖c ≡
√

2∆φs/me. Here the ‖

direction is parallel to the sheath electric field (perpendicular to the bounding surface). It was also

unexplainable how his discharge could remain lit because the vast majority of ionization events were

attributed to the very same electrons in the tail of the Maxwellian EVDF (rather than the filament

emitted electrons) that basic scattering theory predicted to be missing. Langmuir’s measurements

implied that some anomalous mechanism for electron scattering must have been present which was

capable of boosting the velocity of many electrons and rapidly establishing the Maxwellian equilibrium.
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Figure 4.2: Sketches of the plasma-boundary transition region and the natural logarithm of a trun-
cated Maxwellian distribution function. The truncation was expected, but not found in Langmuir’s
measurements. Instead a Maxwellian was measured at all velocities.

Langmuir summarized the major conclusions of his experiments on page 591 of reference [13]:

This discussion of the results obtained from a study of low pressure arcs shows (1) that

the free electrons have velocities with a Maxwell distribution corresponding (in the case of

mercury vapor at 1 bar) to a temperature of 30,000◦; (2) that this distribution is maintained

even when the walls are negatively charged and hence are constantly removing the faster

electrons; (3) that the number of collisions with atoms and electrons is far too small to

maintain this distribution, the mean free path being of the order of the tube diameter; (4)

that mobility experiments indicate that the electrons suffer at least ten changes of momentum

between consecutive collisions with atoms.

The sheath potential drop in Langmuir’s discharge was 15.5 volts, while the EVDF was measured to be

Maxwellian out to energies in excess of 50 volts (see figure 4.1).

Langmuir goes on to describe a number of experiments where the plasma is generated by electrons

emitted from a hot cathode, or a heated filament, with varying energies and currents (he calls these

primary electrons). He finds that there is a connection between the energy input into the plasma from

the primary electrons and the electron temperature in the bulk of the plasma (what he calls ultimate

electrons), but that in all cases the EVDF continues to be Maxwellian to all diagnosable energies. The
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total EVDF consisted of three regions in velocity-space that all had Maxwellian distributions, but with

differing temperatures: the fast primary electrons, the thermal ultimate electrons and an intermediate

region which he called secondary electrons. The density of ultimate electrons was over 1000 times the

primary or secondary densities.

By turning his probe with respect to the beam, he could show that the primaries had a flow compo-

nent in the direction that they where injected, but that enhanced scattering must have occurred because

they had a Maxwellian distribution with temperature 1420◦. Thus, the beam was not monoenergetic as

expected and many primaries obtained energies greater than the energy at which they where injected.

By varying the current through the hot filament (or cathode heating), Langmuir could change the den-

sity of the injected electron beam. He found that less dense beams had a colder temperature, indicative

of more monenergetic beams. However, the Maxwellian property of the EVDF of ultimate electrons re-

mained unchanged. From this series of experiments, Langmuir could conclude that the Maxwellian tail

of the ultimate electron distribution was not simply being filled by slowing primary electrons, but was

necessarily due to enhanced scattering of lower energy electrons in the thermal part of the distribution

(amongst the ultimate electrons themselves). Enhanced electron scattering appeared to occur amongst

the primary electrons themselves as well.

4.1.2 Gabor’s Definition of Langmuir’s Paradox

Despite Langmuir’s emphasis on the importance of resolving this major discrepancy,2 the problem was

largely ignored by physicists. Shortly after Langmuir’s publications, Dittmer repeated his experiments

corroborating his results [73]. Aside from this work, there was very little immediate response to the

problem. Perhaps the mysteries uncovered by Langmuir were overshadowed by the revolution in physics

that was being brought about by quantum mechanics at the time (one must also remember that Lang-

muir’s was a new field, and very few people were working on the physics of ionized gases in 1925).

Whatever the reason for the inattention, it took thirty years before a serious second look was taken at

Langmuir’s measurements.

In 1955, Dennis Gabor and coworkers took up the issue of electron scattering uncovered by Langmuir.

Rather than paraphrase their Nature article, we simply quote the section of the introduction in which

2For instance, Langmuir discussed this problem at the “International Congress on Physics” in Como, 1927 [14].
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they introduce and define ‘Langmuir’s paradox’. After introducing Langmuir’s theory of gas discharge

plasmas, Gabor writes on page 916 of reference [15]:

This theory was highly successful in all respects except one; but this exception, as Langmuir

showed in a number of important papers [13, 14], presented one of the worst discrepancies

known in science. Once the existence of electron temperatures was accepted, the theory of

Langmuir and Mott-Smith could account for all observations, but this phenomenon itself

remained not only unexplained but also inexplicable. Maxwellian energy distributions have

been observed, in discharge tubes of a few centimetres in diameter, at mercury pressures so

low that the mean free path was several times the tube diameter; and, moreover, at such

small electron densities that it would take an electron, in the average, a path of the order of

10 m to exchange amounts of the order of the mean energy with other electrons. The tube

wall eliminates all the time electrons above a certain energy limit, and an electron collides,

on the average, some thousand times with the boundary sheath before it has a chance to

pick up energies of this order. Yet probe measurements fail to reveal any deficit of fast

electrons among those returning from the wall, even at a distance of only a few millimeters

from it.

Though the existence of electron temperatures has become a well-established part of our

knowledge of low-pressure discharges, the fact that this phenomenon persists in a region in

which it has theoretically no right to exist appears to have been largely ignored, in spite of

Langmuir’s emphasis. Our investigations, which started five years ago, have now led to the

elucidation of what we propose to call ‘Langmuir’s paradox’.

Recall from Langmuir’s paper [13] that he reported enhanced electron scattering for both the primary

and ultimate electron species. One important note to take from Gabor’s definition of Langmuir’s

paradox is that it refers to the fast filling of the tail of the ultimate electron distribution; as opposed to

thermal spreading of the primary electron beam. Langmuir thought it likely that the two mechanisms

where related, which is a point that we agree on, but we wish to be specific about what refer to

as ‘Langmuir’s paradox.’ For this we use Gabor’s definition from the quote above. We stress this

point because, although essentially everyone who has looked at this problem since Gabor has used his



93

definition, a popular introductory plasma physics textbook [74] has recently called the fast slowing

of an injected electron beam in a plasma ‘Langmuir’s paradox.’ This is not what Gabor defined as

‘Langmuir’s paradox’; the important differences being that Gabor’s definition refers to the ultimate

electrons (although similar mechanisms may scatter primaries) and, more importantly, that it is specific

to the distribution becoming uniquely Maxwellian (not simply that the injected electrons slow down

quickly).

4.1.3 Previous Approaches to Resolve Langmuir’s Paradox

Plasma kinetic theory has evolved significantly in the 85 years since Langmuir published his measure-

ments, so one should first ask if modern plasma kinetic theory predicts a shorter electron-electron

collision length that can explain Langmuir’s paradox. The answer to this, as we will show in section

4.4.1, is no. If one uses the Lenard-Balescu or Landau equation to calculate the electron-electron colli-

sion length, on finds a prediction of 28 cm for Langmuir’s plasma. This is essentially the same as the

30 cm length quoted by Langmuir in his paper (an impressive estimate for the time!). Thus, even using

modern plasma kinetic theory, conventional Coulomb interactions in a stable plasma cannot explain the

measurements; some other mechanism must be identified in order to explain Langmuir’s paradox.

In his original publication on the topic, Langmuir speculated as to what this physical mechanism

might be [13]. One suspicion was that “radiation quanta” (which we now call photons) emitted from

excited gas molecules might be responsible. However, providing a quick estimate of this effect Lang-

muir shows it to be insufficient in scattering electrons by a factor of 1016. He then speculates that a

‘resonance radiation’ processes whereby the three body interaction of excited neutral atoms, radiation

quanta and an electron could significantly enhance the effect. However, he cites an experiment done

in higher vacuum where the neutral density was too low for this effect to work, but in which case the

electron distribution remained Maxwellian. Thus, scattering by radiation was not able to explain the

measurements. On the last page of his paper, Langmuir suggested that ‘oscillations’ in the plasma may

be responsible for the electron scattering. We will concentrate on unstable waves as an explanation in

this work, which is similar to what Langmuir calls ‘oscillations’. However, Langmuir appears to have

dismissed this as a possible cause because he failed to measure any oscillations when using a radio
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detector capable of detecting oscillations of 0.5 m wave-length (the oscillations we will consider have

wavelengths less than 1 mm, which would not be detected by Langmuir’s radio wave detector). Dittmer

[73] supported the idea that waves where responsible for the scattering but, using a similar technique

as Langmuir, also failed to measure them.

Another early thought was that circuit oscillations may be present within the electronics of the

collecting probe, such that it is only biased more positive than the plasma in a time averaged sense, and

that the actual electron energies are not accurately represented [75]. However, Langmuir shows that

such oscillations would have to be at least 40 V to explain the measurements, and could show that, if

present at all, oscillations in his circuitry where less than 1 V [14].

After a thirty year lull in research on the topic, Gabor named ‘Langmuir’s paradox’ and also took

a closer look at the idea that waves might be present in the plasma which could scatter electrons [15].

Plasma physics as a subject had progressed rapidly in these thirty years (but not Langmuir’s electron

scattering problem) and by ’55 the subject of plasma waves, in particular, had developed significantly.

By that time, Landau damping [4] had been developed and it was generally appreciated, at least within

fluid theory, that waves could be unstable and grow to larger amplitudes in a plasma. Furthermore,

it was well known that plasma waves could be of very short wavelength and very high frequency; two

things preventing Langmuir’s early attempts to measure them.

Gabor et al [15] used an oscillogram technique to measure waves in the plasma. Although the

technique was rudimentary (by today’s standards), they did find waves in the MHz frequency range

near the plasma boundaries. They did not know the source of the waves at the time, but thought that

they might be responsible for enhancing the electron scattering. However, there was no theory available

at the time to either describe the wave dispersion or describe to what order the waves are important

in enhancing electron scattering. We propose that Gabor’s hypothesis is right, and in the next section

we provide the theory that was missing in his day to support it (the instabilities are of the ion-acoustic

type which fluctuate in the MHz range, consistent with his measurement). Unfortunately, after Gabor’s

reconsideration of this problem attention to it again died down and only a few scattered references have

been added to the literature since.

One of these was a paper by Gorgoraky [76] that considered the role of electron-neutral collisions.

He investigated the possibility that the electronic polarizability of neutral atoms and molecules can
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affect the ionization rate from electron collisions with neutrals. If the neutral gas was largely in excited

(metastable) states, it may lead to significantly larger ionization frequencies than are otherwise pre-

dicted. However, he did not apply this theory to Langmuir’s plasma, and the work has not been followed

up on. Hence, it is difficult to judge the relevance of this theory to Langmuir’s paradox. Langmuir’s

measurements showed that the formation of the Maxwellian electron distribution had essentially no

dependence on the neutral pressure. This seems contradictory to any proposal that suggests electron-

neutral collisions cause the electron distribution to become Maxwellian at a temperature much larger

than the neutral temperature.

Other modern work on Langmuir’s paradox has been published by Tsendin [77, 78]. Tsendin has

developed a non-local approximation to electron kinetics that is based on separating the distribu-

tion function into a lowest-order component that has a speed, rather than velocity, dependence and a

next-order component in which the spatial parts of the velocity dependence are expanded in spherical

harmonics: f(x,v, t) = f0(x, v, t) + f1(x, v, t)Y m1 (ϑ, ϕ), in which f0 � f1. He uses this approximation

to determine the distribution function of a plasma; not to develop a collision operator. There is no

enhanced electron scattering in this theory. Using his approximation, Tsendin calculates distribution

functions that are essentially Maxwellian, and he claims that Langmuir’s paradox may not exist. How-

ever, the theory provides no new mechanism for electron scattering, and it seems that his prediction of

essentially Maxwellian distributions may be tied to the assumption above.

Previous attempts to solve Langmuir’s paradox span a wide range of different ideas. These include

approaches searching for an enhanced scattering mechanism, such as scattering by photons (with and

without resonant interactions), by excited neutral atoms, or by waves, as well as approaches that suggest

it may not really exist, such as circuit oscillations interfering with the measurements and the non-local

approximation to electron kinetics. None of these previous theories have provided a definitive answer

to Langmuir’s paradox.

4.1.4 Our Approach to Resolve Langmuir’s Paradox

In the rest of this chapter, we consider details of the plasma-boundary transition region and show that

an instability-enhanced collective response (and hence fluctuations), due to ion-acoustic instabilities
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causes electron-electron scattering to occur much more frequently than it does by Coulomb interactions

alone. This collective response arises from the instability amplification of discrete particle motion; it

effectively extends the range over which particles interact beyond the Debye sphere in which Coulomb

interactions are confined. Since these ion-acoustic instabilities convect out of the plasma before reaching

nonlinear levels, turbulence theories are not applicable in describing the enhanced electron scattering.

We proved in section 3.4 that the Boltzmann H-theorem remains valid when this collective response is

present and that Maxwellian is the unique equilibrium. We will show that this is established at a rate

rapid enough to be consistent with Langmuir’s measurements.

This approach builds on the suggestions by Langmuir [13], Dittmer [73], Gabor [15], and others

[79] that wave-particle scattering by instabilities near the discharge boundaries may be responsible for

enhanced electron scattering. Gabor’s previous experimental work gave compelling evidence for the

presence of waves in the MHz frequency range near sheaths [15]. However, these previous works could

not provide a definitive answer to Langmuir’s paradox because there was no theory to describe either the

wave dispersion or a kinetic theory to describe how the resultant wave-particle scattering leads to the

rapid establishment of a uniquely Maxwellian distribution. We propose that the waves Gabor measured

are ion-acoustic instabilities, which are in the MHz range. To show that they lead to a Maxwellian,

we employ the kinetic theory of unstable plasmas that was developed in chapter 2. This theory is well

suited to describing the effects of ion-acoustic instabilities in the presheath because they convect out

of the plasma while still in a linear growth regime. The prediction that the waves Gabor measured are

ion-acoustic instabilities is also supported by the fact that the measured waves had the correct frequency

and that they were only present near the boundaries.

Other instabilities may also have been present in Langmuir’s discharge, which could lead to instability-

enhanced collisional effects. For example, the primary electrons emitted from filaments may cause a

bump-on-tail instability. In fact, this is a probable mechanism for the observation of enhanced scatter-

ing amongst the primaries and it is a problem that can be solved using the approach presented in this

chapter. Two-stream instabilities may also be present in presheaths when there are multiple species of

ions, or if some ions are multiply-charged; this instability will be studied in detail in chapter 6 with

emphasis on how it affects the ions. We are primarily interested in ion-acoustic instabilities because

they are universal in presheaths of gas-discharges with low temperature and pressure. Thus, they apply
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to all discharges susceptible to Langmuir’s paradox regardless of the mechanism by which the plasma

is generated.

We will apply our kinetic theory to the same discharge parameters that Langmuir used in his original

experiments [13]. This was a mercury plasma with electron (plasma) density ne ≈ 1011 cm−3, neutral

density ≈ 1013 cm−3 (0.3 mTorr), and ion and electron temperatures of Ti ≈ 0.03 eV and Te ≈ 2 eV

respectively.

4.2 The Plasma-Boundary Transition: Sheath and Presheath

In order to apply our theory, we must determine the equilibrium ion flow velocity throughout the

plasma-boundary transition region. This is required because it determines the dielectric function and

dispersion relation for the ion-acoustic instabilities, which in turn determines the instability-enhanced

collision operator and hence the resulting collision frequency. The typical plasma-boundary transition

region (one in which equal electron and ion fluxes reach the boundary surface) can be split into two

regions: sheath and presheath. We will see that most of the electrostatic potential drop is in the

very thin sheath, and that the potential drop of the presheath is comparatively less, but it extends

much farther into the plasma. We will be primarily interested in the presheath because, although the

instability growth rate is smaller there than in the sheath, it is sufficiently long that the unstable waves

have time to grow to significant amplitudes. In this section, we will follow the presentation of Lieberman

and Lichtenberg [80] to review basic sheath equilibrium.

4.2.1 Collisionless Sheath

The simplest ion sheath model is the so called“collisionless sheath.” It assumes (1) Maxwellian electrons

with a temperature Te, (2) one species of cold ions, Ti = 0 and (3) quasineutrality at the “plasma-sheath

interface”: ne(0) = ni(0). Here z = 0 is the location of the plasma-sheath interface. The plasma-sheath

interface is the location where quasineutrality breaks down. We will be more rigorous in defining it’s

location later. We also assume a 1-D problem where the electric field and ion fluid flow are perpendicular

to the material boundary.
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Figure 4.3: Schematic drawing of the ion and electron density profiles and the electrostatic potential
profile throughout the plasma-boundary transition region; including plasma, presheath and sheath. The
electrostatic potential is referenced to zero at the sheath edge. Figure adapted from Lieberman and
Lichtenberg [80].

If ions are collisionless in the sheath, their dynamics are described by energy conservation

1

2
MiV

2(z) =
1

2
MiV

2
o − qiφ(z) (4.1)

where V (z) is the ion fluid speed, Vo is the ion fluid speed at the sheath edge and φ(z) is the electric

potential. We take the convention that φ(z = 0) = 0 and is negative in the sheath in accordance with

figure 4.3. The continuity of ion flux, assuming no ionization, recombination, or any other sort of charge

transfer in the narrow sheath is

ni(z)V (z) = nioVo. (4.2)

Equations 4.1 and 4.2 combine to give an expression for the ion density as a function of position

ni(z) = nio

(
1− 2qiφ(z)

MiV 2
o

)−1/2

. (4.3)

Maxwellian electrons obey the Boltzmann relation in the absence of collisions

ne(z) = neo exp

(
eφ(z)

Te

)
. (4.4)
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Due to quasineutrality at the sheath edge, neo ≈ nio ≡ no. Substituting ni and ne into Poisson’s

equation gives

d2φ

dz2
= 4π

(
ene − qini

)
= 4πno

[
e exp

(
eφ(z)

Te

)
− qi

(
1− φ(z)

Eo

)−1/2]
(4.5)

where qiEo ≡ 1
2MiV

2
o is energy of the ion fluid flow at the sheath edge.

In principle, equation 4.5 can be solved for φ subject to boundary conditions on φ that come from

considerations of total current balance for the plasma. However, one of these conditions is implicit in

equation 4.5 itself; this is the Bohm criterion.

4.2.2 The Bohm Criterion

Multiplying equation 4.5 by dφ/dz and integrating over z gives

∫ φ

0

dφ

dz

d

dz

(
dφ

dz

)
dz = 4πns

∫ φ

o

dφ

dz

[
e exp

(
φ

Te

)
− qi

(
1− φ

Eo

)−1/2]
dz, (4.6)

which upon evaluating the integrals yields

1

2

(
dφ

dz

)2

= 4πno

[
Te exp

(
φ

Te

)
− Te + 2qiEo

(
1− φ

Eo

)1/2

− 2qiEo
]

(4.7)

where φ(z = 0) = 0 and dφ/dz = 0 at z = 0.

Since the left hand side of equation 4.7 is positive, so is the right side. This means that the electron

density must always be less than the ion density in the sheath. Expanding the right side in a series for

small φ and assuming that qi = e yields the condition

1

2

φ2

Te
− 1

4

φ2

Eo
≥ 0. (4.8)

This is satisfied if Eo ≥ Te/2, which is equivalent to

Vo ≥ cs ≡
√
Te
Mi

(4.9)

which is the Bohm criterion [38] for a single ion species plasma. Equality typically holds in equation

4.9, providing a boundary condition for the ion flow at the plasma edge [81].
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4.2.3 The Child Law and Sheath Thickness

Assuming that the initial ion energy at the sheath edge Eo is much smaller than the electric potential

energy in the sheath eφ, the ion energy and conservation equations are

1

2
MiV

2(z) = −qiφ(z) and qeni(z)V (z) = Jo (4.10)

where Jo ≡ qinocs is the constant ion current entering the sheath, in which equation 4.9 has been

applied, and the electron density in the sheath is assumed to be negligible ne = 0. Solving for the ion

density

ni(z) =
Jo
qi

(
−2qiφ

Mi

)−1/2

(4.11)

and using this in Poisson’s equation (with the assumption ni � ne in the sheath), we find

d2φ

dz2
= −4πJo

(
−2qiφ

Mi

)−1/2

. (4.12)

Multiplying by dφ/dz and integrating from 0 to z gives

1

2

(
dφ

dz

)2

= 8πJo

(
2qi
Mi

)−1/2√
−φ (4.13)

where we have again used dφ/dz = φ = 0 at z = 0. Taking the square root and integrating again gives

(−φ)3/4 = 3
√
πJo

(
2qi
Mi

)−1/4

z. (4.14)

Setting the potential at the boundary surface z = s to be φ = −φs and solving for Jo gives

Jo =
1

9π

√
2qi
Mi

φ
3/2
s

s2
(4.15)

which is the well-known Child law. Using the Bohm criterion Jo = qinocs, and again applying the

assumption qi = e, this gives an expression for the sheath thickness

s =

√
2

3
λDe,o

(
2eφs
Te

)3/4

, (4.16)

in which λDe,o ≡
√
Te/(4πeno) is the electron Debye length at the sheath edge.

Solving equations 4.14 and 4.15 for the potential profile in the sheath yields

φ = −φs
(
z

s

)4/3

, (4.17)
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which implies the electric field is

E =
4

3

φs
s

(
z

s

)1/3

. (4.18)

Finally, we can use the conservation of energy equation 4.10, along with the potential profile in equation

4.17, to determine the ion flow speed profile in the sheath. Applying Bohm’s boundary condition that

ions enter with a flow speed equal to the sound speed [V (z = 0) = cs], these yield

V (z) = cs +

√
2eφs
Mi

(
z

s

)3/2

. (4.19)

Recall that for Langmuir’s mercury discharge, in which the boundaries collect equal electron and ion

current, the wall charge to eφs ≈ 5Te. Equation 4.16 shows that in Lanmguir’s discharge, the sheath

length is s ≈ 2.6λDe,s, and the ion velocity profile ranges from the sound speed cs at the sheath edge

to approximately Vs = 4.5 cs at the boundary surface. Thus, ions are accelerated to high speeds over a

sheath thickness of a few Debye lengths.

4.2.4 The Presheath

Next, we consider the presheath. The presheath separates the highly non-neutral sheath and the

quasineutral plasma. It acts to accelerate ions from a fluid flow speed of essentially zero in the plasma

to the ion sound speed at the sheath-presheath interface. To model the presheath, we will use a 1-D

modified mobility-limited flow model due to Riemann [81]. For ions, this model uses the one dimensional

steady-state fluid continuity equation

d

dz

(
niVi

)
= 0, (4.20)

and momentum equation

Vi
dVi
dz

=
qi
Mi

E − νcVi, (4.21)

along with Poisson’s equation

d2φ

dz2
= −4πe(ni − ne). (4.22)

Reimann’s model assumes that the electron density obeys the Boltzmann relation ne = no exp(eφ/Te).

Here νc is the ion-neutral collision frequency that will be shown to determine the presheath length scale.

The ion-neutral collision frequency can be set by elastic ion-neutral collisions, ionization collisions or

charge exchange collisions. In the plasmas of interest, charge exchange collisions typically dominate.
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The Boltzmann relation for electrons, along with the assumption of quasineutrality in the presheath,

implies that for both species

dn

dz
=
en

Te

dφ

dz
= − e

Te
En (4.23)

which, when inserted into the continuity equation 4.20, gives

dVi
dz

=
e

Te
EVi. (4.24)

Putting equation 4.24 into equation 4.21 and assuming singly charged ions (qi = e), gives

Vi = µE

(
1− V 2

i

c2s

)
(4.25)

in which

µ ≡ e

Miνc
(4.26)

is the “mobility.” Putting ni from the continuity equation 4.20, with the boundary condition provided

by Bohm’s criterion niVi = nocs (where no is the density at the sheath edge) along with ne from the

Boltzmann relation into Poisson’s equation 4.22, yields

d2φ

dz2
= −4πe

(
no
cs
Vi
− noeeφ/Te

)
⇒

(
cs
Vi
− eeφ/Te

)
=

(
λDeo
l

)2
d2(−Φ)

dZ2
, (4.27)

In which Φ ≡ eφ/Te and Z ≡ z/l where l is the presheath length scale. Quasineutrality comes from the

smallness of λDe,o/l where l ≈ λi/n (the dominant ion collision length) in the presheath.

Assuming λD/l→ 0, equation 4.27 reduces to

φ =
Te
e

ln

(
cs
Vi

)
(4.28)

which is a quasineutrality relation. This gives an expression for the electric field

E = −dφ
dz

=
Te
e

1

Vi

dVi
dz

(4.29)

which, when inserted into the momentum equation 4.21, or equivalently equation 4.25, gives the expres-

sion (
c2s − V 2

i

V 2
i νc

)
dVi = dz. (4.30)

Equations 4.28 and 4.30 determine Vi(φ) and z(Vi). The latter can then be solved for φ(z), which

produces E(z). Equation 4.25 is then used to calculate Vi(z).
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Figure 4.4: Profiles of the ion fluid speed (normalized to cs and denoted by the solid black line) and the
plasma potential (normalized to Te and denoted by the dashed green line) throughout the presheath
and sheath. Here we have used the constant ion-neutral collision frequency solution for the presheath
from equations 4.33 and 4.34. For the sheath portion, we have used equations 4.17 4.19 with eφs = 5Te,
and have taken for the plots l/λDe = 30. For Langmuir’s plasma l/λDe ≈ 104, but we have taken an
artificially small value so that the sheath can be resolved on the plot. In reality, the sheath is so narrow
compared to the presheath that the speed and potential profiles would show up as nearly vertical lines
on these plots.
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This modified mobility-limited flow model has been verified experimentally to a distance z ≈ 2l

[84, 85], beyond which the ion flow speed transitions to zero in the bulk plasma. We will not be concerned

with this transition here because the ion flow is so small in this region that ion-acoustic instabilities are

not excited. Two different cases of equation 4.30 are commonly considered: constant mean free path

for ion-neutral collisions λi/n = l, νi/n = Vi/l, or a constant collision frequency νi/n ≈ cs/l. For each,

analytic solutions to equations 4.28 and 4.30 can be obtained. For the λi/n = const case, we find that

the fluid speed profile is

Vi(z) = cs exp

{
1

2
− z

l
+

1

2
W
[
− exp

(
2
z

l
− 1
)]}

(4.31)

where W is the Lambert W function. The potential profile is

eφ

Te
=
z

l
− 1

2
− 1

2
W
[
− exp

(
2
z

l
− 1
)]
. (4.32)

For the ν
i/n
c = const case, the flow speed is given by

Vi(z) = cs

[
1− z

2l

(
1−

√
1− 4l/z

)]
(4.33)

and the potential profile is given by

eφ

Te
= arccosh

(
1− z

2l

)
. (4.34)

In the remainder of this chapter, we will apply the constant collision frequency model from equations

4.33 and 4.34. The ion flow speed and potential profiles are not sensitive to which model is used for

ion-neutral collisions (for the purposes of this work, it makes no difference which model is used). A

plot of the ion flow speed and potential profiles throughout the plasma-boundary transition region are

shown in figure 4.4. For the sheath portion of these plots, we have used equations 4.17 and 4.19. For

the presheath portion, we have used the constant collision frequency model from equations 4.33 and

4.34. The length of the sheath is also exaggerated in the figure in order to resolve its features. To do

so, we chose a value of l/λDe = 30, whereas in Langmuir’s plasma it is really l/λDe = 104. If a realistic

value for l/λDe where used, the sheath would be so narrow relative to the presheath that it could not

be distinguished on the plot in figure 4.4.
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4.3 Ion-Acoustic Instabilities in the Presheath

Next, we consider instabilities that might be excited due to the ion flow in the plasma-boundary tran-

sition (in particular, the presheath). Recall from equation 2.18 that the electrostatic plasma dielectric

function is

ε̂(k, ω) = 1 +
∑

s

4πq2
s

k2ms

∫
d3v

k · ∂fs/∂v

ω − k · v .

In order to evaluate the plasma dielectric function, the distribution functions for ions and electrons

must be specified. We assume that ions have a Maxwellian distribution

fi(v) =
ni

π3/2v3
Ti

exp

[
− (v −Vi)

2

v2
Ti

]
. (4.35)

with flow speed Vi in the ẑ direction: Vi = Viẑ.

Using the coordinates (χ, η, ζ), aligned such that k = kζ̂, and applying the variable substitution

u = v −Vi, the ion term in the plasma dielectric function can be written

∫
d3v

k · ∂fi/∂v

ω − k · v =
ni

π3/2v3
Ti

∫ ∞

−∞
duχ exp

(
− u

2
χ

v2
Ti

)

︸ ︷︷ ︸
=
√
πvTi

∫ ∞

−∞
duη exp

(
− u2

η

v2
Ti

)

︸ ︷︷ ︸
=
√
πvTi

∫ ∞

−∞
duζ

k d
duζ

exp
(
−u2

ζ/v
2
Ti

)

(ω − k ·Vi)− kvζ
.

(4.36)

Applying the definitions t ≡ uζ/vTi and w ≡ (ω − k ·Vi)/vTi, we find

4πq2
i

k2mi

∫
d3v

k · ∂fi/∂v

ω − k · v =
ω2
pi

k2v2
Ti

1√
π

∫ ∞

−∞
dt

d
dte
−t2

w − t (4.37)

in which ω2
pi ≡ 4πq2

i ni/mi is the ion plasma frequency. The integral in equation 4.37 can be written in

terms of the plasma dispersion function

1√
π

∫ ∞

−∞
dt

d
dte
−t2

w − t =
1√
π

∫ ∞

−∞
dt

[
d

dt

(
e−t

2

w − t

)
− e−t

2

(w − t)2

]
= − d

dw

1√
π

∫ ∞

−∞
dt
e−t

2

t− w = −Z ′(w). (4.38)

Thus, the ion term of the plasma dispersion function can be written

4πq2
i

k2mi

∫
d3v

k · ∂fi/∂v

ω − k · v = −
ω2
pi

k2v2
Ti

Z ′
(
ω − k ·Vi

kvTi

)
. (4.39)

Recall that the plasma dispersion function is defined as [82]

Z(w) ≡ 1√
π

∫ ∞

−∞
dt
e−t

2

t− w. (4.40)

Properties of the plasma dispersion function, and a generalization of it, are discussed in appendix C.
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Next, we need to consider the electron term of the plasma dielectric function. For this Langmuir’s

paradox problem, we are trying to find a length scale over which the electron distribution function

becomes Maxwellian. Initially, the electrons are expected to deviate from Maxwellian in that the tail

of the electron distribution is missing. That is, the electron distribution function is expected to be

a stationary Maxwellian, except that it is truncated in the velocity direction parallel to the sheath

electric field for v‖ ≥ v‖c =
√

2∆φs/me in which ∆φs is the sheath potential drop. Recall that for the

ambipolar ion sheath of interest here e∆φs = −Te ln
√

2πme/Mi, which was ≈ 10 eV in Langmuir’s

plasma [13]. The pertinent question here is: how does this truncated tail of the electron distribution

function affect ion acoustic instabilities in the presheath?

The answer to this question is that the truncated tail has essentially no affect on the ion acoustic

instabilities as long as the critical speed where the truncation occurs is faster than the electron thermal

speed v‖c � vTe. A rigorous analysis of this, which takes into account the truncated Maxwellian

distribution, is presented in appendix C.3. As appendix C.3 shows, accounting for the truncation of

the Maxwellian distribution requires evaluation of a modified plasma dispersion function, called the

incomplete plasma dispersion function. The incomplete plasma dispersion function is defined as [83]

Z(ν, w) =
1√
π

∫ ∞

ν

dt
e−t

2

t− w. (4.41)

For the truncated electron distribution function of interest here, ν = −v‖c/vTe. Appendix C.3 shows

that corrections to the usual plasma dispersion function representation for the electron term

4πe2

k2me

∫
d3v

k · ∂fe/∂v

ω − k · v = − ω2
pe

k2v2
Te

Z ′
(

ω

kvTe

)
, (4.42)

which are rigorously accounted for using the incomplete plasma dispersion function are of the order

O
[
exp(−v2

‖c/v
2
Te)(vTe/v‖c)

]
.

For the ambipolar ion sheath of interest here, and assuming that the ions are mercury,

v2
‖c
v2
Te

=
1

v2
Te

2∆φs
me

= − 1

v2
Te

2Te
me

ln

(
2πme

Mi

)
= − ln

(
2πme

Mi

)
≈ 11. (4.43)

Thus, we find that the magnitude of corrections due to the truncated electron tail are

O
[
vTe
v‖c

exp

(
−
v2
‖c
v2
Te

)]
≈
√

11e−11 = 5× 10−5, (4.44)
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which is entirely negligible. Thus, we can confidently write the full plasma dielectric function in the

conventional plasma dispersion function dependent form

ε̂(k, ω) = 1−
ω2
pi

k2v2
Ti

Z ′
(
ω − k ·Vi

kvTi

)
− ω2

pe

k2v2
Te

Z ′
(

ω

kvTe

)
. (4.45)

Since we are considering ion acoustic instabilities, we apply the assumptions kvTi � ω− k ·Vi and

ω � kvTe. Recall that the small argument expansion for Z ′(w) is [82]

Z ′(w) = −2iw
√
πe−w

2 − 2
(
1− 2w2 + . . .) for |w| � 1 (4.46)

and that the asymptotic expansion for large argument is

Z ′(w) ∼ −2iσw
√
πe−w

2

+
1

w2

(
1 +

3

2w2
+ . . .

)
for |w| � 1 (4.47)

in which

σ ≡





0 , ={w} > 0

1 , ={w} = 0

2 , ={w} < 0

. (4.48)

Equations 4.46 and 4.47 can be derived by applying integration by parts to the integral form of Z ′, as

shown in appendix C.1. Finally, applying the small argument expansion to the electron term, and the

large argument expansion to the ion term in equation 4.45, yields

ε̂(k, ω) = 1 +
1

k2λ2
De

−
ω2
pi

(ω − k ·Vi)2
+ i

√
π

k2λ2
De

ω

kvTe
. (4.49)

Here we have also anticipated that ω ∼ kcs, so that exp(−ω/kvTe) ∼ exp(−
√
me/Mi) ≈ 1, and

exp[−(ω − k ·Vi)/kvTi] ∼ exp(−Te/Ti)� 1; ion Landau damping is negligible.

We next calculate the ion-acoustic dispersion relation, ωj = ωR,j+iγj , from the roots of the dielectric

function of equation 4.49. We again apply the assumption that ω/kvTe � 1, and take ω ≈ ωR in the

imaginary term (the Landau damping term) of equation 4.49. That is, we assume that γj � ωR,j .

Thus, to find the dispersion relation, we solve the equation

1 +
1

k2λ2
De

−
ω2
pi

(ωj − k ·Vi)2
+ i∆ = 0, (4.50)
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Figure 4.5: Plots of the real and imaginary parts of the dispersion relation, equation 4.52, for three
values of the fluid speed (normalized to the sound speed) that are found in presheaths: 1/4 (green,
dash-dotted line), 1/2 (blue, dashed line) and 1 (red, solid line). Positive γ represent growth rates. For
the plots, we have used the approximation k ·Vi ≈ kVi.

in which ∆ ≡ √πωR,j/(k3λ2
DevTe) � 1. Solving for ωj − k ·Vi and expanding the result for ∆ � 1

yields

ωj − k ·Vi = ± kcs√
1 + k2λ2

De(1 + i∆)
≈ ± kcs√

1 + k2λ2
De

(
1− i1

2

k2λ2
De

1 + k2λ2
De

∆

)
. (4.51)

Inserting the definition of ∆, yields the ion-acoustic dispersion relation

ω± =

(
k ·Vi ±

kcs√
1 + k2λ2

De

)(
1∓ i

√
πme/8Mi

(1 + k2λ2
De)

3/2

)
, (4.52)

which consists of one growing and one damped ion-acoustic mode. A growing solution thus exists as

long as the ion fluid speed is large enough: |k · Vi| > kcs/
√

1 + k2λ2
De. Equation 4.52 is plotted in

figure 4.5 for three representative values of the ion fluid speed in the presheath. Figure 4.5 shows that

the relevant wavelength for unstable modes are near the electron Debye length (or shorter).

We made a couple of assumptions at the outset of deriving equation 4.52, and we now confirm that

they are not contradicted by our final ion acoustic dispersion relation. One of these assumptions was

that ωj ∼ kcs, which is easily confirmed from equation 4.52. The second assumption we made was that

γj � ωR,j . Indeed, equation 4.52 confirms that

γj
ωR,j

=
ωR,j
ωR,j

√
πme/8Mi

(1 + k2λ2
De)

3/2
∼
√
me

Mi
≈ 1× 10−3 (4.53)
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in which the last number assumes mercury ions. Thus, our original assumptions are consistent with the

final dispersion relation.

4.4 Electron-Electron Scattering Lengths in the Presheath

Finally, we have the background and tools necessary to evaluate the electron-electron scattering fre-

quency, and hence the scattering length, in the plasma-boundary transition region. In chapter 2 we

found that the evolution of the distribution function for any species s is governed by the plasma kinetic

equation dfs/dt =
∑
s′ C(fs, fs′), in which d/dt = ∂/∂t+ v · ∂/∂x + E · ∂/∂v is the convective deriva-

tive. Recall that C(fs, fs′) is the component collision operator describing the evolution of fs due to

collisions with each plasma species s′ including itself (s = s′). The collision frequency thus scales with

the magnitude of the collision operator νs/s
′ ∼ C(fs, fs′)/fs.

Here we are interested in determining the electron-electron collision frequency νe/e from both conven-

tional Coulomb collisions and instability-enhanced collisions. Here the instabilities are the ion acoustic

instabilities from equation 4.52. We showed in section 3.4.7 that the unique equilibrium distribution

function is Maxwellian for these individual species collisions. We also showed that the approach to

this unique equilibrium is determined by the timescale of the dominant contribution to the collision

operator. This is either from conventional Coulomb collisions, which CLB(fe, fe) describes, or from

instability-enhanced collisions, which CIE(fe, fe) describes. The instability-enhanced collisions were

shown to drive the electron distribution to a unique Maxwellian as long as γ2
j /ω

2
R,j � 1. From 4.53, we

see that γ2
j /ω

2
R,j ∼ 10−6 for ion acoustic instabilities. Thus, to high degree of accuracy, both conven-

tional Coulomb collisions and instability-enhanced collisions drive the plasma to Maxwellian. If either

term predicts an electron-electron scattering length shorter than the discharge length, we expect the

electron distribution function to be Maxwellian.

Recall from equation 2.45 that the electron-electron collision operator is

C(fe, fe) = − ∂

∂v
·
∫
d3v′Qe/e · 1

me

(
fe(v)

∂fe(v
′)

∂v′
− fe(v′)

∂fe(v)

∂v

)
(4.54)

in which Qe/e = Qe/eLB +Qe/eIE . Estimating ∂/∂v ∼ vTe, the electron-electron collision frequency scales
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as

νe/e ∼ ne
mev2

Te

(Q
e/e
LB +Q

e/e
IE ) (4.55)

in which the scalars Q
e/e
LB and Q

e/e
IE represent the dominant contributions of the dyads Qe/eLB and Qe/eIE .

The electron-electron collision length can then be determined from the shorter of λ
e/e
LB ≈ vTe/ν

e/e
LB , or

λ
e/e
IE ≈ vTe/ν

e/e
IE .

Note that we have taken the characteristic electron speed to be the electron thermal speed, although

we are concerned with electrons on the tail of the distribution that have speeds a few times faster than

that (recall from equation 4.43 that v‖c/vTe ≈
√

11 ≈ 3). However, since both the Lenard-Balescu

and instability-enhanced collision operators have the same scaling with v, the thermal speed estimate

can be used to compare the relative contribution from each scattering mechanism regardless of the

particular speed. Accounting for the precise v dependence adds significant complexity to the analysis.

Here we are not interested in this level of detail. We focus on a new physics result where we show that

instability-enhanced collisions can be orders of magnitude more frequent than conventional Coulomb

collisions in the presheath.

4.4.1 Stable Plasma Contribution

Evaluating the electron-electron collision frequency in a stable plasma ν
e/e
LB ∼ neQ

e/e
LB /(mev

2
Te) requires

determining the Lenard-Balescu collisional kernel Qe/eLB . Recall from equation 2.43 that

QLB =
2q2
sq

2
s′

ms

∫
d3k

kk

k4

δ[k · (v − v′)]∣∣ε̂(k,k · v)
∣∣2 . (4.56)

We use equation 4.45 to determine ε̂(k,k · v). For the electrons of interest, the argument of Z ′ in the

ion term is very large

k · v − k ·Vi

kvTi
∼ vTe
vTi
∼
√
Te
Ti

√
Mi

me
∼ 6× 104 � 1, (4.57)

so we apply the asymptotic expansion of the Z ′ function for the ion term. For the electron term, the

argument is close to unity for thermal particles ω/kvTe ∼ vTe/vTe ∼ 1, but the bulk of the electron

distribution is a bit slower, so we take the small argument expansion for the electrons (accounting for

the full Z ′ electron term leads to small modifications of the Coulomb logarithm). With these limits
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applied, we find that the dielectric function is approximately adiabatic

ε̂(k,k · v) ≈ 1 +
1

k2λ2
De

−
ω2
pi

k2v2
Te

≈ 1 +
1

k2λ2
De

. (4.58)

We showed in section 1.1.5 that if the plasma dielectric function is adiabatic (i.e., of the form of

equation 4.58) that the Lenard-Balescu collisional kernel reduces to the Landau collisional kernel

QL =
2πq2

sq
2
s′

ms
ln Λ

u2I − uu

u3
. (4.59)

Since u ∼ vTe for electrons, the dominant contribution is

Q
e/e
LB ≈

2πe4

mevTe
ln Λ. (4.60)

Putting this into the collision frequency estimate yields

ν
e/e
LB ≈

ωpe
8πnλ3

De

ln Λ. (4.61)

Recall that the relevant parameters of Langmuir’s plasma were: Te = 2 eV and ne = 1011 cm−3.

These parameters imply that the electron plasma frequency was ωpe = 1.8× 1010 s−1 and the electron

Debye length was λDe = 3× 10−5 m. The number of electrons in a Debye cube was neλ
3
De = 2700 and

the Coulomb logarithm was ln Λ ≈ ln(12πneλ
3
De) = 11.5. Applying these numbers to equation 4.61, we

find that ν
e/e
LB ∼ 3× 106 s−1 and

λ
e/e
LB ≈

vTe

ν
e/e
LB

≈ 28 cm. (4.62)

The value that Langmuir predicted for this plasma in 1925 was 30 cm [13]. Although the kinetic theory

of stable plasmas progressed significantly after Langmuir, the estimated electron-electron scattering

length from the refined theories is not significantly shorter than Langmuir’s estimate (actually the two

estimates are so close that it is almost a coincidence – we have used rather crude estimates in obtaining

equation 4.62 and even if this prediction were different from Langmuir’s by a factor of two, or more,

we would consider them to essentially agree). Stable plasma kinetic theory cannot explain why the

electron-electron scattering length was less than 3 cm in Langmuir’s discharge.

4.4.2 Ion-Acoustic Instability-Enhanced Contribution

Next, we consider the instability-enhanced contribution to the electron-electron collision frequency

ν
e/e
IE ∼ neQ

e/e
LB /(mev

2
Te). Recall from equation 2.47 that for slowly growing instabilities, which satisfy
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γj/ωR,j � 1, the instability-enhanced collisional kernel is given by

QIE ≈
∑

j

2q2
sq

2
s′

ms

∫
d3k

kk

k4

π δ[k · (v − v′)] δ(ωR,j − k · v) exp(2γjt)

γj
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

. (4.63)

Equation 4.53 shows that the ion-acoustic instabilities considered here are slowly growing, so that this

approximation is valid.

From equation 4.49, we find

∂ε̂

∂ω
=

2ω2
pi

(ω − k ·Vi)3
+ i

√
π

kvTe

1

k2λ2
De

≈
2ω2

pi

(ω − k ·Vi)3
, (4.64)

where the last step follows from the fact that the ω of interest satisfy ω ≈ kcs. From the dispersion

relation of equation 4.52, ωj ≈ k ·Vi − kcs/
√

1 + k2λ2
De, and we find

∣∣∣∣
∂ε̂

∂ω

∣∣∣∣
2

ωj

=
4ω2

pi

k6c6s
(1 + k2λ2

De)
3 =

4

k2c2s

(1 + k2λ2
De)

3

k4λ4
De

. (4.65)

The second delta function in equation 4.63 can be estimated from the more elementary form written

as a peaked Lorentzian

δ(ωR,j − k · v) ≈ 1

π

γj
(ωR,j − k · v)2 + γ2

j

≈ 1

π

γj
k2c2s

. (4.66)

Putting equations 4.65 and 4.66 into equation 4.63 yields

Qe/eIE ≈
1

2

e4

me

∫
d3k

kk

k4
δ[k · (v − v′)]

k4λ4
De

(1 + k2λ2
De)

3
e2γt. (4.67)

Next, we evaluate 2γt for the convective ion-acoustic waves. As described in section 2.4, the exp
(
2γt)

term in equation 4.67 must be calculated in the rest frame of the unstable mode. Since the ion-acoustic

instability is convective,

2γt = 2

∫ x

xo(k)

dx′ · vgγ

|vg|2
(4.68)

in which vg ≡ ∂ωR/∂k is the group velocity, xo(k) is the location in space where wavevector k becomes

unstable, and the integral dx′ is taken along the path of the mode. An important consequence is that,

since ω− and xo have no explicit time dependence, fe will change with position, but not in time, in

the laboratory frame. The plasma can thus remain in a steady-state and the EVDF will equilibrate to

Maxwellian at a distance from the sheath determined by λe/e(x).

In principle, the spatial integral in equation 4.68 requires integrating the profile of γ and vg, which

change through the presheath due to variations in the ion fluid speed and the electron density, as
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well as knowing the spatial location xo(k) at which each wavevector k becomes excited. In estimating

equation 4.68 we assume that changes due to spatial variations is weak, and we account for xo(k) by

only integrating over the unstable k for each spatial location x. Following these approximations we

obtain

2γt ≈ 2Zγ

vg
, (4.69)

in which Z is a shifted coordinate (with respect to z) that takes as its origin the location where the first

instability onset occurs. In this case, Z = 0 will be the presheath-plasma boundary at z = −2l. Thus,

we will have Z = 2l + z (recall that by our convention z ranges from −2l to 0 in the presheath).

The group speed of the ion acoustic waves is determined from equation 4.52 to be

vg = Vi −
cs

(1 + k2λ2
De)

3/2
. (4.70)

Putting this into our approximation for 2γt yields

2γt ≈ 2Zγ

vg
=

2kZ
√
πme/8Mi

(1 + k2λ2
De)

3/2

Vi − cs(1 + k2λ2
De)

Vi − cs
≈
√
πme

2Mi

Z

λDe

kλDe
(1 + k2λ2

De)
3/2

. (4.71)

Returning to evaluating equation 4.67, we use spherical polar coordinates for k, and take the parallel

direction along u, so that: k · (v − v′) = k‖(v − v′) ≈ k‖vTe. Since the integrand does not depend on

the azimuthal angle (from our approximations), the k‖ and kφ integrals are trivial to evaluate. After

the δ(k‖) integral, the k2 terms are k2 = k2
⊥. We also apply the variable substitution κ = k⊥λDe. After

these evaluations, equation 4.67 becomes

Q
e/e
IE ≈

πe4

mevTe

∫ ∞

κc

dκ
κ3

(1 + κ2)3
exp

[
Z

λDe

√
πme

2Mi

κ

(1 + κ2)3/2

]
, (4.72)

in which we have set the lower limit of integration to κc so that only the unstable k are integrated over.

The limit κc can be determined from the instability criterion

Vi −
cs√

1 + κ2
> 0. (4.73)

Setting this expression equal to zero yields

κc ≡





√
c2s/V

2
i − 1 , for Vi ≤ cs

0 , for Vi ≥ cs
. (4.74)
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The κ integral in equation 4.72 is very difficult to evaluate analytically. However, a good approxi-

mation can be obtained as follows. The integrand is peaked about the point where κ3/(1 + κ2)3 is a

maximum, which is at κ = 1. Expanding the argument of the exponential about this point yields

κ

(1 + κ2)3/2

∣∣∣∣
κ=1

=

√
2

4
−
√

2

8
(κ− 1)− 3

√
2

32
(κ− 1)2 + . . . (4.75)

Keeping only the lowest order term, we use the approximation κ/(1+κ2)3/2 ≈
√

2/4 in the exponential.

The integrand is then algebraic, and can be evaluated analytically

∫ ∞

κc

dκ
κ3

(1 + κ2)3
=

1

4

1 + 2κ2
c

(1 + κ2
c)

2
. (4.76)

Putting this integral approximation into equation 4.72, we find

Q
e/e
IE ≈

πe4

4mevTe

1 + 2κ2
c

(1 + κ2
c)

2
exp

(
η
Z

l

)
, (4.77)

in which l is a length scale characterizing the presheath; typically it is the ion-neutral collision mean

free path. We have also defined the dimensionless coefficient

η ≡
√
πme

8Mi

l

λDe
. (4.78)

The instability-enhanced collisional kernel can also be expressed in terms of a multiple of the Lenard-

Balescu collisional kernel

Q
e/e
IE ≈

Q
e/e
LB

8 ln Λ

1 + 2κ2
c

(1 + κ2
c)

2
exp

(
η
Z

l

)
. (4.79)

Thus, the effective collision frequency due to instability-enhanced collective interactions is given by

ν
e/e
IE ≈

ν
e/e
LB

8 ln Λ

1 + 2κ2
c

(1 + κ2
c)

2
exp

(
η
Z

l

)
. (4.80)

The corresponding electron-electron collision length is λ
e/e
IE ≈ vTe/ν

e/e
IE . The location Z = 0 corresponds

to the spatial location where instability onset occurs (at the presheath-plasma boundary here). The

presheath solution is typically valid over the domain: z : −2l→ 0 if l is taken as the ion-neutral collision

length [84]. For z . −2l, the presheath electric field is essentially zero and the ion fluid flow is also

zero: this is the bulk plasma. Thus, since we take z to have negative values in the presheath, the spatial

variable with its origin at the onset location of instabilities is related to z by: Z = 2l + z.

For Langmuir’s discharge parameters l ≈ 11 cm [84], and η ≈ 4.5. In figure 4.6, we plot the total

predicted electron-electron scattering frequency, along with the individual contributions from stable
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Figure 4.6: Left: the electrostatic potential drop in the presheath normalized to the electron tempera-
ture, φ/Te, (dashed line) and corresponding ion flow speed normalized to the ion sound speed, Vi/cs,
(solid line). Right: the total electron-electron scattering frequency normalized to the stable plasma
collision frequency (solid line). Also shown are the individual contributions from Coulomb interactions
in a stable plasma (blue, dashed-dotted line) and from instability-enhanced collective interactions (red
dashed line). Here we have used the constant ion-neutral collision frequency model, νi/n =constant, for
the presheath; see equations 4.33 and 4.34.
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plasma theory and the instability enhancements. Here we have used the constant ion-neutral collision

frequency model, νi/n =constant, for the presheath from equations 4.33 and 4.34. However, the results

are not sensitive to which presheath model is used. Figure 4.6 shows that near the sheath-presheath

boundary ion-acoustic instabilities enhance the electron-electron scattering approximately 100 times the

nominal stable plasma rate. The collision length for electron-electron scattering is shortened by more

than a factor of 10 over a distance of approximately l/2. Thus, near the plasma boundary, instability-

enhanced collective interactions determine the scattering rate and drive the plasma toward the unique

Maxwellian EVDF within a presheath-scale distance. Thus, instability-enhance scattering, due to ion

acoustic instabilities in the presheath, can explain Langmuir’s measurements.

Finally, we consider the validity of the assumption of linearly growing waves determined by equation

2.130 and also when the instability-enhancement dominates the conventional Coulomb interactions.

Putting in the dielectric function and ion-acoustic instability dispersion relation into equation 2.130,

and using z = l, we find that the theory is valid as long as

1

nλ3
De

√
4π

ηz/l
exp

(
η√
2

Z

l

)
. 1. (4.81)

In which we have estimated the integral in equation 4.72 assuming the argument of the exponential is

large. Comparing Qe/eLB and Qe/eIE , we find that instability-enhanced collisions dominate when

1

8 ln Λ

√
π/2

ηz/l
exp

(
η

2
√

2

Z

l

)
& 1. (4.82)

Equations 4.81 and 4.82 determine a region depending on plasma parameter and η for which instability-

enhanced collisions for instabilities in a linear growth regime are both valid and dominant. This is shown

as the shaded region in figure 4.7. The blue line in figure 4.7 represents the parameters in the presheath

of Langmuir’s discharge. For this plasma with nλ3
De ≈ 3×103, the theory is valid for ηz/l . 55. In this

presheath example the maximum ηz/l . 10, which is reached at the sheath-presheath boundary; thus,

the theory is well-suited to this problem.

Aspects of the model proposed in this chapter can be directly tested experimentally. The k-space

fluctuations could be characterized in the presheath. We predict that modes satisfying k & 1/λDe

become unstable and grow exponentially toward the boundary. These fluctuations should disappear

due to ion Landau damping if the ions are heated to Ti ≈ Te. Alternatively, accounting for ion-neutral
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Figure 4.7: Plot of equations 4.81 and 4.82 which determine the shaded region in which the plasma
kinetic theory is valid and where instability-enhanced interactions dominate. The theory is valid for all
values below the green line. Instabilities dominate scattering for all values above the red line.

damping results in a −iνi/n/2 term to be added to equation 4.52. Using νi/n ≈ cs/λ
i/n, leads to the

result that the ion-acoustic instabilities are ion-neutral damped for η . 1. Since η > 1 is required

for instability enhanced scattering, this also represents a maximum neutral density above which the

presheath length is so short that the instabilities have an insufficient distance to grow before reaching

the boundary. Experimentally, electron scattering could thus be attributed to instability-enhanced

collective interactions by measuring both the fluctuations and the EVDF with and without instabilities.
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Chapter 5

Kinetic Theory of the Presheath

and the Bohm Criterion

In section 4.2.2, the Bohm criterion was derived. This derivation (which was originally provided by

Bohm in reference [38]) assumes that all ions have the same velocity, denoted by V, in the direction

perpendicular to the boundary surface. The resulting criterion requires that this speed satisfy V ≥ cs at

the sheath edge, here cs ≡
√
Te/Mi is the ion sound speed. This approach effectively assumes a delta-

function distribution for ions fi = niδ(v −V) and neglects any thermal motion. It also assumes that

electrons obey the Boltzmann relation. An important question to answer is; how does the conventional

Bohm criterion change when more general electron and ion distribution functions are taken into account?

Attempts to answer this question have been the topic of several papers over the past 50 years

[42, 86–94]. However, essentially no experiments have been performed to test the theories that have

been proposed. This is an unfortunate situation because the theoretical proposal that has come to

prominence does not give a meaningful criterion for many common distribution functions. The result

that is often quoted (see for example [42, 94]) is

1

Mi

∫
d3v

fi(v)

v2
z

≤ − 1

me

∫
d3v

1

vz

∂fe(v)

∂vz
, (5.1)

and is commonly called the “generalized Bohm criterion.” It is even cited prominently in a popular

plasma physics textbook [80]. Here, the electric field of the sheath is taken to be aligned in the ẑ

direction, and it is assumed that the only spatial gradients of f are caused by this electric field.

Although it is frequently cited, equation 5.1 does not produce a meaningful criterion for most plasmas

of interest. If the ion distribution function has any particles with zero velocity, the left side of equation

5.1 diverges. If the velocity gradient of the electron distribution does not vanish for vz = 0, the right
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side of equation 5.1 diverges. For example, if the ion distribution function is Maxwellian, the left side

of equation 5.1 is ∞. Similarly, the right side can diverge for certain distribution functions, even when

the left side is finite: examples of this are discussed in section 5.4. Equation 5.1 places unphysical

importance on the part of the distribution functions where particles are slow. Despite the fact that it

often gives unphysical results, and that this shortcoming has been pointed out before [80, 87], equation

5.1 continues to be used in plasma physics literature [93, 94].

In section 5.1, we reconsider previous derivations of the generalized Bohm criterion given by equation

5.1. We show that these derivations contain two errors. The first of these is taking the v−1
z moment

of the collisionless kinetic equation (i.e. Vlasov equation). Neglecting the v−1
z moment of the collision

operator is a mistake because it diverges when the distribution functions have particles near zero velocity

(just like the term on the left side of equation 5.1). Only velocity moments with a positive power can be

applied to the Vlasov equation, or divergences will result for vz = 0. The second error is a mathematical

mistake where integration by parts is misapplied to a function that is not continuously differentiable.

This error can easily be corrected, but the resultant criterion then differs from equation 5.1.

In section 5.2, we derive an alternative form of a generalized Bohm criterion that is based upon

moments of the kinetic equation in which the velocity multiplier has only positive powers (rather than

the v−1
z moment of previous work). This approach avoids the possibility of diverging results. Our result

supports previous derivations of the Bohm criterion based on fluid theory, and it returns these results in

the fluid limit. Particles with low energy do not have any special significance in our theory. In contrast,

equation 5.1 does not return the fluid results in the appropriate limit because it places undue importance

on low energy particles. In section 5.3, we comment on ion-ion collisions in the presheath; specifically,

on how ion-acoustic instabilities can play a significant role in determining the ion distribution function.

This effect is similar to how ion-acoustic instabilities cause the electron distribution function to become

Maxwellian in the presheath; as was discussed in chapter 4. Finally, in section 5.4, we consider a

couple of example distribution functions that are common in low temperature plasmas, but for which

the generalized Bohm criterion we derive in section 5.2 gives significantly different predictions than

equation 5.1.
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5.1 Previous Kinetic Theories of the Bohm Criterion

The first variant of equation 5.1 that appeared in the literature was a 1959 paper by Harrison and

Thompson [86]. Equation (21) of that work gave the result

Mi

(∫
d3v

1

v2
z

fi(v)

ni

)−1

≥ Te. (5.2)

Equation 5.2 is the same as equation 5.1 if one assumes a stationary Maxwellian distribution for elec-

trons. Shortly after Harrison and Thompson’s publication, Hall pointed out it’s deficiencies [87], specif-

ically citing that it “ascribes undue importance to the presence of low velocity ions at the sheath edge.”

Despite this criticism, Harrison and Thompson’s work quickly caught on and it has become widely used

[88–94]. More recently, the electron term was also generalized [42] to give the modern form of equation

5.1 and the result has come to greater prominence through its mention in a popular review article by

Riemann [39].

5.1.1 The Sheath Condition

In order to derive equation 5.1, one must first develop a mathematical definition of the sheath edge (the

interface between the sheath and the quasineutral plasma, or presheath) [39]. This is typically called

the “sheath criterion.” The sheath criterion is based on the physical condition that as one moves from

the sheath to the plasma, the plasma becomes quasineutral and this location is defined as the sheath

edge. Expanding Gauss’s law about about the sheath edge, near φ = 0, yields

d2φ

dz2
= −4π

[
ρ(φ = 0)︸ ︷︷ ︸

=0

+
dρ

dφ

∣∣∣∣
φ=0

φ+ . . .

]
. (5.3)

Recall that ρ ≡ ∑s qsns. At the marginal condition where quasineutrality is met, the dρ/dφ term of

equation 5.3 dominates. Multiplying equation 5.3 by dφ/dz and integrating with respect to φ gives the

relation

E2

4π
+
dρ

dφ

∣∣∣∣
φ=0

φ2 = C (5.4)

in which C is a constant. Since φ→ 0 as z/λDe →∞ on the sheath length scale, the constant C must

be zero. We are then left with

dρ

dφ

∣∣∣∣
φ=0

= − E2

4πφ2
(5.5)
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which implies the sheath criterion

dρ

dφ

∣∣∣∣
φ=0

≤ 0. (5.6)

The sheath criterion is a succinct mathematical definition of the sheath edge [39]. Using the fact that

dns
dφ

=
dns
dz

dz

dφ
= − 1

E

dns
dz

, (5.7)

the sheath condition can also be written

∑

s

qs
dns
dz

∣∣∣∣
z=0

≥ 0. (5.8)

Since the relation between density and the distribution function is simply ns =
∫
d3v fs, this criterion

can be given in terms of the distribution function

∑

s

qs

∫ ∞

−∞
d3v

∂fs
∂z
≥ 0. (5.9)

5.1.2 Previous Forms of Kinetic Bohm Criteria

Previous kinetic theories of the Bohm criterion are collisionless, being based on the Vlasov equation

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

E · ∂fs
∂v

= 0. (5.10)

Since we are considering steady state, the ∂/∂t term can be set to zero. We take E = Eẑ and assume

that the only spatial gradients of fs are due to this electric field, so they are in the ẑ direction as well.

This leaves the 1-D, steady-state version of the Vlasov equation

vz
∂fs
∂z

+
qs
ms

E
∂fs
∂vz

= 0. (5.11)

The next step that is taken in previous kinetic formulations is to divide equation 5.11 by vz, to

obtain an expression for ∂fs/∂z, then insert the result into the sheath criterion of equation 5.9. In

other words, they take the v−1
z moment of the Vlasov equation. Doing so yields the condition

∑

s

q2
s

ms

∫ ∞

−∞
d3v

1

vz

∂fs
∂vz
≤ 0, (5.12)

which is a form of a generalized Bohm criterion. Assuming that the plasma consists of a single species

of ions with unit charge and electrons, this is

1

Mi

∫ ∞

−∞
d3v

1

vz

∂fi
∂vz
≤ − 1

me

∫ ∞

−∞
d3v

1

vz

∂fe
∂vz

. (5.13)
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One final step is conventionally performed in order to write this in the form of equation 5.1, and

that is to integrate the ion term by parts,

∫ ∞

−∞
dvz

1

vz

∂fs
∂vz

=

∫ ∞

−∞
dvz

∂

∂vz

(
1

vz
fi

)

︸ ︷︷ ︸
=0

+

∫ ∞

−∞
dvz

1

v2
z

fi. (5.14)

Taking the surface term to be zero, we are left with the conventional form of the generalized Bohm

criterion

1

Mi

∫
d3v

fi(v)

v2
z

fi ≤ −
1

me

∫
d3v

1

vz

∂fe(v)

∂vz
, (5.15)

which is the same as was quoted in equation 5.1. If the electrons are taken to be a stationary Maxwellian

distribution, equation 5.15 reduces to Harrison and Thompson’s equation 5.2

Mi

(∫
d3v

1

v2
z

fi(v)

ni

)−1

≥ Te. (5.16)

5.1.3 Deficiencies of Previous Kinetic Bohm Criteria

Two mistakes are made in the previous derivations of a kinetic Bohm criterion which lead to the

unphysical divergences in equations 5.15 and 5.16 that occur when the distribution functions have any

contribution at zero velocity. These same mistakes are also present in the summarized version of these

derivations that was presented in the last section. They are

(1) The collision operator should not be neglected if one is to take the v−1
z moment of the kinetic

equation. This is because
∫
d3v C(fs)/vz diverges unless the collision operator is zero. The collision

operator is only zero if the plasma is in equilibrium. However, if the plasma is in equilibrium

electrons and ion must both have Maxwellian distribution functions with equal temperatures and

flow speeds (recall section 3.4.7), but such a distribution function cannot be a solution near the

sheath edge because of the presence of the presheath electric field.

(2) Since the function (1/vz)∂fs/∂vz is typically not continuously differentiable, the integration by

parts conducted in equation 5.14 in invalid.

The easier of these two issues to correct is (2), since the integration by parts step shown in equation

5.14 can simply be avoided and the generalized Bohm criterion left in the form of equation 5.13. However,

even this equation is incorrect because of issue (1), as we will discuss next. That the integration by
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parts step of equation 5.14 is incorrect, can by shown using a simple example. The contentious step is

of the form

∫ ∞

−∞
dx

1

x

df

dx
=

∫ ∞

−∞
dx

d

dx

(
1

x
f

)

︸ ︷︷ ︸
=0

+

∫ ∞

−∞
dx

1

x2
f, (5.17)

for any physically possible distribution function f (e.g., the restrictions f(±∞) = 0 and that f is always

positive can be imposed since any meaningful plasma distribution must obey these). If one takes as an

example, f = exp(−x2), the left side of equation 5.17 can be evaluated directly

∫ ∞

−∞
dx

1

x

df

dx
= −2

∫ ∞

−∞
dx e−x

2

= −2
√
π. (5.18)

However, if the surface term on the right side of equation 5.17 is taken to be zero, as is assumed in the

previous theories, the right side of equation 5.17 diverges

∫ ∞

−∞
dx

1

x2
e−x

2

= lim
ε→0

(∫ −|ε|

−∞
dx

1

x2
e−x

2

+

∫ ∞

|ε|
dx

1

x2
e−x

2

)
(5.19)

= −2
√
π + lim

ε→0

(
2

|ε|e
−|ε|2 + 2

√
πerf(|ε|)

)
= −2

√
π + lim

ε→0

2

|ε|e
−|ε|2 →∞.

The reason that one cannot apply integration by parts to a function of the form of equation 5.17 is that

integration by parts is only valid for continuously differentiable functions (see for example Rudin’s book

on analysis [95]). However, f ′/x is not continuous unless f ′(x = 0) = 0, and f ′/x is not continuously

differentiable unless both f ′′/x and f ′/x2 are continuous. Thus, issue (2) restricts the previous kinetic

Bohm criteria to the form of equation 5.13. However, issue (1) shows that there are problems with

equation 5.13 as well.

Equation 5.13 still contains divergences that lead to meaningless criteria at the sheath edge. For

example, if the ion distribution function is taken to be a flow-shifted Maxwellian with flow speed V = V ẑ

and the electron distribution function is taken to be a stationary Maxwellian, then equation 5.13 gives

the criterion −ni/Ti +∞ ≤ ne/Te. This is obviously not a meaningful condition that ions must satisfy

as they leave a plasma. The primary deficiency of the collisionless Vlasov approach used by previous

authors, and outlined in section 5.1.2, is simply that the collision operator cannot be neglected if one is

interested in v−1
z moments of the kinetic equation.
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Consider what happens if the collision operator is not neglected in the conventional derivation of

the kinetic Bohm criterion. Then, the relevant kinetic equation has the form

vz
∂fs
∂z

+
qs
ms

E
∂fs
∂vz

= C(fs). (5.20)

Taking the v−1
z moment of this, in order to find an equation for ∂fs/∂z, gives

∫ ∞

−∞
d3v

∂fs
∂z

=

∫ ∞

−∞
d3v

[
C(fs)

vz
− qs
ms

E
1

vz

∂fs
∂vz

]
. (5.21)

Putting this into the sheath criterion of equation 5.9 yields the condition

∑

s

q2
s

ms

∫ ∞

−∞
d3v

1

vz

∂fs
∂vz
≤
∑

s

qs
E

∫ ∞

−∞
d3v

1

vz
C(fs), (5.22)

which can be compared to the Vlasov result from equation 5.12. A brief study of equation 5.22 shows

that not only the left side, but also the right side, which depends on the v−1
z moment of the collision

operator, diverges if ∂fs/∂vz 6= 0 for vz = 0 and any s. Equation 5.22 shows that neglecting the

collision operator is not a consistent approximation when the v−1
z is taken. For example, consider a

plasma with a single stationary Maxwellian electron species and a single ion species with a flow relative

to the electrons. In this case C(fi, fi) = 0 and C(fe, fe) = 0, but C(fe, fi) 6= 0. Since fi(vz = 0) 6= 0,

the C(fe, fi) term will cause the right side of equation 5.22 to diverge. The ion term on the left side of

equation 5.22 diverges for this example as well.

This section has pointed out problems with previous kinetic Bohm criteria that are based on v−1
z

moments of the collisionless Vlasov equation. The result of this approach leads to sheath conditions that

are impossible to use because individual terms can diverge if the distribution functions have particles

with zero velocity. These divergences can be avoided if one builds a hierarchy of fluid moment equations

from v|m| moments of the kinetic equation. With this approach, the different moments such as fluid

flow velocity, pressure and stress have unique definitions in terms of the distribution functions, and are

also physically meaningful definitions of macroscopic quantities that characterize the plasma.
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5.2 A Kinetic Bohm Criterion from Velocity Moments of the

Kinetic Equation

In this section we derive a kinetic Bohm criterion from v|m| moments of the kinetic equation. By

taking the moments m = 1, 2, . . ., a complete set of fluid equations can be built from the kinetic

equation. These moment equations are the same as the conventional plasma fluid equations, but the

fluid parameters (such as flow velocity, temperature, pressure, etc.) are defined in terms of the moments

of the distribution functions. In this way, the theory retains a kinetic interpretation. Fluid equations

built from moments of the kinetic equation typically suffer from the drawback that the equation for

each m formally depends on knowing the fluid variable associated with the m + 1 moment. However,

since this is a kinetic approach, a closure can be provided by simply writing a fluid variable (such as

the stress tensor) in terms of its definition as a moment of fs (instead of solving higher and higher

order moments for new fluid variables). We will find that for most applications, a conventional fluid

derivation of the Bohm criterion provides an excellent approximation to the kinetic result. Because the

fluid variables are defined in terms of moments of fs, the fluid result can also be written in terms of a

condition on the distribution functions fs.

5.2.1 Fluid Moments of the Kinetic Equation

In this chapter, we will be concerned with macroscopic (fluid) properties of the plasma in the plasma-

boundary transition region, which are defined by velocity-space moments of the distribution functions.

We used briefly in section 4.2 an approximate fluid model to describe the presheath. Here we develop a

more complete fluid model that also accounts for collisional effects. To build this set of fluid equations,

we start from the conservative form of the kinetic equation

∂fs
∂t

+
∂

∂x
· vfs +

qs
ms

∂

∂v
·
(

E + v ×B

)
fs = C(fs) (5.23)

in which the collision operator C(fs) ≡
∑
s′ C(fs, fs′) accounts for collisions with all species in the

plasma
∑
s′ including itself (s = s′). We apply the following definitions for fluid variables of each

species in terms of the distribution function for that species:

Density: ns(x, t) ≡
∫
d3v fs(x,v, t), (5.24)
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Fluid flow velocity: Vs(x, t) ≡
1

ns

∫
d3v vfs(x, t), (5.25)

Pressure tensor: Ps(x, t) ≡
∫
d3v msvrvrfs(x, t) = psI + Πs, (5.26)

Pressure (scalar): ps(x, t) ≡
∫
d3v

1

3
msv

2
rfs(x,v, t) = ns(x, t)Ts(x, t), (5.27)

Stress tensor: Πs(x, t) ≡
∫
d3v ms

(
vrvr −

1

3
v2
rI
)
fs(x, t), (5.28)

Temperature: Ts(x, t) ≡
1

ns

∫
d3v

1

3
msv

2
rfs(x, t) =

1

2
msv

2
Ts, (5.29)

Conductive heat flux: qs(x, t) ≡
∫
d3v

1

2
msvrv

2
rfs(x, t), (5.30)

Frictional force density: Rs(x, t) ≡
∫
d3v msvC(fs), (5.31)

Energy exchange density: Qs(x, t) ≡
∫
d3v

1

2
msv

2
rC(fs), (5.32)

in which we have defined a relative velocity vr ≡ v − Vs, where Vs is the fluid flow velocity from

equation 5.25.

The density moment (
∫
d3v . . .) of the kinetic equation yields the continuity equation

∂ns
∂t

+
∂

∂x
·
(
nsVs

)
= 0. (5.33)

The momentum moment (
∫
d3vmsv . . .) yields the momentum evolution equation

msns

(
∂Vs

∂t
+ Vs ·

∂Vs

∂x

)
= nsqs

(
E + Vs ×B

)
− ∂ps
∂x
− ∂

∂x
·Πs + Rs. (5.34)

The energy moment (
∫
d3vmsv

2 . . .) yields the energy evolution equation

∂

∂t

(
3

2
nsTs+

1

2
msnsV

2
s

)
+
∂

∂x
·
[
qs+

(
5

2
nsTs+

1

2
nsmsV

2
s

)
Vs+Vs ·Πs

]
−nsqsVs ·E−Qs−Vs ·Rs = 0.

(5.35)

Continuing this process with higher order moments of the kinetic equation leads to a hierarchy of fluid

equations. Also, note that by applying the continuity and momentum evolution equations 5.33 and

5.34, the energy evolution equation can be written as a pressure evolution equation

3

2

∂ps
∂t

= − ∂

∂x
·
(

qs +
5

2
psVs

)
+ Vs ·

∂ps
∂x
−Πs :

∂

∂x
Vs +Qs (5.36)

or a temperature evolution equation

3

2
ns
∂Ts
∂t

= −nsTs
∂

∂x
·Vs −

3

2
nsVs ·

∂Ts
∂x
− ∂

∂x
· qs −Πs :

∂

∂x
Vs +Qs. (5.37)
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Equations 5.33, 5.34, 5.35, and the subsequent equations built from higher-velocity moments of the

kinetic equation, constitute a hierarchy of fluid equations. The utility of building the fluid equations

this way is that we have defined the fluid variables in terms of the distribution function for each species.

In this way, the hierarchy of fluid equations is as general as the kinetic equation itself. In the next

section, we use equations 5.33 and 5.34 to formulate a Bohm criterion that is more general than the

one originally proposed by Bohm (which assumed monoenergetic ions and Maxwellian electrons).

5.2.2 The Bohm Criterion

Before setting off on a calculation, we need to first establish what sort of expression we are trying to

find. That is, what do we mean when we say “generalized Bohm criterion,” or more specifically “kinetic

Bohm criterion.” For instance, the sheath criterion of equation 5.8 specifies a condition that must be

satisfied at the sheath edge, yet it is not typically called a “Bohm criterion.” Bohm’s original criterion

(V ≥ cs) was condition concerning the ion speed (assumed to be monoenergetic in that paper) at the

sheath edge. So, an obvious thought might be that a Bohm criterion must say something about the ion

speed at the sheath edge. However, it is not obvious that the previous kinetic Bohm criteria (equations

5.1 and 5.2) do this. In this section, we will look specifically for a condition concerning the fluid flow

speed of ions at the sheath edge that does not depend on a spatial derivative of the fluid flow speed.

The generalization that we seek over Bohm’s formulation is that we do not assume monoenergetic ions

and we specify the ion fluid flow speed as the v moment of fs using equation 5.25.

The basic assumptions that we will make at the outset are that the plasma is in steady state (so

∂/∂t terms vanish) and that the only spatial variation in fs is due to the electric field drive of the sheath

and presheath. We take this electric field to be in the ẑ direction. This means, for instance, that the

density gradient is given by

d

dx
ns =

∫
d3v

(
∂fs
∂x︸︷︷︸
=0

x̂+
∂fs
∂y︸︷︷︸
=0

ŷ +
∂fs
∂z

ẑ

)
=
dns
dz

ẑ. (5.38)

Likewise, ∇ ·Vs = dVz,s/dz, etc. . .. This can also be stated as ns,Vs, Ts, etc . . . are only functions of

the spatial variable z.

Recall that the sheath criterion of equation 5.8 specifies
∑
s qsdns/dz|z=0 ≥ 0. We can relate ns
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and Vs using the continuity equation 5.33. Applying our assumptions, the continuity equation gives

ns
dVz,s
dz

+ Vz,s
dns
dz

= 0 ⇒ dns
dz

= − ns
Vz,s

dVz,s
dz

. (5.39)

Putting this into the sheath criterion yields

∑

s

qs
ns
Vz,s

dVz,s
dz

∣∣∣∣
z=0

≤ 0, (5.40)

which is a condition concerning the spatial gradient of Vs at the sheath edge. We are looking for a

condition on Vs itself. We can find an expression for dVs/dz from the ẑ component of the momentum

evolution equation 5.34. Applying the aforementioned assumptions, this is

msnsVz,s
dVz,s
dz

= nsqsE −
dps
dz
− dΠzz,s

dz
+Rz,s. (5.41)

Putting equation 5.41 into the sheath condition from 5.40 gives the following form of a Bohm criterion

∑

s

qs

[
qsns −

(
ns dTs/dz − dΠzz,s/dz +Rz,s

)
/E

msnsV 2
z,s − nsTs

]

z=0

≤ 0. (5.42)

Equation 5.42 is a kinetic Bohm criterion because it provides a condition that the flow speed of ions must

satisfy at the sheath edge (without depending on spatial gradients of Vs) and it makes no assumptions

about the distribution function. It does depend on spatial gradients of higher-order moments such

as the temperature and stress tensor. These could be eliminated in terms of spatial gradients of even

higher order fluid moments, the heat flux in this case, by using the temperature evolution equation 5.37.

However, no matter how far one carries out the hierarchy expansion, the analogous Bohm criterion will

still depend on a spatial derivative of fs inside some fluid moment integral. Equation 5.42 can be written

explicitly in a kinetic form by writing the fluid variables in terms of their definitions as moments of fs.

For the low-temperature plasmas of interest in this work, equation 5.42 simplifies to a conventional

fluid result (but, where the fluid variables can still be identified in terms of their definition as velocity-

space moments of fs). This is because the terms in parenthesis in equation 5.42 are divided by E,

and E is typically much bigger than these terms at the sheath edge. For example, consider the ion

temperature gradient term. In the momentum balance equation 5.34, we find the scaling

dMiV
2
i /dz

dTi/dz
∼ Mic

2
s

Ti
∼ Te
Ti
� 1. (5.43)
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Since V 2
i ∼ 2φ/Mi, the temperature gradient term in 5.42 is small in low-temperature plasmas. The

term that involves the collisional friction, Rs/E, is also negligible because the friction is typically much

smaller than the electric field at the sheath edge (for the low-temperature parameters of interest here).

Although it is a negligible term in equation 5.42, collisional friction can play an important role in the

plasma-boundary transition. In chapter 6, we will discuss in detail the role of collisional friction in

plasmas with multiple ion species.

Since the terms in parenthesis in equation 5.42 are typically negligible because of the relatively much

stronger electric field at the sheath edge, equation 5.42 reduces to

∑

s

q2
s nso

msV 2
z,so − Tso

≤ 0. (5.44)

Here the subscript o denotes that the variables are evaluated at the sheath edge (z = 0). Equation 5.44

can also be written in terms of fs:

∑

s

{
q2
s

(∫
d3v fs

)2/[
ms

(∫
d3v fs

)−1(∫
d3v vzfs

)2

−
∫
d3v

1

3
msv

2
rfs

]}
≤ 0. (5.45)

Considering a typical plasma in which the electron fluid flow speed toward the wall in the plasma

boundary transition is slow compared to the electron thermal speed (Vz,e � vTe), equation 5.44 reduces

to

∑

i

q2
i

e2

nio
neo

c2s,i
V 2
z,i − v2

T,i/2
≤ 1, (5.46)

in which i label the different ion species. Equation 5.46 was first derived by Riemann using a fluid

approach [39]. In chapter 6, we will consider details of plasmas with more than one ion species. For

plasmas with a single ion species, equation 5.46 reduces to

Vz ≥
√
c2s + v2

Ti/2. (5.47)

Writing this explicitly in terms of the distribution functions, and applying quasineutrality (ni = ne ≡ n),

yields

1

n

∫
d3v vz fi ≥

[
1

3

1

Mi

1

n

∫
d3v v2

r

(
me fe +Mi fi

)]1/2

. (5.48)

For the low temperature applications that we consider in this work, Te � Ti, and equation 5.47

simply reduces to the usual Bohm criterion

Vz ≥ cs. (5.49)
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However, whereas Bohm assumed monoenergetic ions, equation 5.49 defines Vz and the Te in cs =
√
Te/Mi in terms of velocity-space moments of the ion and electron distribution functions (equations

5.25 and 5.29). Writing equation 5.49 explicitly in terms of these distribution functions yields

1

n

∫
d3v vzfi ≥

[
1

3

me

Mi

1

n

∫
d3v v2

zfe

]1/2

. (5.50)

5.3 The Role of Ion-Ion Collisions in the Presheath

In chapter 4, we considered electron-electron scattering in the presheath in detail and found that it was

frequent enough (because of ion-acoustic instabilities) to drive the electron distribution to a Maxwellian.

We have yet to consider ion-ion scattering in the presheath. We do so now in order to gain some insight

into determining fi at the sheath edge. If fi could be determined, the result could then be used in

equation 5.50 to find a criterion that ions satisfy as they leave the plasma. Recall from equation 4.55

that, for a typical thermal particle, the scattering frequency of like-particle collisions scales as

νs/s ∼ C(fs, fs)

fs
∼ ns
msv2

Ts

(
Qs/sLB +Qs/sIE

)
. (5.51)

Recall also that the mass and temperature scalings of the collisional kernels are

Qs/sLB =
2q2
sq

2
s

ms

∫
d3k

kk

k4

δ[k · (v − v′)]∣∣ε̂(k,k · v)
∣∣2 ∼

1

msvTs
(5.52)

and

Qs/sIE ≈
∑

j

2q2
sq

2
s

ms

∫
d3k

kk

k4

π δ[k · (v − v′)] δ(ωR,j − k · v) exp(2γjt)

γj
∣∣∂ε̂(k, ω)/∂ω

∣∣2
ωj

∼ 1

msvTs
. (5.53)

Since both Qs/sLB and Qs/sIE have the same scaling with mass and temperature, we find

νi/i

νe/e
∼ mev

3
Te

Miv3
Ti

∼
√
me

Mi

(
Te
Ti

)3/2

, (5.54)

for both the Lenard-Balescu and instability-enhanced terms. In many astrophysical and fusion plasmas,

Te ≈ Ti, so ions equilibrate with one another on a slower timescale than electrons by a factor of
√
me/Mi ∼ 40. However, in the low-temperature plasmas we are interested in here, we find that

ions equilibrate with one another faster than electrons do. For an electron-proton plasmas with room

temperature ions and 1 eV electrons, we find

νi/i

νe/e
∼
√
me

Mi

(
Te
Ti

)3/2

∼
(

1

40

)(
400
)
∼ 10. (5.55)
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Recall from equation 4.62 that the electron-electron scattering length in Langmuir’s mercury plasma

from the Lenard-Balescu contribution was about 28 cm. After instability-enhanced collisions from ion-

acoustic instabilities were accounted for, this fell to approximately 0.2 cm. For Langmuir’s plasma (with

Te = 2 eV and mercury ions) equation 5.54 gives νi/i/νe/e ∼ 2.5. Thus, we expect ion-ion collisions

to cause equilibration to a Maxwellian about 2 times faster than the electrons equilibrate. Using our

results from section 4.4.2, we thus predict that ion-acoustic instabilities cause the ion distribution

to be Maxwellian as well as the electron distribution. The electron-ion collision frequency scales as

νe/i/νe/e ∼ me/Mi ∼ 10−4. Thus, even with the enhanced collisions from ion-acoustic instabilities, we

do not expect electrons and ions to equilibrate with one another. Because of this, ions can flow relative

to the electrons and the ion-acoustic instability drive remains. It is also noteworthy that previous

experimental measurements using LIF have shown that the ion distribution has a flow-shifted Gaussian

shape in the presheath (see, e.g., [48]). This is consistent with our prediction that the distribution is

Maxwellian.

5.4 Examples for Comparing the Different Bohm Criteria

In this section, we will consider two different ion distribution functions, flowing Maxwellian and delta

function (mononenergetic), and two different electron distribution functions, stationary Maxwellian

and Maxwellian with a depleted tail (for a case where collisions may not have repleted this part of

the distribution). We have seen throughout chapter 4 and section 5.3 of this chapter that these are all

possible, sometimes expected, distribution functions in the plasma-boundary transition (a delta function

is not technically possible, but we want to look at this monoenergetic ion case in order to reduce the

kinetic models in this chapter to the original problem that Bohm studied). For each of these distribution

functions, we will compare the condition from the previous kinetic Bohm criterion, equation 5.1, with

the condition from equation 5.48.

Monoenergetic ions, Maxwellian electrons: We will start with the idealized plasma that

Bohm considered in his original paper [38]. This assumed monoenergetic ions, fi = niδ(v −Vi), and

Maxwellian electrons. Here we align coordinates so that Vi = Vi ẑ. We saw in equation 3.60 that

if equations 5.24, 5.25 and 5.29 are used to define the density, fluid flow velocity and temperature,
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that this determines the five coefficients A,B and C in the general Maxwellian distribution fMs(v) =

exp
(
−Av2/2 + B · v + C

)
. These definitions yield: A = ms/(2Ts), B = msVs/Ts and exp(−C) =

ns/(π
3/2v3

Ts) exp(−V 2
s /v

2
Ts). Thus, the Maxwellian can be written in the conventional form

fMs(v) =
ns

π3/2v3
Ts

exp

[
− (v −Vs)

2

v2
Ts

]
. (5.56)

For the electron and ion distribution functions cited above, the components of equation 5.1 are

1

Mi

∫
d3v

fi
v2
z

=
1

Mi

∫
d3v

niδ(v −V)

v2
z

=
ni
Mi

1

V 2
i

(5.57)

and

− 1

me

∫
d3v

1

vz

∂fMe

∂vz
=

2

me

1

v2
Te

∫
d3v

vx + vy + vz
vz

fMe =
2

me

1

v2
Te

∫
dvz fMe =

ne
Te
. (5.58)

The components of equation 5.48 are

∫
d3v vzfi =

∫
d3v vz ni δ(v −Vi) = niVi, (5.59)

1

3

∫
d3v v2

rfi =
1

3

∫
d3v
(
v2 − 2vVi + V 2

i )fi =
1

3
ni
(
V 2
i − 2V 2

i + V 2
i ) = 0, (5.60)

and

1

3

∫
d3v v2

r mefe = Te. (5.61)

Inserting equations 5.57 and 5.58, and assuming quasineutrality, the kinetic Bohm criterion derived

by previous authors (equation 5.1) reduces to the conventional Bohm criterion: Vi ≥ cs =
√
Te/Mi.

Putting equations 5.59, 5.60 and 5.61 into equation 5.48 also gives the conventional Bohm criterion:

Vi ≥ cs. Thus, the previously derived kinetic Bohm criterion from the literature (equation 5.1), the

kinetic equation developed in section 5.2.2, and Bohm’s original work [38] all provide the same criterion

for plasmas with monoenergetic ions and Maxwellian electrons.

Maxwellian ions, Maxwellian electrons: Next, we consider a plasma with stationary Maxwellian

electrons and flowing Maxwellian ions. From our work in chapter 4 and section 5.3 we showed that,

because of the short scattering lengths for both ion-ion and electron-electron collisions in the presheath,

this is a physically meaningful situation for low-temperature plasmas. In this case, equation 5.48 simply

reduces to Vi ≥
√
c2s + v2

Ti/2. However, the ion term in the kinetic Bohm criterion from equation 5.1

diverges

1

Mi

∫
d3v

fMi(v)

v2
z

=
ni

2
√
πTi

∫ ∞

−∞
dvz

exp(−v2
z/v

2
Ti)

v2
z

→∞ (5.62)
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(recall that this integral was formally shown to diverge in equation 5.19). Thus, equation 5.1 gives the

condition ∞ ≤ ne/Te, which does not agree with the condition from equation 5.48.

Monoenergetic ions, truncated Maxwellian electrons: To show that there is also difference

in the electron term of equations 5.1 and 5.48, we consider an electron distribution that is Maxwellian

except for that it is truncated for some velocity in the ẑ direction, which we denote v‖,c. Our motivation

here is a theoretical exercise to demonstrate the difference between equations 5.1 and 5.48. However,

it can also be a physically relevant situation. If some strong damping mechanism is present, such as

neutral damping, the ion-acoustic instability-enhanced driver for electron-electron collisions might be

missing. In this case, the tail of the electron distribution function is expected to be depleted for energies

beyond what is required to escape the sheath. The truncation velocity is in the direction parallel to the

sheath electric field and is given by v‖c =
√

2∆φs/me. A truncated electron distribution can be written

fe =
n̄e

π3/2v̄3
Te

exp

(
− v2

v̄2
Te

)
H(v‖,c − vz) (5.63)

in which H is the Heaviside step function. Note that n̄e is not the density and T̄e is not the electron

temperature, as they are defined in equations 5.24 and 5.29. In terms of the fluid variable definitions,

the density is

ne =

∫
d3v fe =

n̄e√
πv̄Te

∫ v‖,c

−∞
dvz exp

(
− v2

z

v̄2
Te

)
=
n̄e
2

[
1 + erf

(
v‖,c
v̄Te

)]
, (5.64)

the flow velocity is

Ve =
1

ne

∫
d3v vfe =

1

ne

n̄e√
πv̄Te

∫ v‖,c

−∞
dvz vz exp

(
− v2

z

v̄Te

)
ẑ = − 1

2
√
π

n̄e
ne

exp

(
−
v2
‖,c
v̄2
Te

)
v̄Te ẑ (5.65)

= − 1√
π

exp
(
−v2
‖,c/v

2
Te

)

1 + erf
(
v‖,c/v̄Te

) v̄Te ẑ

and the temperature is

Te =
1

ne

∫
d3v

1

3
me v

2
rfe = −1

3
meV

2
e +

1

3

me

ne

∫
d3v v2fe =

1

3
meVe

(
v‖,c − Ve

)
+

1

2
mev̄

2
Te (5.66)

=
1

2
mev̄

2
Te

[
1− 3

2π

exp
(
−2v2

‖,c/v
2
Te

)
[
1 + erf

(
v‖,c/v̄Te

)]2 −
3

2
√
π

v‖,c
v̄Te

exp
(
−v2
‖,c/v̄

2
Te

)
[
1 + erf

(
v‖,c/v̄Te

)]
]
.

For this example, equation 5.48 reduces to the following Bohm criterion

Vi ≥
{

1

2

me

Mi
v̄2
Te

[
1− 3

2π

exp
(
−2v2

‖,c/v
2
Te

)
[
1 + erf

(
v‖,c/v̄Te

)]2 −
3

2
√
π

v‖,c
v̄Te

exp
(
−v2
‖,c/v̄

2
Te

)
[
1 + erf

(
v‖,c/v̄Te

)]
]}1/2

. (5.67)
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The electron term in the Bohm criterion from equation 5.1, is given by

− 1

me

∫
d3v

1

vz

∂fe
∂vz

= − 1

me

n̄e
π3/2v̄3

Te

[∫
d3v
−2(vx + vy + vz)

v̄2
Tevz

exp

(
− v2

v̄2
Te

)
H(v‖,c − vz) (5.68)

−
∫
d3v

δ(v‖,c − vz)
vz

exp

(
− v2

z

v̄2
Te

)]

=
n̄e

mev̄2
Te

[
1 + erf

(
v‖,c
v̄Te

)
+

1√
π

v̄Te
v‖,c

exp

(
−
v2
‖,c
v̄2
Te

)]
.

With this, equation 5.1 give the condition

Vi ≥
{

1

2

me

Mi
v̄2
Te

[
1 + erf

(
v‖,c/v̄Te

)

1 + erf
(
v‖,c/v̄Te) + vTe√

πv‖,c
exp
(
−v2
‖,c/v̄

2
Te

)
]}1/2

. (5.69)

Equations 5.67 and 5.69 give different results (although, they converge to the same result as v‖,c/vTe →

∞). For example, consider the case v‖,c = 0. In this case, equation 5.67 gives

Vi ≥
[

1

2

me

Mi
v̄2
Te

(
1− 3

2π

)]1/2

, (5.70)

but the kinetic criterion of equation 5.1 gives

ni
Mi

1

V 2
i

≥ ∞. (5.71)

Thus, not only does the ion term have divergence issues, but also the electron term in the kinetic Bohm

criterion from equation 5.1. The approach of section 5.2.2 corrects these divergence issues.
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Chapter 6

Determining the Bohm Criterion In

Multiple-Ion-Species Plasmas

Understanding plasma-boundary interactions requires knowing the speed at which ions leave a plasma.

Determining this speed is important in a broad range of plasma applications. For example, the speed

that ions fall into a sheath determines the depth and anisotropy of tunnels in plasma etching of semi-

conductors [80], the depth and flux of ions at a surface in plasma-based ion implantation [96] and the

flux and speed of ions required to interpret Langmuir probe measurements [97]. Other examples in-

clude determining the flux, heat load and recycling rates at boundaries in the scrape-off layer of fusion

experiments [98], and the interaction of ionospheric or interstellar plasmas with spacecraft [99]. In all

of these examples multiple species of positive ions are often present.

We showed in equation 5.46 of section 5.2.2 that the Bohm criterion

∑

i

q2
i

e2

nio
neo

c2s,i
V 2
z,i − v2

T,i/2
≤ 1 (6.1)

provides a condition that the ion flow speed must satisfy at the sheath edge (which is the boundary of

a quasineutral plasma). Equation 6.1 was first derived by Riemann [39]. If the plasma contains a single

species of positive ions that are cold compared to the electrons, equation 6.1 reduces to the conventional

Bohm criterion: V ≥ cs. It has been shown theoretically [81], and experimentally [84], that equality

typically holds in the conventional Bohm criterion. In this case, V = cs uniquely determines the ion

flow speed at the sheath edge. We assume that equality holds in equation 6.1 as well. However, even

if equality holds, equation 6.1 does not uniquely determine the flow speed of each ion species at the

sheath edge if more than one ion species is present. To determine which of the infinite number of possible

solutions is physically realized, is what we mean by “determining the Bohm criterion.” Determining
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the Bohm criterion in multiple-ion-species plasmas will be the subject of this chapter. We will show

that collisional friction between ion species due to instability-enhanced interactions, which arise from

two-stream instabilities in the presheath, often plays a critical role in this determination.

6.1 Previous Work on Determining the Bohm Criterion in Two-

Ion-Species Plasmas

Because it is important in so many applications, a significant amount of literature exists on determining

the Bohm criterion in multiple-ion-species plasmas. Almost all of this work is concerned with plasmas

with two species of positively charged ions and electrons. This is the situation that we will concentrate

on as well. Plasmas with negative ion species are also discussed in the literature, but this topic will not

be a focus of the present work. The major issue we address in this chapter is why the previous theories

[43–47] and experiments [48–52, 100–102] do not agree as to what flow speed each ion species has as it

leaves the plasma. Both the theory and experiments in this area concentrate on low ion temperature

plasmas (which satisfy Ti � Te) with ions that have a single positive charge. In this case equation 6.1

reduces to

∑

i

nio
neo

c2s,i
V 2
io

≤ 1. (6.2)

The vast majority of theoretical work on this topic has been published by Franklin [43–47]. Using

a variety of analytic and computational models, Franklin predicts that each ion species should fall into

the sheath with a speed close to its individual sound speed: Vi = cs,i, where the individual sound speed

is defined as

cs,i ≡
√
Te
Mi

. (6.3)

It can easily be confirmed that this is one possible solution of the Bohm criterion in equation 6.2.

Franklin’s model consists of a set of fluid continuity and momentum balance equations that account for

ion-neutral collision processes and ionization sources, in addition to the usual plasma physics terms. His

model does not include the effect of ion-ion friction. We will see in section 6.3 that in stable plasmas this

is a valid approximation. It is not valid if ion-ion two-stream instabilities are present. By solving this

set of equations throughout the plasma-boundary transition region, Franklin finds that each ion species
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1100±60 m/s, which is close to the vph and is not consistent
with its own Bohm velocity. On the other hand, the xenon
ion velocity is 940±50 m/s at the sheath edge. This is much
faster than CXe and is just barely in agreement with the IAW
velocity within experimental uncertainties. From the two ve-
locity measurements, it is evident that the results exclude one
of the simple solutions, i.e., the ions do not have their own
Bohm velocities near the sheath edge. The data appear to
support the other simple solution that the ions approach the
IAW velocity near the sheath edge. Substituting the mea-
sured values into the left hand side of Eq. �2� gives 0.97,
which satisfies the generalized Bohm criterion in two-ion
species plasmas.
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FIG. 3. �Color online� �a� Ar and �b� Xe IVDFs as a function of distance z
from the plate in the Ar 0.5+Xe 0.2 mTorr plasma.

FIG. 4. �Color online� Spatial profiles of the plasma potential and Ar+–Xe+

velocities in the Ar 0.5+Xe 0.2 mTorr plasma.
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Figure 6.1: LIF data showing the ion fluid speeds of Ar+ (blue triangles) and Xe+ (red squares)
throughout the presheath (left axis) and the electrostatic potential profile (right axis, green diamonds).
Also indicated are the individual and system sound speeds. The density of each ion species was approx-
imately the same in this experiment. This figure has been reproduced from reference [50]. Copyright
2007 by The American Institute of Physics.

tends to fall into the sheath with a speed near its individual sound speed cs,i. Deviations from this

solution can occur when there is a lot of ion-neutral drag. Particularly if there is much more ion-neutral

drag on one ion species than the other. However, for common plasma parameters these deviations tend

to be small and the individual sound speed solution is a robust prediction of these model equations.

Experiments measure a significantly different speed for each ion species than their individual sound

speeds at the sheath edge [48–52, 100–102]. Most of these experiments employed the laser-induced

fluorescence (LIF) technique [48–50, 100, 102] and directly measured the speed of each ion species as it

traversed the presheath and entered the sheath. This work measured the individual ion flow speeds and

showed that they tended to be much closer to a common speed at the sheath edge than their individual

sound speeds. This common speed was the system sound speed Vi = cs, which is a density-weighted

average of the individual sound speeds

cs ≡
√∑

i

ni
ne
c2s,i. (6.4)

This common sound speed is the solution of equation 6.2 if one assumes that V1 = V2.

Additional experimental evidence for the common sound speed solution has been provided using a
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combination of electrostatic probes and ion-acoustic waves [51, 52] to measure the ion speeds in the

plasma-boundary transition region. Oksuz et al [52] have shown empirically that, for two ion species

plasmas, the ion acoustic wave speed at the sheath edge is typically twice what it is in the bulk plasma.

Taking this observation as an ansatz, Lee et al [53] have shown that it implies each ion species enters

the sheath at the common system sound speed. However, no physical mechanism has been suggested

by which this solution is established.

The majority of experiments that have been reported used either Ar-Xe or Ar-He plasma in which

the density of each ion species was approximately equal (and, thus, half of the electron density). When

considering a specific example plasma in this chapter, we will use the parameters of a particularly well

diagnosed plasma from the literature [50]. This was a Ar-Xe plasma in which each ion species had

approximately the same density, the electron density was 5 × 109 cm−3, the electron temperature was

0.7 eV and the ion temperature was approximately room temperature (0.02 eV). The figure from Lee

et al [50] that presents LIF data for the flow speed of each ion species throughout the plasma-boundary

transition in this plasma has been reproduced here in figure 6.1.

The fact that experiments have measured the individual ion flow speeds to be much closer to one

another than the theoretical models predict suggests that ion-ion friction between the species might be

important. However, if one calculates the expected ion-ion friction from Coulomb interactions in a stable

plasma, it turns out to be a weak effect (assuming the low-temperature plasma parameters from the

experiment). This calculation is shown in section 6.3. It appears that some mechanism other than the

conventional Coulomb collisions in stable plasma must be present in order to explain the experimental

measurements.

In this chapter, we show that the physical mechanism responsible for enhancing the collisional

friction between each ion species is ion-ion two-stream instabilities. In plasmas with Te � Ti, two-

stream instabilities can grow in the presheath when any two ion species have speeds that differ by more

than a critical value that is characteristic of their thermal speeds. These instabilities greatly enhance

the collisional friction between each ion species. It causes the difference in their flow speeds to become

fixed to a value that can be far less than the difference of their individual sound speeds. In the limit of

vanishing ion temperatures, both species are predicted to enter the sheath at a common system sound

speed cs.
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Ion-ion two stream instabilities have been measured in the presheath in previous experiments [49, 51].

These references show measurements of broad-band noise (significantly above the thermal level) in the

MHz frequency range near the plasma boundaries in Ar-He plasma. They also show that the instability is

strongest when the relative concentration of each ion species is similar, and that the instabilities become

much weaker when the concentration of one species is much more, or less, than the other. All of these

results are consistent with the two-stream instabilities that we discuss in section 6.4. This problem of

determining Bohm’s criterion in multiple-ion-species plasmas has a lot in common with the Langmuir’s

paradox problem that we discussed in chapter 4. Both problems are concerned with a measurement

that appears to show anomalous scattering amongst particles, and in both problems instabilities have

been measured. However, previous theories could not show how the measured instabilities could explain

the anomalous effect (either Maxwellian electron distribution functions or a collisional friction between

two particular species). Again we can bridge this gap by applying the theory developed in chapter 2.

6.2 Momentum Balance Equation and the Frictional Force

Recall from equation 5.34 that the momentum balance equation is given by

msns

(
∂Vs

∂t
+ Vs ·

∂Vs

∂x

)
= nsqs

(
E + Vs ×B

)
− ∂ps
∂x
− ∂

∂x
·Πs + Rs. (6.5)

In this chapter, we will be interested in the collisional friction force density

Rs(x, t) ≡
∫
d3v msvC(fs). (6.6)

Although it is a force density, we will simply refer to this as the collisional friction. Since the collision

operator is the sum of the Lenard-Balescu term and the instability-enhanced term C(fs) = CLB(fs) +

CIE(fs), the collisional friction can be written as the sum of the two contributions: Rs = RLB,s +

RIE,s. Noting that the total collision operator can be written in terms of component collision operators

C(fs) =
∑
s′ C(fs, fs′), the collisional friction can also be written in terms of component contributions

Rs =
∑
s′ Rs−s′ . This property is obeyed by both the Lenard-Balescu collision operator and the

instability-enhanced collision operator derived in chapter 2 (and, hence, also the associated collisional

friction terms), but it is not obeyed by previous theories of wave-particle scattering such as quasilinear
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theory; see section 3.4. This property will be essential here because we are only interested in the friction

between ion species 1 and 2: R1−2 = R1−2
LB + R1−2

IE .

Another property that will be important in this chapter is that the frictional force between individual

species is equal and opposite

Rs−s′ = −Rs′−s. (6.7)

This is a direct consequence of the property of conservation of momentum between individual species

that was proved in section 3.4.2 (written in equation 3.38). Again, this property is not obeyed by

previous theories of wave-particle scattering, such as quasilinear theory. These are two properties of the

theory derived in chapter 2 that will be essential for the application considered in this chapter.

The collisional friction can be written in a more convenient form for calculation than it is in equation

6.6. First, recall that

Rs−s′ =

∫
d3vmsvC(fs, fs′) = −ms

∫
d3v v

∂

∂v
· Js−s′v , (6.8)

in which Js−s
′

v is the collisional current. Recalling the diad (tensor) identity ∇ · (AB) = (∇ ·A)B +

(A · ∇)B, the integrand can be written as

v

(
∂

∂v
· Js−s′v

)
=

∂

∂v
·
(

v Js−s
′

v

)
−
(

Js−s
′

v · ∂
∂v

)
v =

∂

∂v
·
(

v Js−s
′

v

)
− Js−s

′
v . (6.9)

Putting this into equation 6.8 and applying Gauss’s flux theorem yields

Rs−s′ = −ms

∫
d3v

∂

∂v
·
(
v Js−s

′
v

)
+ms

∫
d3v Js−s

′
v = −ms

∮
dS ·

(
v Js−s

′
v

)
+ms

∫
d3v Js−s

′
v . (6.10)

Since Js−s
′

v vanishes at the boundary at infinity in velocity space, a convenient result emerges

Rs−s′ = ms

∫
d3v Js−s

′
v . (6.11)

Using the Js−s
′

v calculated in chapter 2, equation 2.33, yields

Rs−s′ = ms

∫
d3v

∫
d3v′Q ·

(
fs(v)

ms′

∂fs′(v
′)

∂v′
− fs′(v

′)
ms

∂fs(v)

∂v

)
. (6.12)

In this chapter we will assume that both ion species have Maxwellian distributions, with flow speeds

that can be different in magnitude, but in the same direction. Applying the assumption that both s

and s′ are Maxwellian, equation 6.12 can be written as

Rs−s′ = −ms

∫
d3v

∫
d3v′fs(v)fs′(v

′)Q ·
(

v′ −Vs′

Ts′
− v −Vs

Ts

)
. (6.13)
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Furthermore, we assume that the temperature of each ion species is approximately the same Ts ≈ Ts′ .

Using this, along with the property Q · (v − v′) = 0, equation 6.13 reduces to

Rs−s′ = −ms

Ts

∫
d3v

∫
d3v′fs(v)fs′(v

′)Q · (Vs −Vs′). (6.14)

Recall from equations 2.47 and 3.64 that QIE · (v − v′) = 0 only when the instabilities are slowly

growing: γj/ωR,j � 1. This will be true of the two-stream instabilities we consider in this chapter.

In the following two sections we use equation 6.14 as a starting point from which we calculate the

collisional friction force density in stable and ion-ion two-stream unstable plasma.

6.3 Ion-Ion Collisional Friction in Stable Plasma

In this section we calculate the stable plasma contribution to the ion-ion collisional friction force density,

Rs−s, starting from equation 6.14. For this, we need the Lenard-Balescu collisional kernel

Qs/s
′

LB =
2q2
sq

2
s′

ms

∫
d3k

kkδ[k · (v − v′)]
k4|ε̂(k,k · v)|2 . (6.15)

The characteristic v in the dielectric function is of the order the ion flow speed, which can be as

large as the ion sound speed. Using this characteristic v, the dielectric function can be shown to be

approximately adiabatic ε̂(k,k · v) ≈ 1 + 1/k2λ2
De. We showed in section 1.1.5 that in this case, the

Lenard-Balescu collisional kernel reduces to the Landau collisional kernel [1]

Qs/s
′

LB =
2πq2

sq
2
s′

ms

u2I − uu

u3
ln Λ. (6.16)

Recall that u ≡ v − v′.

We choose a cylindrical coordinate system for u such that u = uxx̂+ uy ŷ + uz ẑ where

ux = u⊥ cosψ , uy = u⊥ sinψ and uz = u‖ẑ. (6.17)

We align this so that the parallel direction (ẑ) is along ∆V ≡ Vs−Vs′ . Applying this convention, and

putting the Landau collisional kernel from equation 6.16 into equation 6.14, yields

Rs−s′ = −2πq2
sq

2
s′

Ts
∆V ln Λ

∫
d3v

∫
d3v′ fs(v)fs′(v

′)
u‖
u3

(
−u⊥ cosψx̂− u⊥ sinψŷ +

u2
⊥
u‖
ẑ

)
. (6.18)
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In terms of v and v′, this is

Rs−s′ = −2πq2
sq

2
s′

Ts
∆V ln Λ

∫
d3v

∫
d3v′

fs(v)fs′(v
′)

(
1 +

(vx−v′x)2+(vy−v′y)2

(vz−v′z)2

)3/2
× (6.19)

×
(
− vx − v′x

(vz − v′z)2
x̂− vy − v′y

(vz − v′z)2
ŷ +

(vx − v′x)2 + (vy − v′y)2

(vz − v′z)3
ẑ

)
.

Recall our assumption that the flow of each ion species is only in the ẑ direction. With this, the

Maxwellian distribution function of each species has the form

fs(v) =
ns

π3/2v3
Ts

exp

(
−v

2
x + v2

y + v2
z + V 2

s − 2vzVs

v2
Ts

)
, (6.20)

and

fs′(v
′) =

ns′

π3/2v3
Ts′

exp

(
−v
′2
x + v′2y + v′2z + V 2

s′ − 2v′zVs′

v2
Ts′

)
. (6.21)

Next, we show that the x̂ and ŷ components of Rs−s′
LB will vanish. It will suffice to just consider the x̂

direction since the ŷ component follows analogously by simply replacing x subscripts with y subscripts.

Considering the vx and v′x integrations from equation 6.19, we have

Rx ∝
∫
dvx

∫
dv′x

e−v
2
x/v

2
Tse−v

′2
x /v

2
Ts′ (vx − v′x)

[
a+ (vx − v′x)2

]3/2 =

∫
dux

ux
(a+ u2

x)3/2

∫
dv′xe

−v′2x /v2Ts′ e−(ux+v′x)2/v2Ts

(6.22)

in which we have substituted ux = vx − v′x and a ≡ (vy − v′y)2 + (vz − v′z)2. Noting that

∫ ∞

−∞
dxe−αx

2

e−β(x+y)2 =

√
π√

α+ β
exp

(
− αβy

2

α+ β

)
(6.23)

we find that the x̂ component of Rs−s′
LB is given by

Rx ∝
∫ ∞

−∞
dux

ux
(a+ u2

x)3/2
exp

(
− αβu

2
x

α+ β

)
= 0, (6.24)

which vanishes due to odd parity of the integrand. Hence, the perpendicular components of the frictional

force vanish as expected. Here we have used the definitions α ≡ 1/v2
Ts′ and β ≡ 1/v2

Ts.

Now we turn to the important component – along the flow. For this, we have

Rs−s′
LB = −2πq2

sq
2
s′

Ts
∆V ln Λ

∫
d3v

∫
d3v′fs′(v

′)fs(v)
u2
⊥
u3
. (6.25)

Switching the v variables to u, we find

Rs−s′
LB = −2q2

sq
2
s′

Ts

nsns′ ln Λ ∆V

π2v3
Tsv

3
Ts′

I (6.26)
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in which we have defined the integral

I ≡
∫
d3u

u2
⊥
u3

∫
dv′ze

−α[v′z+(uz−Vs)]2e−β(v′z−Vs′ )2
∫
dv′ye

−α(v′y+uy)2e−βv
′2
y

∫
dv′xe

−α(v′x+ux)2e−βv
′2
x ,

(6.27)

and again have used α ≡ 1/v2
Ts and β ≡ 1/v2

Ts′ . Applying the integral identity

∫ ∞

−∞
dx e−α(x+z)2e−β(x+y)2 =

√
π√

α+ β
exp

[
−αβ(z − y)2

α+ β

]
(6.28)

the I term of equation 6.26 reduces to

I = π3/2 v
3
Tsv

3
Ts′

v̄3
T

∫
d3u

u2
⊥
u3

exp

[
−u

2
⊥ + (u‖ −∆V )2

v̄2
T

]
(6.29)

in which we have defined

v̄2
T ≡ v2

Ts + v2
Ts′ . (6.30)

Here ∆V = |∆V|.

The azimuthal part of the u integral in equation 6.29 is trivial to evaluate since the integrand does

not depend on it. The u⊥ component can be evaluated with the integral

∫ ∞

0

du⊥
u3
⊥

(u2
‖ + u2

⊥)3/2
exp

(
−u

2
⊥
v̄2
T

)
= |u‖|

[
−1 +

v̄T
2|u‖|

√
π

(
1 + 2

u2
‖
v̄2
T

)
exp

(
u2
‖
v̄2
T

)
erfc

( |u‖|
v̄T

)]
. (6.31)

Putting these two integrals into equation 6.29 yields

I = 2π5/2 v
3
Tsv

3
Ts′

v̄3
T

{√
π

2
v̄T e
−∆V 2/v̄2T

∫ ∞

−∞
du‖

(
1 + 2

u2
‖
v̄2
T

)
exp

(
2∆V u‖
v̄2
T

)
erfc

( |u‖|
v̄T

)

︸ ︷︷ ︸
I1

(6.32)

−
∫ ∞

−∞
du‖|u‖| exp

[
−
(
u‖ −∆V

)2

v̄2
T

]

︸ ︷︷ ︸
I2

}
.

The last term in equation 6.32 can be evaluated by splitting the limits of integration for the positive and

negative intervals and using integration by parts to give, I2 = v̄T∆V erf(∆V/v̄T ) + v̄2
T exp

(
−∆V 2/v̄2

T

)
.

The first integral in equation 6.32 can be written in terms of cosh

I1 =
√
πv̄2

T exp

(
−∆V 2

v̄2
T

)∫ ∞

0

dy
(
1 + 2y2

)
cosh

(
2

∆V

v̄T
y

)
erfc(y), (6.33)

which can then be written in terms of algebraic terms and erf functions by applying integration by parts

several times. Evaluating I1 and adding it to I2, we find

I =
π3v3

Tsv
3
Ts′ v̄

2
T

∆V 3

[
erf

(
∆V

v̄T

)
− 2√

π

∆V

v̄T
exp

(
−∆V 2

v̄2
T

)]
=
π3v3

Tsv
3
Ts′ v̄

2
T

∆V 3
ψ

(
∆V 2

v̄2
T

)
. (6.34)
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Figure 6.2: Collisional friction force density in a stable plasma between flowing Maxwellian species
with the same temperature (solid black line). The blue dashed line represents the lowest order of the
conventional Spitzer result for flows slow compared to thermal speeds [103], and the red dashed line is
the asymptotic expansion for flows fast compared to thermal speeds.

in which we have identified the Maxwell integral:

ψ(x) ≡ 2√
π

∫ x

0

dt
√
te−t = erf(

√
x)− 2√

π

√
xe−x. (6.35)

Putting equation 6.34 into equation 6.26 gives an expression for the frictional force density between

two Maxwellian species, with the same temperatures, in a stable plasma

Rs−s′
LB = −

√
π

2
nsmsνs

v̄3
T ∆V

∆V 3
ψ

(
∆V 2

v̄2
T

)
. (6.36)

in which

νs ≡
8
√
πq2
sq

2
s′ns′ ln Λ

m2
sv

2
Tsv̄T

(6.37)

is a reference collision frequency.

To connect with previous theories, like the classic work of Spitzer [103], and to check that equation

6.36 reduces to an established result in the appropriate limit, consider the limit ∆V/v̄T � 1. That is,

a flow difference that is small compared to the average thermal speed. In this case, we apply the small
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argument series expansion of ψ and find

Rs−s′
LB ≈ −nsms

2

3
νs∆V. (6.38)

The Spitzer problem considers electrons slowing on ions with Te ≈ Ti such that the flow is small

compared to the electron thermal speed [103]. In this case v2
Te + v2

Ti ≈ v2
Te, and (Ve − Vi)/vTe � 1.

Equation 6.36 predicts for this limit, Re/i = nemeνe(Ve −Vi), where the reference electron collision

frequency is

νe =
16π

3
√
π

niZ
2e4 ln Λ

m2
ev

3
Te

. (6.39)

This returns the Spitzer collision frequency (which leads to the Spitzer resistivity) [103]. This result is

consistent with the lowest order (0, 0) component (where both functions are Maxwellians) of the more

general Spitzer problem, which considers deviations from Maxwellian as higher-order components.

For the presheath problem, we are interested the limit where the relative flow speed is much faster

than the thermal speed ∆V/v̄T � 1, which is the opposite limit as the Spitzer problem. Using the

asymptotic expansion for large argument in the ψ function, we find

Rs−s′
LB ≈ −nsms

√
π

2
νs

v̄3
T

∆V 3
∆V (6.40)

in this limit.

Equation 6.36 is plotted in figure 6.2 along with the asymptotic and power series expansions from

equations 6.38 and 6.40. For our example plasma parameters, this stable plasma contribution to the

collisional friction force density is much smaller than other terms in the momentum balance equa-

tion 6.5. For example, the VidVi/dz term in the momentum equation is much larger than RLB:

O[(c2s/λ
i/n)/R1−2

LB ] ∼ 10−1. Thus, the neglect of ion-ion collisional friction in stable plasma is jus-

tified in Franklin’s [43–47] previous theoretical work. However, it is not so small that one could claim

that conventional Coulomb interactions are never important in the ion dynamics of these plasmas. It

happens that it does not seem to be a significant effect for the example plasma parameters from ref-

erence [50]. We next turn to calculating contributions to the collisional friction that can come about

from instability-enhanced collisions when two-stream instabilities arise in the presheath.
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6.4 Ion-Ion Collisional Friction in Two-Stream Unstable Plasma

In this section, we calculate the ion-ion collisional friction force when it is enhanced by two-stream

instabilities. Two-stream instabilities require that the difference in flow speeds exceed a critical value

(∆Vc) before they become unstable: V1 −V2 ≡ ∆V > ∆Vc. This critical speed is characteristic of

the ion thermal speed: ∆Vc ∼ O(vTi). In section 6.4.2, we calculate the instability-enhanced collisional

friction from two-stream instabilities in the presheath. We find that whenever the two-stream insta-

bilities are present, the collisional friction quickly (within a few Debye lengths) becomes so large that

it dominates the momentum balance equation. This creates a very stiff system whereby if two-stream

instabilities are present, the resultant friction quickly forces the flow speed of each species together (this

is because the frictional force between them is equal and opposite; see equation 6.7).

Since the friction force quickly dominates whenever these instabilities arise, the difference in flow

speeds can never exceed the critical threshold value for which two-stream instabilities onset. In section

6.4.1, we start with a model of the plasma dielectric function that assumes ions are cold (a fluid plasma

dielectric function). This assumption is motivated by the experimental parameters in which ions are

approximately room temperature (≈ 0.02 eV), while electrons are much hotter (≈ 0.7 eV). We will find

that the cold ion model predicts instability whenever the flow speed of each ion species is different,

because in this limit vTi → 0, so ∆Vc → 0. Using ∆V = 0 as one condition, and the Bohm criterion of

equation 6.2 as the other, we find that each ion species leaves the plasma (and enters the sheath) at a

common sound speed given by the system sound speed: V1 = V2 = cs. This result is in agreement with

previous experiments conducted in cold ion temperature plasmas [48–52, 100–102].

Although the cold ion result agrees with the previous experiments, all plasmas have finite ion tem-

peratures and it is important to know how this might change the common sound speed result. In section

6.4.2 we account for the finite ion temperatures using a kinetic dispersion relation instead of the cold ion

(fluid) approximation in order to calculate ∆Vc. We find that ∆Vc depends not only on the ion thermal

speeds, but also on the density ratio of the two ion species (n1/n2). The predicted result is that ∆Vc is

much smaller when n1/n2 is close to 1 than it is when n1/n2 is very large, or small. In section 6.5, we

apply the more general condition ∆V = ∆Vc to determine the Bohm criterion from equation 6.2. The

prediction that the ion flow speeds at the sheath edge depend on their relative densities is a new result
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that provides a convenient way to test our theory experimentally. In section 6.5, we show LIF data by

Yip et al [54] that has already carried out this test. The data appears to confirm our predictions.

6.4.1 Cold Ion Model for Two-Stream Instabilities

Since we assume that the distribution functions of both ion species and electrons are Maxwellian, the

dielectric function of equation 2.18 reduces to (see section 4.3)

ε̂(k, ω) = 1−
∑

s

ω2
ps

k2v2
Ts

Z ′
(
ω − k ·Vs

kvTs

)
, (6.41)

in which Z is the plasma dispersion function and the derivative is with respect to the argument of Z.

We are considering flowing Maxwellian ions, and stationary Maxwellian electrons. Typically, for ion

waves, one assumes (ω − k ·V)/kvTi � 1 for ions and ω/kvTe � 1 for electrons. This is because the

wave phase speed is typically on the order of the ion sound speed and electrons are much hotter than

ions. We will see later that this approximation is not valid for capturing the two-stream instability when

the relative ion flow ∆V = V1 − V2 is on the order of the ion thermal speeds. However, we proceed to

calculate the collisional friction using this ordering, and will consider how small ∆V can be accounted

for in section 6.4.3. Applying these assumptions yields the fluid plasma dielectric function

ε̂(k, ω) = 1− ω2
p1

(ω − k ·V1)2
− ω2

p2

(ω − k ·V2)2
+

1

k2λ2
De

. (6.42)

The electron and ion Landau damping terms are both small in this limit.

Solving for the roots of equation 6.42, in order to determine the dispersion relation of the unstable

modes, requires solving a quartic equation. Quartic equations can be solved analytically using Ferrari’s

method. In appendix D, we exactly solve for all four roots of equation 6.42 analytically. Two of these

four solutions are stable ion sound waves (with ω ≈ kcs), the other two are either damped or growing

ion waves [with ω ≈ k(V1 + V2)/2] one of which can be unstable. However, the exact result for each

mode is a very complicated equation that is essentially unusable for analytically evaluating Rs−s
IE . What

we need is a simple approximation that can capture the dispersion relation of the one unstable root of

equation 6.42 that we are interested in. The stable, or damped, waves do not contribute to enhancing

the ion scattering, and thus we are not interested in them.
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Figure 6.3: Normalized growth rates calculated for the parameters of [50] from a numerical solution of
equation 6.42 (solid blue line), from the quadratic approximation of equation 6.47 (dashed red line) and
from the approximation of equation 6.50 (dotted black line).

If we apply the substitution

ω =
1

2
k · (V1 + V2) + k ·∆VΩ (6.43)

to equation 6.42, then the roots of equation 6.42 can be identified from the four solutions of the reduced

quartic equation

Ω4 − Ω2

(
1

2
+ a

)
− Ω ab+

1

16
− a

4
= 0 (6.44)

in which we have defined

a ≡ k2c2s
(k ·∆V)2(1 + k2λ2

De)
(6.45)

and

b ≡ ω2
p1 − ω2

p2

ω2
p1 + ω2

p2

. (6.46)

However, we are only interested in the one unstable solution. We will find that for this root Ω ∼ b and

b < 1 (for the sample plasma parameters b ≈ 1/2) so the Ω4 term can be neglected in equation 6.44, for

finding the potentially unstable root of interest. The resulting quadratic equation yields the solutions

Ω = −ab±
√
a2b2 + (1/2 + a)(1/4− a)

1 + 2a
. (6.47)

Figure 6.3 show that equation 6.47 provides a very accurate approximation of the unstable root of

the fluid plasma dielectric function from equation 6.42. However, equation 6.47 is still a bit complicated,
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and we seek a further simplified form that can be used to analytically approximate RIE. Noticing that

a > 1 when kλDe <
√
c2s/∆V

2 − 1, we can treat a as a large number for this part of k-space. Since

∆V ≤ cs1−cs2 in the presheath (even in the absence of friction), this is valid for at least kλDe . 1 using

the sample plasma parameters. In this limit, the leading term of equation 6.47 is Ω ≈ −b/2±i√α/(1+α)

which is unstable for all k in the range of validity. Here we have defined

α =
n1

n2

M2

M1
. (6.48)

When a becomes smaller than some critical value a ≤ ac, stabilization occurs and we account for this

stabilization by using the approximation Ω ≈ −b/2 ± i
√
α(1− ac/a)/(1 + α), in which ac is obtained

from equation 6.47. This gives 1/ac = 1+
√

9− 8b2. With these, we arrive at an approximate dispersion

relation for the unstable root: ω = ωR + iγ, in which

ωR ≈ k ·
(
n2

ne

c2s2
c2s

V1 +
n1

ne

c2s1
c2s

V2

)
(6.49)

is the real part, and

γ ≈ k‖∆V
√
α

1 + α

√
1−

k2
‖∆V

2

k2∆V 2
up

(1 + k2λ2
De) (6.50)

is an expression for the growth rate. The ‖ direction is along ∆V and

∆V 2
up ≡ c2s

[
1 +

√
1 + 32α/(1 + α)2

]
(6.51)

is an upper limit above which the mode stabilizes.

Figure 6.3 shows that equation 6.50 can overestimate the growth rate by as much as 30%. However,

we will show in section 6.4.2 that this quantitative difference will not affect our central conclusion.

Applying equation 6.50 to calculate RIE will lead to underestimating the minimum distance (zmin) that

waves must grow before RIE dominates by up to 30%. Correcting for this error will be important when

checking that zmin is much shorter than the presheath scale length l. We will find that zmin/l ∼ 10−2,

so a 30% correction to zmin is irrelevant to this discussion. Nevertheless, the 30% error can easily be

tracked through the calculation and accounted for.

6.4.2 Calculation of Instability-Enhanced Collisional Friction

Next, we calculate the instability-enhanced collisional friction that results when the two-stream insta-

bility of section 6.4.1 is present. Recall from equation 6.14 that the instability-enhanced contribution
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to the ion-ion collisional friction force density, assuming that both ion species are Maxwellian, is

R1−2
IE = −m1

T1

∫
d3v

∫
d3v′ f1(v) f2(v′)Q1−2

IE ·∆V. (6.52)

Here we chosen the labels s = 1 and s′ = 2. From equation 2.44, the instability-enhanced collisional

kernel is

Q1−2
IE =

2q2
2q

2
2

πm1

∫
d3k

kk

k4

γ

(ωR − k · v)2 + γ2

1

(ωR − k · v′)2 + γ2

exp
(
2γt
)

∣∣∂ε̂/∂ω
∣∣2
ωR

. (6.53)

Since vT1, vT2 � cs,1, cs,2 ∼ V1, V2 we approximate the ion distributions with delta functions in

velocity space

f1(v) ≈ n1δ(v −V1) = n1δ(vx)δ(vy)δ(vz − V1) (6.54)

and

f2(v′) ≈ n2δ(v
′ −V2) = n2δ(v

′
x)δ(v′y)δ(v′z − V2). (6.55)

Putting these into equation 6.52, the collisional friction is

R1−2
IE = −2q2

1q
2
2

πT1
n1n2

∫
d3k

kk ·∆V

k4

exp
(
2γt
)

∣∣∂ε̂/∂ω
∣∣2
ωR

× (6.56)

×
∫
d3v

∫
d3v′

γ δ(vx) δ(vy) δ(vz − V1) δ(v′x) δ(v′y) δ(v′z − V2)

[(ωR − k · v)2 + γ2][(ωR − k · v′)2 + γ2]
.

Upon evaluating the velocity integrals, this reduces to

R1−2
IE = −2q2

1q
2
2

πT1
n1n2∆V ·

∫
d3k

kk

k4

γ exp
(
2γt
)

∣∣∂ε̂/∂ω
∣∣2
ωR

[(ωR − k ·V1)2 + γ2][(ωR − k ·V2)2 + γ2]
. (6.57)

Taking the derivative of ε̂ from equation 6.42 with respect to ω yields

∂ε̂

∂ω
=

2ω2
p1

(ω − k ·V1)3
+

2ω2
p2

(ω − k ·V2)3
. (6.58)

The real part of the unstable wave frequency, from equation 6.49, can be written in the alternative form

ωR =
1

2
k‖
[
V1(1 + β) + V2(1− β)

]
(6.59)

in which we have defined

β ≡ n2

ne

c2s2
c2s
− n1

ne

c2s1
c2s
. (6.60)

With this identification, we find that

ωR − k ·V1 = −1

2
(1− β)k ·∆V (6.61)
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and

ωR − k ·V2 =
1

2
(1 + β)k ·∆V. (6.62)

Putting these into equation 6.58, and squaring the result, yields

∣∣∣∣
∂ε̂

∂ω

∣∣∣∣
2

ωR

=
256

(k ·∆V)6

[
ω2
p1

(β − 1)3
+

ω2
p2

(β + 1)3

]2

. (6.63)

The group velocity of the unstable waves is then

vg =
∂ ωR
∂k

=
1

2

[
V1(1 + β) + V2(1− β)

]
. (6.64)

Again, we use cylindrical polar coordinates k = k⊥ cos θ x̂+ k⊥ sin θ ŷ + k‖ẑ, which implies

kk ·∆V =
(
k‖k⊥ cos θ + k‖k⊥ sin θ + k2

‖
)
∆V ẑ. (6.65)

Noticing that this is the only place that angular dependence shows up in the integral of equation 6.57

(since γ, ωR and |∂ε̂/∂ω|2ωR are only functions of |k| and k‖) the terms with cos θ and sin θ will vanish

upon integrating over θ. If we also apply our assumption that ωR − k ·V� γ, we then have

R1−2
IE = −2q2

1q
2
2

πT1
n1n2∆V

∫
d3k

k2
‖
k4

γ exp
(
2γt
)

∣∣∂ε̂/∂ω
∣∣2
ωR

(ωR − k ·V1)2 (ωR − k ·V2)2
. (6.66)

We also define the variable

A ≡ ∆V 2
up

∆V 2
− 1, (6.67)

with which the growth rate from equation 6.50 can be written

γ =
k‖∆V 2

∆Vup

√
α

1 + α

√
A− k2

‖λ
2
De. (6.68)

Applying the same approximation that we used in equation 4.69 to find the 2γt term in the Lang-

muir’s paradox problem, we find

2γt ≈ 2γz

vg
= W k‖λDe

√
A− k2

‖λ
2
De, (6.69)

where we have defined

W ≡ 2
√
α

1 + α

∆V 2

vg ∆Vup

z

λDe
. (6.70)

From equation 6.64, we can write the group speed as

vg =
n2

ne

c2s2
c2s
V1 +

n1

ne

c2s1
c2s
V2. (6.71)
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Figure 6.4: The approximation of the integral Io, from equation 6.79 (red dashed line) accurately
represents the actual result (black line).

Putting equations 6.61, 6.62, 6.63, 6.68 and 6.69, into equation 6.66, and evaluating the trivial θ

integral, yields

R1−2
IE = −q

2
1q

2
2n1n2

8T1∆Vup

√
α

1 + α

(1− β2)4 ∆V 5 ẑ

[ω2
p1(β + 1)3 + ω2

p2(β − 1)3]2
(6.72)

×
∫
dk‖ k

5
‖
√
A− k2

‖λ
2
De exp

(
Wk‖λDe

√
A− k2

‖λ
2
De

)∫ ∞

0

dk⊥
k⊥
k4
.

The k⊥ integral can be integrated analytically, which gives

∫ ∞

0

dk⊥
k⊥

(k2
‖ + k2

⊥)2
=

1

2k2
‖
. (6.73)

If we also identify the reference collision frequency from the stable plasma collisional friction in equation

6.37, equation 6.72 becomes

R1−2
IE = − n1m1νs

64
√
π ln Λ

v̄T
∆Vup

√
α

1 + α

(1− β2)4 ∆V 5ẑ

[ω2
p1(β + 1)3 + ω2

p2(β − 1)3]2
I, (6.74)

in which the k‖ integral is

I =

∫ kc

−kc
dk‖ k

3
‖
√
A− k2

‖λ
2
De exp

(
W k‖λDe

√
A− k2

‖λ
2
De

)
. (6.75)
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Figure 6.5: Normalized collisional friction force density for the parameters of the experiment in reference
[50] due to Coulomb interactions in a stable plasma, calculated using equation 6.36, (solid green line)
and due to instability-enhanced collective interactions from two stream instabilities, calculated using
equation 6.80, for wave growth over a distances of z/λDe = 5, 10 and 15 (dotted black line, dash-dotted
red line, and dashed blue line).

The integration limit has been imposed simply to restrict the integration domain to unstable k‖: kc =

√
A/λDe. The k‖ outside of this domain rapidly damp and provide no contribution to this integral.

Using the substitution x ≡ k‖λDe/
√
A, the integral I becomes

I =
A5/2

λ4
De

∫ 1

−1

dxx3
√

1− x2 exp

(
WAx

√
1− x2

)
. (6.76)

This integral can be approximated by taking both the small argument expansion of the exponential and

the asymptotic limit of the integral, then matching the results with a Padé approximation. For small

a = AW , the small argument expansion yields

∫ 1

−1

dxx3
√

1− x2 exp

(
a x
√

1− x2

)
=

∫ 1

−1

dxx3
√

1− x2

︸ ︷︷ ︸
=0

+a

∫ 1

−1

dxx4(1− x2)

︸ ︷︷ ︸
=4/35

+ . . . ≈ 4

35
a. (6.77)

The asymptotic behavior of this integral for large a is

∫ 1

−1

dxx3
√

1− x2 exp

(
a x
√

1− x2

)
≈ 3

10

1√
a

exp

(
a

2

)
. (6.78)
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It is hard to match the 4/35 and 3/10 numbers precisely, but a choice that works well for all a is

Io ≡
∫ 1

−1

dxx3
√

1− x2 exp

(
a x
√

1− x2

)
≈ 3

10

a

4 + a3/2
exp

(
a

2

)
. (6.79)

Figure 6.4 show that equation 6.79 provides an excellent approximation for this integral over a very

broad range of a = AW . We will only be interested in 2 . a . 10 here.

Putting the results of equations 6.79 and 6.76 into equation 6.74, we find that the instability-

enhanced collisional friction is

R1−2
IE ≈ −n1m1ν12 exp

(
W
A

2

)
∆V (6.80)

in which we have defined the frequency

ν12 ≡
νs

ln Λ

3

160
√
π

v̄T ∆V 4

∆Vupc4s

A5/2a

4 + a3/2

α5/2(1 + α1/3)2

α2 − 1
(6.81)

Figure 6.5 plots the instability-enhanced collisional friction from equation 6.80 for wave growth over

distances of z/λDe = 5, 10 and 15. For the plot, we have used vg ≈ cs. Also shown is the stable plasma

contribution to this friction using R1−2
LB from equation 6.36. Recall from the end of section 6.3 that the

stable plasma contribution to the friction force density was about 10 times smaller than the other terms

of the momentum balance equation, and thus it was neglected in previous theoretical work [43–47]. For

instability-enhanced friction to be important requires R1−2
IE /R1−2

LB & 10. We see from figure 6.5 that

after growing only 15 Debye lengths, the two-stream instabilities have enhanced the collisional friction

over 104 times the stable plasma level. The presehath length scale for this plasma is l ≈ 5 cm and

λDe ≈ 6 × 10−3 cm [50], so the wave growth distances shown in figure 6.5 are much shorter than the

presheath length z/l ≈ 10−2.

Since a tenfold enhancement of R over the stable plasma level is required for instability-enhanced

friction to become important, and for z/λDe = 15 the enhancement is over 104, the distance that un-

stable waves must grow before instability-enhanced friction dominates the momentum balance equation

is much shorter than the presheath length scale [even accounting for the . 30% error introduced by the

approximation of γ from equation 6.50]. This shows that in the cold ion limit, the collisional friction

between ion species is so strong that each species should continually have approximately the same speed

throughout the presheath, and in particular at the sheath edge. Thus, the only solution to equation 6.2
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is that each species obtain the system sound speed cs at the sheath edge, which is consistent with the

previous experimental literature [48–52, 100–102].

6.4.3 Accounting for Finite Ion Temperatures

In this section, we consider the effects of finite ion temperatures and show that they, as well as the

density ratio of the ion species, can cause stabilization of the two-stream instabilities and change the

common sound speed solution obtained in the last section. One simple way to show that stabilization

occurs for ∆V ∼ O(vTi), is to use the fluid plasma dielectric function with thermal corrections [33]

ε̂(k, ω) = 1 +
1

k2λ2
De

− ω2
p1

(ω − k ·V1)2 − v2
T1/2

− ω2
p2

(ω − k ·V2)2 − v2
T2/2

. (6.82)

Repeating the procedure of section 6.4.1 to find the growth rate from this dielectric function, one finds

that the lowest order contribution for ∆V � cs is [17]

γ =

√
α

1 + α

√
k2
‖∆V

2 − k2∆V 2
c (6.83)

which is the growth rate if ∆V > ∆Vck/k‖ where

∆Vc ≡
√

1 + α

2α

√
v2
T1 + α v2

T2 (6.84)

is the critical difference in ion flow speeds for instability to onset. Recall that α ≡ n1M2/(n2M1).

Equation 6.84 shows that the critical relative flow speed is O(vTi). It also shows that there is a

density ratio, as well as temperature dependence, on the critical relative flow speed for instability. The

problem with equation 6.84 is that it is based on the fluid plasma dielectric function which is not valid

for ∆V ∼ O(vTi). The fluid plasma dielectric function assumes that ω − k ·Vi � vTi, but we showed

in equations 6.61 and 6.62 that ω−k ·Vi ∝ ∆V , for both i = 1, 2; thus, the fluid approximation breaks

down for ∆V ∼ ∆Vc. Equation 6.84 can provide an order-of-magnitude estimate of the relative flow

speeds, but a kinetic dielectric function must be used for a more accurate quantitative determination.

We will develop such a model in this section.

Since we assume Maxwellian ion distribution functions, and are looking for ion waves that have a

phase speed close to the ion sound speed, ω/kvTe � 1 and the kinetic dielectric function has the form

ε̂(k, ω) = 1 +
1

k2λ2
De

− ω2
p1

k2v2
T1

Z ′
(
ω − k ·V1

kvT1

)
− ω2

p2

k2v2
T2

Z ′
(
ω − k ·V2

kvT2

)
. (6.85)
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Figure 6.6: Plots of Z ′(10Ωo) for Ωo = Ω − 1/2 (blue) and Ωo = Ω + 1/2 (red). The 10 here is char-
acteristic of a large ∆V since it is the coefficient representing k‖∆V/(kvTi) (for each ion species). The
solid lines show the exact Z ′ functions, and the dashed lines show the cold ion asymptotic approxima-
tion. In this case, the cold-ion approximation is good near the location where the unstable roots are
found. When the 10 is replaced by a number of order unity (meaning ∆V ∼ vTi), the two Z ′ functions
essentially overlap, and the cold-ion approximation fails.

As in section 6.4.1, we again apply the substitution

ω =
1

2
k ·
(
V1 + V2

)
+ k ·∆VΩ, (6.86)

which show that ω − k · V1 = k · ∆V
(
Ω − 1/2

)
and ω − k · V2 = k · ∆V

(
Ω + 1/2

)
. Putting this

substitution into the dielectric function gives

ε̂(k, ω) = 1 +
1

k2λ2
De

− ω2
p1

k2v2
T1

Z ′
(

k ·∆V
(
Ω− 1/2

)

kvT1

)
− ω2

p2

k2v2
T2

Z ′
(

k ·∆V
(
Ω + 1/2

)

kvT2

)
. (6.87)

To find the dispersion relation, we set ε̂ = 0, which yields

1 + k2λ2
De =

n1

ne

c2s1
v2
T1

Z ′
(

k ·∆V
(
Ω− 1/2

)

kvT1

)
+
n2

ne

c2s2
v2
T2

Z ′
(

k ·∆V
(
Ω + 1/2

)

kvT2

)
. (6.88)

Recall that for w � 1:

Z ′(w) = −2i
√
πwe−w

2 − 2 + 4w2 − 8

3
w4 + . . . (6.89)

and for w � 1:

Z ′(w) = −2iσ
√
πwe−w

2

+
1

w2
+

3

2w4
+

15

4w6
+ . . . (6.90)
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The cold ion approximation from section 6.4.1 was based on the |w| � 1 asymptotic expansion for both

ion species. Since ω − k ·Vi ∝ k ·∆V, we see from equation 6.88 that this is equivalent to assuming

∆V/kvTi � 1. The Z ′ terms of equation 6.88 are plotted in figure 6.6 for a value ∆V/vTi = 10, which is

representative of the situation considered in section 6.4.1. Figure 6.6 shows that when ∆V/vTi � 1, this

asymptotic expansion does accurately model each of the Z ′ functions in the region where an unstable

root can be found. The kinetic dielectric function reduces to a fluid model in this limit.

However, equation 6.88 also shows that if ∆V ∼ O(vTi), neither the small argument expansion nor

the asymptotic expansion is valid. This is a critical issue because we have seen that ∆V effectively

cannot exceed ∆Vc because of instability-enhanced frictional forces, and from equation 6.84 we expect

that ∆Vc ∼ O(vTi). In this case, the Z ′ terms shown in figure 6.6 become much broader and overlap

(as shown in figure 6.7). The asymptotic expansion that leads to the fluid theory used in section 6.4.1

cannot be used in this situation. Thus, we seek a new approximation of the plasma dispersion functions

in equation 6.88 that can be used to determine ∆Vc directly from the kinetic theory.

Finding ∆Vc

For ∆V ≈ ∆Vc ∼ O(vTi), the electron and vacuum terms of equation 6.88 are smaller than the ion terms

by a factor of the ion to electron temperature ratio, which we assume to be large: (1+k2λ2
De)� Te/Ti.

Thus, to find ∆Vc, we can neglect the vacuum and electron terms and solve

n1

n2

T2

T1
Z ′
(

k ·∆V
(
Ω− 1/2

)

kvT1

)
+ Z ′

(
k ·∆V

(
Ω + 1/2

)

kvT2

)
= 0. (6.91)

To resolve finite ion temperature effects, we consider what happens as ∆V is increased from zero. For

very small ∆V , the Z ′ functions are very broad and the two terms of equation 6.91 essentially overlap.

As ∆V increases from a very small value, the two Z ′ functions separate, as shown in figures 6.7 and 6.8.

Unstable roots are found when the peaks of these two functions spread far enough apart. When this

occurs, one can choose more appropriate points than the small or large argument from which to expand

each of the Z ′ functions in a Taylor series. The appropriate choice of expansion points depends on the

relative thermal speeds of the ions. We will chose to expand both functions about their positive peaks,

which provides a good approximation when the ion thermal speeds are similar. We will still only be

interested in the real part of the Z ′ expansion because the imaginary parts are small near these peaks.
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We’d also expect any instabilities driven by the imaginary contribution (i.e., inverse Landau damping)

to have a much smaller growth rate than the fluid instabilities.

Expanding Z ′(w) in a Taylor series about an arbitrary center point w = c gives

Z ′(w)
∣∣
w=c

=
[
−2 + 2c

√
πe−c

2

erfi(c)− i2c√πe−c2
]

(6.92)

+
[
4c− (4c2 − 2)

√
πe−c

2

erfi(c) + i(4c2 − 2)
√
πe−c

2]
(w − c)

+
[
4(1− c2) + (4c3 − 6c)

√
πe−c

2

erfi(c)− i(4c3 − 6c)
√
πe−c

2]
(w − c)2 +O[(w − c)3].

Recall that

erfi(z) = −ierf(iz) (6.93)

is the “imaginary error function.” We use it here because for a real center point c, erfi(c) is also a real

number. We will keep terms up to quadratic order and use the notation

Z ′(w) ≈ a+ b(w − c) + d(w − c)2 (6.94)

where

a ≡ −2 + 2c
√
πe−c

2

erfi(c)− i2c√πe−c2 , (6.95)

b ≡ 4c− (4c2 − 2)
√
πe−c

2

erfi(c) + i(4c2 − 2)
√
πe−c

2

, (6.96)

and

d ≡ 4(1− c2) + (4c3 − 6c)
√
πe−c

2

erfi(c)− i(4c3 − 6c)
√
πe−c

2

. (6.97)

If a center point c is specified, a, b and d are simply numbers that can be evaluated directly.

After expanding each of the Z ′ functions about appropriate center points, equation 6.91 reduces to a

quadratic equation that can be solved analytically. The trick is to pick the correct center points that

are close to the location where the unstable mode is to be found. Choosing the appropriate c can be

problem-dependent because the Z ′ function gets broader as the multiplier ∆V/vTi becomes smaller.

So, for plasmas with very different ion thermal speeds, the ∆V/vTi is much bigger for one species than

the other, which results in one Z ′ function being much broader than the other. For the experimental

parameters that we are primarily interested in here, the ions are Ar+ and Xe+ with equal temperatures,

so vT1/vT2 ≈
√
M2/M1 =

√
131/40 = 1.8, which is not too far from 1. In this case, the Z ′ functions
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have similar breadths and an appropriate center point, c, is at the positive peak of each function; as

shown in figures 6.7 and 6.8.

We will proceed under the assumption that the ratio of ion thermal speeds is close to 1 (if it is in

the range 1/4 . vT1/vT2 . 4 the following method should provide a reasonable estimate for ∆Vc). In

this case the curves shown in figures 6.7 and 6.8 are representative of the Z ′ functions. An unstable

root can arise in the region near the positive peaks of the Z ′ functions when these peaks separate with

increasing ∆V . As the two peaks separate, the parabola that we use to model the sum of the two terms

from equation 6.91 drops below the abscissa and predicts an unstable root. To capture the ∆V at which

this occurs, we expand the real part of Z ′(w) about the peaks at w = ±1.50201 . . .. To within 0.1%

this is ±3/2. Expanding Z ′(w) about w = 3/2 yields

Z ′(w)
∣∣
w=3/2

=
[
−2 + 3

√
πerfi(3/2)e−9/4 − i3√πe−9/4

]
(6.98)

+
[
6− 7

√
πerfi(3/2)e−9/4 + i7

√
πe−9/4

]
(w − 3/2)

+

[
−5 +

9

2

√
πerfi(3/2)e−9/4 − i9

2

√
πe−9/4

]
(w − 3/2)2 +O

[
(w − 3/2)3

]

= [0.57− 0.56i] + [0.00 + 1.31i](w − 3/2) + [−1.15− 0.84i](w − 3/2)2

+O
[
(w − 3/2)3

]
.

A second place that the peaks can separate is for negative Ω, see figure 6.8. Near this point, is

appropriate to expand about c = −3/2, which gives

Z ′(w)
∣∣
w=−3/2

= [0.57+0.56i]+[0.00+1.31i](w+3/2)+[−1.15+0.84i](w+3/2)2 +O([w+3/2]3) (6.99)

Thus we can take

Z ′(w) ≈ a+ d(w − c)2, (6.100)

in which a = 0.57, d = −1.15 and c = ±3/2 to capture both of the possible locations for instability. The

linear term is absent here because the real part of b is 0.00 – which is expected near the peak because

Z ′ is flat there.

Putting these expansions into equation 6.91, we have

n1

n2

T2

T1

{
a+ d

[
k‖∆V

kvT1

(
Ω− 1/2

)
− c
]2}

+ a+ d

[
k‖∆V

kvT2

(
Ω + 1/2

)
− c
]2

= 0. (6.101)
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Figure 6.7: Plots of Z ′(1Ωo) for Ωo = Ω−1/2 and Ωo = Ω+1/2 (solid lines). The 1 here is characteristic
of ∆V ∼ vTi. The dashed lines show the expansion about the peaks for c = 3/2.

Figure 6.8: Plots of Z ′(1Ωo) for Ωo = Ω−1/2 and Ωo = Ω+1/2 (solid lines). The 1 here is characteristic
of ∆V ∼ vTi. The dashed lines show the expansion about the peaks for c = −3/2.
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Writing this in the common quadratic notation yields

Ω2 d

[
n1

n2

T2

T1

k2
‖∆V

2

k2v2
T1

+
k2
‖∆V

2

k2v2
T2

]
− Ω 2d

[
n1

n2

T2

T1

k‖∆V

kvT1

(
c+

1

2

k‖∆V

kvT1

)
+
k‖∆V

kvT2

(
c− 1

2

k‖∆V

kvT2

)]
(6.102)

+ a

(
1 +

n1

n2

T2

T1

)
+ d

[
n1

n2

T2

T1

(
c+

1

2

k‖∆V

kvT1

)2

+

(
c− 1

2

k‖∆V

kvT2

)2]
= 0.

This quadratic has an unstable solution if

4d2

[
n1

n2

T2

T1

k‖∆V

kvT1

(
c+

1

2

k‖∆V

kvT1

)
+
k‖∆V

kvT2

(
c− 1

2

k‖∆V

kvT2

)]2

− 4d

[
n1

n2

T2

T1

k2
‖∆V

2

k2v2
T1

+
k2
‖∆V

2

k2v2
T2

]
× (6.103)

×
{
a

(
1 +

n1

n2

T2

T1

)
+ d

[
n1

n2

T2

T1

(
c+

1

2

k‖∆V

kvT1

)2

+

(
c− 1

2

k‖∆V

kvT2

)2]}
< 0.

Simplifying this instability criterion gives

−4d2n1

n2

T2

T1

[
k‖∆V

kvT1

(
c− 1

2

k‖∆V

kvT2

)
− k‖∆V

kvT2

(
c+

1

2

k‖∆V

kvT1

)]2

(6.104)

− 4 d a

(
n1

n2

T2

T1

k2
‖∆V

2

k2v2
T1

+
k2
‖∆V

2

k2v2
T2

)(
1 +

n1

n2

T2

T1

)
< 0.

Recall that d < 0, so we will apply d = −|d|. Also, multiplying through by k4v2
T1v

2
T2/(k

2
‖∆V

2)

yields

−|d|n1

n2

T2

T1

[
−k‖∆V + c(kvT2 − kvT1)

]2
+ a

(
1 +

n1

n2

T2

T1

)(
k2v2

T1 +
n1

n2

T2

T1
k2v2

T2

)
< 0 (6.105)

which is

∣∣k‖∆V + kc(vT1 − vT2)
∣∣ >

√
a

|d|

(
1 +

n2

n1

T1

T2

)(
k2v2

T1 +
n1

n2

T2

T1
k2v2

T2

)
. (6.106)

Choosing to label species 1 and 2 so that ∆V > 0, we find that there is instability as long as

∆V >
k

k‖
∆Vc (6.107)

in which

∆Vc = c (vT2 − vT1) +

√
a

|d|

(
1 +

n2

n1

T1

T2

)(
v2
T1 +

n1

n2

T2

T1
v2
T2

)
. (6.108)

Recall that a = 0.57, |d| = 1.15 and c = ±1.5. We are interested only in whichever unstable mode is

excited first (when ∆V is increased from 0). For vT1 > vT2, the c = +3/2 mode becomes unstable first

(for the lowest ∆V ), but for vT2 > vT1, the c = −3/2 mode is unstable first. Thus, we can simply use

c(vT2 − vT1)→ −|c(vT2 − vT1)| to find the first unstable mode, regardless of which species is labeled 1
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or 2. Putting in the relevant numbers (a/|d| ≈ 1/2 to within 0.4%) gives

∆Vc ≈ −
3

2

∣∣vT2 − vT1

∣∣+

√
1

2

(
1 +

n2

n1

T1

T2

)(
v2
T1 +

n1

n2

T2

T1
v2
T2

)
. (6.109)

Equation 6.109 provides a kinetic determination of the critical ∆V above which two-stream insta-

bilities onset. It was derived based on the assumption that the ratio of ion thermal speeds is close to 1.

In the next section, we show that equation 6.109 can be used to determine Bohm’s criterion in plasmas

with two ion species.

6.5 How Collisional Friction Can Determine the Bohm Crite-

rion

In section 6.4.2 we found that when instability-enhanced friction onsets, the frictional force between

ion species becomes so large that it forces the difference in their flow speeds back to the marginal value

for instability onset. Because this system is so stiff, the critical speed for instability onset provides the

following condition at the sheath edge

V1 − V2 = ∆Vc. (6.110)

If we take equality in the Bohm criterion from equation 6.2

n1

ne

c2s1
V 2

1

+
n2

ne

c2s2
V 2

2

= 1, (6.111)

this provides a second equation. Thus, with two equations we can solve for the two unknowns V1 and

V2.

Putting equation 6.110 into the Bohm criterion of equation 6.111 yields

n1

ne

c2s1
V 2

1

+
n2

ne

c2s2
(V1 −∆Vc)2

= 1. (6.112)

This is a quartic equation to solve for V1. Two of the solutions of this equation are imaginary and one is

negative. We are only interested in the physically relevant positive real solution. From equation 6.109

we know that ∆Vc ∼ O(vTi) � V1, V2 ∼ cs, so we expand equation 6.112 in a series for ∆Vc � V1,

which yields

n1

ne

c2s1
V 2

1

+
n2

ne

c2s2
V 2

1

+ 2
n2

ne

c2s2∆Vc
V 3

1

≈ 1. (6.113)
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Figure 6.9: Sketch of predicted ion fluid speed profiles through the presheath. There is region with
negligible ion-ion collisional friction near the plasma, and a region where it plays a dominant role near
the boundary.

Identifying

c2s ≡
n1

ne
c2s1 +

n2

ne
c2s2, (6.114)

equation 6.113 can also be written

c2s
V 2

1

+ 2
n2

ne
c2s2

∆Vc
V 3

1

= 1. (6.115)

Multiplying by V 3
1 this is

V 3
1 = V1c

2
s + 2

n2

ne
c2s2∆Vc. (6.116)

Next, we apply the substitution

V1 = cs + ε (6.117)

and seek ε. Putting this into equation 6.116, we have

c3s + 3c2sε+ 3csε
2 + ε3 = c3s + εc2s + 2

n2

ne
c2s2∆Vc. (6.118)

Since the c3s terms cancel, we see that ε ∼ ∆Vc ∼ O(vTi), which is small compared to cs. Thus we can

neglect the ε2 and ε3 terms compared to the ε terms. Doing this yields

ε =
n2

ne

c2s2
c2s

∆Vc. (6.119)



164

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

n1/ne

V
1
a
n
d
V
2
[m

/
s]

cs,1

cs,2

cs

Figure 6.10: Plot of the ion flow speeds at the sheath edge from the theoretical prediction using equations
6.120 and 6.121 with ∆Vc from equation 6.109 (solid lines) and the experimental measurements of Yip,
Hershkowitz and Severn [54]. Here the ion species are Ar+ (labeled 1 and shown in red) and Xe+
(labeled 2 and shown in blue). Also shown are the individual sound speeds (dashed red and blue lines)
and the common system sound speed (dash-dotted black line).

Thus, we have

V1 ≈ cs +
n2

ne

c2s2
c2s

∆Vc. (6.120)

Putting this into V1 − V2 = ∆Vc yields

V2 ≈ cs −
n1

ne

c2s1
c2s

∆Vc. (6.121)

Equations 6.120 and 6.121 show that accounting for finite (but still small) ion temperatures leads to

the result that the ion flow speed of each species at the sheath edge is close to the system sound speed

cs, but can differ from it by an amount that depends on the ion thermal speeds, as well as the density

of each ion species. A schematic depiction of the presheath for this situation is shown in figure 6.9.

This density dependence provides a convenient parameter that can be varied in experiments to test our

theory. In fact, such an experiment has already been performed by Yip, Hershkowitz and Severn [54]

(using LIF) to test equations 6.120 and 6.121, where ∆Vc is given by equation 6.109. The results of this
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test are shown in figure 6.10. In this figure, we have used ∆V = ∆Vc for ∆Vc < cs1 − cs2 (whenever

instabilities are expected to be present) and ∆V = cs1−cs2 when ∆Vc > cs1−cs2 (whenever instabilities

are not expected to be present). The relevant temperatures from the experiment where T1 ≈ T2 = 0.04

eV and Te = 0.7 eV. We have also labeled Ar+ ions as species 1 and Xe+ ions as species 2.

Figure 6.10 shows that the experimental data agree very well with our theory over a broad range

of ion density ratios. The figure also shows the previous theoretical prediction of Franklin [43–47] that

each ion species obtains its individual sound speed, and the solution proposed in previous experimental

work [48–52, 100–102] that each ion species obtains the common system sound speed. The data does not

seem to support either of these previous proposals over the whole range of ion concentrations. Franklin’s

solution agrees well with the data when the density ratio is either large, or small, in which case each ion

species obtains a speed close to its individual sound speed. In this situation, our theory does not predict

that any two-stream instabilities will be present, and our result converges to Franklin’s. The common

sound speed solution appears close when the ion density ratio is near 1 (in the plot, n1/ne = 1/2).

In this case, our theory predicts instability-enhanced friction will be present for a small, but finite,

difference in ion flow speeds. Our prediction that the speed at which each ion species falls into a sheath

depends on the density of that species is not a feature of previous theories (or experiments). Figure 6.10

confirms that this is a qualitative feature of the physics. It also shows excellent quantitative agreement

with the predictions of our theory.
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Chapter 7

Conclusions

In this dissertation, a kinetic equation for collective interactions that accounts for electrostatic instabil-

ities in unmagnetized plasmas was derived and applied to two unsolved problems in low-temperature

plasma physics: Langmuir’s paradox and determining the Bohm criterion for multiple-ion-species plas-

mas. Our theory generalizes the Lenard-Balescu kinetic equation to describe wave-particle scattering

in weakly unstable plasmas, in addition to the particle-particle scattering from conventional Coulomb

interactions that dominates in stable plasmas (the Lenard-Balescu equation assumes that the plasma is

stable). We used two independent methods to arive at this equation: the dressed test particle approach

in section 2.1 and the BBGKY hierarchy in section 2.2. An important feature of the resultant collision

operator, equation 2.45, is that it can be written in the Landau form with both drag and diffusion

terms. Another important feature is that the total collision operator consists of a sum of component

species collision operators: C(fs) =
∑
s′ C(fs, fs′).

In chapter 3, we showed that the resultant collision operator obeys important physical properties

such as conservation laws and the Boltzmann H-theorem. Section 3.4.7 provided a proof that, within

the weak-instability approximation γ/ωR � 1, instability-enhanced collisions shorten the timescale for

which equilibration of individual species distribution functions occurs. The unique equilibrium for each

species was shown to be a Maxwellian, even when wave-particle scattering from instabilities is the

dominant scattering mechanism. Collisions within individual species cause equilibration on the fastest

timescales. On longer timescales, the different species equilibrate with one another as well. On this long

timescale, the unique thermodynamic equilibrium state is a Maxwellian plasma where each species has

the same flow velocity and temperature. The most important of these properties in the applications we

considered were that the unique equilibrium state from self-collisions (s′ = s) is Maxwellian, and that

momentum is conserved for collisions between individual species in the plasma.
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The instability-enhanced contribution to the total collision operator was shown to have a diffusive

form that fits the framework of conventional quasilinear theory, but for which the continuing source of

fluctuations was self-consistently accounted for by its association with discrete particle motion. This led

to a determination of the spectral energy density that is absent in conventional quasilinear theory. The

feature that our theory self-consistently accounts for the origin of fluctuations due to discrete particles

distinguishes this work from previous theories. Previous kinetic theories of weakly unstable plasmas,

such as Friemann and Rutherford [5], or Rogister and Oberman [6], did not account for a fluctuation

source. Thus, like quasilinear theory, using these theories requires an external determination of the

source fluctuation spectrum. If the source is from applied waves, for example by an antenna, the source

spectrum might be easy to determine. However, if the fluctuations are generated internal to the plasma

itself, the spectrum can be difficult to determine. The advantage of our approach is that the source

fluctuations are self-consistently accounted for as long as they arise internal to the plasma.

Our kinetic equation connects the work of Kent and Taylor [11], which introduced the concept

that collective fluctuations arise from discrete particle motion, with previous kinetic and quasilinear

theories for scattering in weakly unstable plasmas, such as Rogister and Oberman [6], which treated the

fluctuations as independent of the discrete particle motions. Kent and Taylor [11] developed a theory

which described the evolution of the amplitude of unstable waves from their origin as discrete particle

fluctuations, and emphasized drift-wave instabilities in magnetized inhomogeneous systems. They did

not develop a collision operator for particle scattering from the unstable waves. Baldwin and Callen [12]

did derive a collision operator that accounted for the discrete-particle origin of fluctuations for the case

of loss-cone instabilities in magnetic mirror machines. In this dissertation, we have considered a general

formulation for unmagnetized plasmas. However, the basic result that the collision frequency due to

instability-enhanced interactions scales as the product of δ/ ln Λ and the energy amplification due to

fluctuations [∼ exp(2γt)] is common to this work and that of Baldwin and Callen [12]. Here δ is typically

a small number δ ∼ 10−2− 10−3, which depends on the fraction of wave-number space that is unstable.

Although our theory is limited by the assumption that the fluctuation amplitude be linear, we have

found that instabilities can enhance the collision frequency by at least a few orders of magnitude before

nonlinear wave amplitudes are reached.
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In chapter 4, we applied our kinetic theory to the unsolved problem of Langmuir’s paradox [13–

15]. Langmuir’s paradox is a measurement which showed anomalously fast electron scattering and

equilibration to a Maxwellian in a low-temperature gas-discharge plasma. Langmuir’s experiments were

conducted in a 3 cm diameter mercury plasma, with glass walls, that was energized by electrons emitted

from a hot filament (essentially a gas-filled incandescent light bulb). Langmuir measured the electron

distribution function in this plasma with an electrostatic probe (now called a Langmuir probe) and

found that it was Maxwellian to all diagnosable energies (which was greater than 50 eV). This was

a surprising result because Langmuir knew that sheaths form near the plasma boundaries to reflect

most of the electrons and maintain a quasineutral steady-state in the plasma. The sheath energy

in Langmuir’s plasma was approximately 10 eV. Since the electron-electron scattering length in his

discharge was estimated to be approximately 30 cm, which was ten times the diameter of his plasma,

Langmuir expected the electron distribution to be depleted for energies greater than the sheath energy

since these electrons rapidly escape the plasma. Gabor named this anomaly “Langmuir’s paradox” in

1955 [15], and this has remained a serious discrepancy in the kinetic theory of gas-discharge physics.

We focused on the plasma-boundary transition region of Langmuir’s discharge, in particular the

presheath. The presheath is a region where the ion flow speed transitions from essentially zero in the

bulk plasma to the ion sound speed at the sheath edge. We showed that in plasmas where Te � Ti,

such as Langmuir’s, that ion-acoustic instabilities are excited in the presheath. By applying our basic

theory from chapter 2, we showed that the ion-acoustic instabilities could increase the electron-electron

scattering frequency by more than two orders of magnitude. Furthermore, we could use the property

from section 3.4.7 that the unique equilibrium distribution for these collisions is a Maxwellian to show

that Langmuir’s measurements could be explained by this instability-enhanced collision mechanism.

The ion-acoustic instabilities in this problem convect toward the plasma boundaries and are lost before

reaching a large enough amplitude that nonlinear wave-wave interactions become important; see section

4.4.2. Thus, our basic kinetic theory is well suited to describe this problem.

In chapter 5, we discussed basic aspects of another important plasma-boundary transition problem;

the Bohm criterion. The criterion that Bohm first derived [38], assumed that ions in the plasma were

monoenergetic and that electrons had a Maxwellian distribution. From this, Bohm showed that ions

must be supersonic as they leave a plasma and enter a sheath, i.e., Vi ≥ cs. Since Bohm’s time, this
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criterion has been studied in much greater detail. One subset of these studies has aimed to find a

kinetic version of the Bohm criterion. The theories that have been proposed in this area are based on

taking a v−1 moment of the Vlasov equation. In section 5.1.3, we showed that this approach is not

appropriate for most plasmas. It leads to a condition that has unphysical divergences, and also places

unphysical importance on the part of the ion or electron distribution functions with low energy. The

kinetic version of a Bohm criterion proposed in these previous works predicted a substantially different

condition than the fluid predictions of Vi ≥ cs, if either the ion, or electron, distribution function had

any contribution near zero velocity. In section 5.2, we developed an alternative kinetic Bohm criterion

based on positive-velocity moments of the full kinetic equation. This result does not suffer from the

unphysical divergences of the previous theories, or put undue emphasis on low energy particles. It

essentially confirms the fluid predictions for most plasmas of interest. For example, we showed that

in most low-temperature plasmas, ions are collisional in the presheath and one can expect that they

have a Maxwellian distribution with flow. In this case, our criterion reduces to the conventional Bohm

criterion Vi ≥ cs, where Vi is now the ion flow speed. For the same plasma, the previous kinetic Bohm

criteria gives the condition ∞ ≤ 1/Te, which is not a useful criterion (nor is it true).

If the plasma contains more than one species of ions, the Bohm criterion does not uniquely determine

the speed of each ion species as it leaves the plasma. It provides a single condition, in as many unknowns

as there is ion species in the plasma. In chapter 6, we considered the problem of how to determine the

solution of the Bohm criterion when more than one species of positive ions is present. We focused on

the case of two positive ion species. Previous theoretical and experimental work on this problem did

not agree. For example, the theoretical work of Franklin [43–47] predicted that the speed of each ion

species should be close to its individual species sound speed as it leaves the plasma: Vi ≈ cs,i =
√
Te/Mi.

Experimental work [48–52, 100–102], on the other hand, measured that the speed of each ion species

was often much closer to a common speed at the sheath edge, given by the system sound speed:

Vi ≈ cs ≡
√

(ni/ne)c2s,i.

We showed that the reason for this discrepancy is ion-ion friction between the two ion species that

is greatly enhanced by two-stream instabilities. As ions of different mass (or charge) are accelerated by

the presheath electric field, their flow speeds separate. When the difference in their flow speeds exceeds

a critical value of order the ion thermal speeds, ∆V > ∆Vc = O(vTi), two stream instabilities arise.
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Two stream instabilities are a virulent fluid instability that is convective. Using our kinetic theory

from chapter 2, we showed that these instabilities generate a huge collisional friction force between

the two ion species, within about 10 Debye lengths of the location where they become excited. This

leads to a very stiff system whereby the difference in ion flow speeds cannot exceed the critical value at

which they turn on. We showed in chapter 6 that this provides a second condition that ions must satisfy,

∆V = V1−V2 = ∆Vc, which determines the Bohm criterion. Since ∆Vc depends on the relative densities

of the ion species, this theory can easily be tested experimentally by varying the relative concentrations

of the ion species and measuring the corresponding ion speeds at the sheath edge. We showed the

results of such an experimental test in figure 6.10, which was conducted by Yip et al [54], and which

agreed well with our predictions. In this application, our kinetic theory remaines valid because the

instability-enhanced collisional friction modifies the plasma dielectric to limit the instability amplitude

so that nonlinear fluctuation levels are never reached.
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Appendix A

Rosenbluth Potentials

A.1 Definition of the Rosenbluth Potentials

In this appendix, we review properties of the Rosenbluth potentials and evaluate them explicitly for a

Maxwellian distribution function (including flow). The H Rosenbluth potential is defined as [22]

Hs′(v) ≡ ms

mss′

∫
d3v′

fs′(v
′)

|v − v′| (A.1)

and the G as

Gs′(v) =

∫
d3v′ fs′(v

′)|v − v′|. (A.2)

Some useful velocity-space derivative properties of the Rosenbluth potentials are

∂2

∂v2
Hs′(v) = −4π

ms

mss′
fs′(v), (A.3)

∂2

∂v2
Gs′(v) = 2

mss′

ms
Hs′(v), (A.4)

and

∂2

∂v2

∂2

∂v2
Gs′(v) = −8πfs′(v). (A.5)

Some other useful identities when working with the Rosenbluth potentials are

∂u

∂v
=

u

u
,

∂

∂v

1

u
= − u

u3
,

∂2u

∂v∂v
=
u2I − uu

u3
, (A.6)

∂2

∂v2

1

u
=

(
∂

∂v
· ∂
∂v

)
1

u
= −4πδ(u) = −4πδ(v − v′), (A.7)

∂2u

∂v2
=

∂

∂v
· ∂u
∂v

=
∂

∂v
·
(

u

u

)
=

2

u
(A.8)

and

∂

∂v
·
(
u2I − uu

u3

)
=

(
∂

∂v

1

u

)
· I −

(
∂

∂v

1

u3

)
· uu− 1

u3

∂

∂v
· uu = −2

u

u3
. (A.9)
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A.2 Rosenbluth Potentials for a Flowing Maxwellian Back-

ground

When working with Maxwellians, it is convenient to use the Maxwell integral

ψ(x) ≡ 2√
π

∫ x

0

dt
√
te−t (A.10)

which satisfies the properties

ψ′(x) =
dψ

dx
=

2√
π

√
xe−x and ψ + ψ′ =

2√
π

∫ √x

0

dy e−y
2

= erf(
√
x). (A.11)

First, we calculate Gs′(v) using for a background (s′ species) that has a flowing Maxwellian distri-

bution

fM,s′(v
′) =

ns′

π3/2v3
Ts′

exp

[
− (v′ −Vs′)

2

v2
Ts′

]
. (A.12)

Putting this distribution into equation A.2, yields

Gs′(v) =
ns′

π3/2v3
Ts′

∫
d3uu exp

[
− (v − u−Vs′)

2

v2
Ts′

]
, (A.13)

in which u ≡ v − v′. Redefining u→ −u and defining

ws′ ≡ v −Vs′ (A.14)

gives

Gs′(v) =
ns′

π3/2v3
Ts′

∫
d3uu exp

[
− (u + ws′)

2

v2
Ts′

]
. (A.15)

Using spherical coordinates and aligning ws′ in the ẑ direction, so u ·ws′ = uws′ cos θ gives

Gs′(v) =
ns′

π3/2v3
Ts′

∫ ∞

0

duu2

∫ 2π

0

dφ

∫ π

0

dθ sin θ u exp

[
−u

2 + w2
s′ + 2uws′ cos θ

v2
Ts′

]
. (A.16)

Doing the trivial φ integral and making the variable substitution x = cos θ so dx = − sin θdθ, this is

Gs′(v) =
2πns′

π3/2v3
Ts′

∫ ∞

0

duu3 exp

(
−u

2 + w2
s′

v2
Ts′

)∫ 1

−1

dx exp

(
−2uws′x

v2
Ts′

)
(A.17)

= − ns′√
πvTs′ws′

∫ ∞

0

duu2

[
e−(u+ws′ )

2/v2
Ts′ − e−(u−ws′ )2/v2Ts′

]
.

Substituting in y = (u+ws′)/vTs′ into the first integral and y = −(u−ws′)/vTs′ into the second gives

Gs′(v) = − ns′√
πvTs′ws′

[∫ ∞

ws′/vTs′
dy vTs′

(
v2
Ts′y

2 − 2ws′vTs′y + w2
s′
)
e−y

2

(A.18)

+

∫ −∞

ws′/vTs′
dy vTs′

(
v2
Ts′y

2 − 2ws′vTs′y + w2
s′
)
e−y

2

]
.
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Using the substitution

x ≡ w2
s′

v2
Ts′

(A.19)

and the fact
∫ −∞√

x
= −

∫√x
−∞ = −

∫∞
−∞+

∫∞√
x

gives

Gs′(v) = −ns′vTs′√
π
√
x

[
−4
√
x

∫ ∞
√
x

dy ye−y
2

+

∫ ∞
√
x

dy e−y
2(

2y2+2x
)
−
∫ ∞

−∞
dye−y

2(
y2−2

√
xy+x

)]
. (A.20)

The last 2
√
xy term vanishes due to odd symmetry. Also, noting that

∫ ∞

−∞
dye−y

2(
y2 + x

)
= 2

∫ ∞

0

dye−y
2(
y2 + x

)
(A.21)

and for the middle term that
∫∞√

x
=
∫∞

0
−
∫√x

0
, we find

Gs′(v) =
ns′vTs′√

x

2√
π

[
2
√
x

∫ ∞
√
x

dy ye−y
2

+

∫ √x

0

dy y2e−y
2

+ x

∫ √x

0

dye−y
2

]
. (A.22)

Applying the definition for error functions

∫ ∞
√
x

dy ye−y
2

=
1

2
e−x ,

∫ √x

0

dy y2e−y
2

= −
√
x

2
e−x +

√
π

4
erf
(√
x
)

and

∫ √x

0

dy e−y
2

=

√
π

2
erf
(√
x
)

(A.23)

we find

Gs′(v) = ns′vTs′
1√
x

[
(x+

1

2
)erf
(√
x
)

+

√
x√
π
e−x

]
, (A.24)

which in terms of Maxwell integrals is

Gs′(v) = ns′vTs′
1√
x

[
(1 + x)ψ′ + (x+ 1/2)ψ

]
(A.25)

in which

x ≡ (v −Vs′)
2

v2
Ts′

. (A.26)

Next, we evaluate Hs′(v):

Hs′(v) =
ms

mss′

∫
d3v′

fs′

u
=

ms

mss′

ns′

π3/2v3
Ts′

∫
d3u

1

u
exp

[
− (u + ws′)

2

v2
Ts′

]
. (A.27)

Again, using spherical coordinates and the substitution x = cos θ, this is

Hs′(v) =
ms

mss′

2πns′

π3/2v3
Ts′

∫ ∞

0

duue−(u2+w2
s′ )

2/v2
Ts′

∫ 1

−1

dx e−2uws′x/v
2
Ts′ (A.28)

= − ms

mss′

ns′√
πvTs′ws′

∫ ∞

0

du

[
e−(u+w)2/v2

Ts′ − e−(u+ws′ )
2/v2

Ts′

]
.



174

Using the substitution y = (u+ws′)/vTs′ into the first integral and y = −(u−ws′)/vTs′ into the second

gives

Hs′(v) = − ms

mss′

ns′√
πws′

[∫ ∞
√
x

dy e−y
2

+

∫ −∞
√
x

dy e−y
2

]
. (A.29)

Rearranging the limits of the integrand, this simplifies to

Hs′(v) =
ms

mss′

ns′

ws′

2√
π

∫ √x

0

dye−y
2

, (A.30)

which can be written in terms of the error function

Hs′(v) =
ms

mss′

ns′

vTs′

1√
x

erf
(√
x
)
, (A.31)

or the Maxwell integral

Hs′(v) =
ms

mss′

ns′

vTs′

ψ + ψ′√
x

. (A.32)
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Appendix B

Kinetic Theory With Equilibrium

Fields

In deriving a collision operator in chapter 2, we assumed that equilibrium electric and magnetic fields

were negligible. Consequently, the collisionless particle trajectories were simply straight lines at constant

speed. In the applications described in chapters 4, 5 and 6, however, we apply the collision operator

of chapter 2 to the presheath region of a plasma where there is a weak equilibrium electric field that

accelerates particles. Furthermore, weak equilibrium magnetic fields may be present from the ambient

field of the earth, as well as from currents generated by ion flow in the presheath.

In this appendix we consider collision operators that include effects of equilibrium electric and

magnetic fields. We still assume that the only instabilities present are electrostatic. When considering

effects of an equilibrium magnetic field, we also assume that the field is sufficiently uniform that it can be

approximated by a constant value in a single Cartesian direction. We apply the method of characteristics

in addition to the Fourier-Laplace transforms used in chapter 2. For the constant magnetic field, the

characteristic trajectories are helices centered about the magnetic filed direction.

The resultant collision operators show that an equilibrium electric field significantly modifies the

collision operator only when the field is strong. In particular, when the gradient scale length of the

equilibrium potential variation is comparable to a Debye length, or the wavelength of the unstable

waves (whichever is longer). Thus the weak field of a presheath does not significantly modify the

collision operator of chapter 2 for the relevant micro-instabilities. In fact, we will find that if the

equilibrium electric field is strong enough to significantly modify the collision operator, this implies that

the ionized medium is not quasineutral. In this case the ionized gas is no longer a plasma according to

the conventional definition. In contrast, the presence of an equilibrium magnetic field can significantly
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modify the collision operator in a state where the plasma can remain quasineutral. These modifications

may be interesting for many applications where very strong magnetic fields are applied to plasmas, but

we show here that the Earth’s magnetic field and the magnetic fields generated by driven currents in

typical presheaths are sufficiently weak that they do not significantly modify the collision operator of

chapter 2. Thus, the collision operator of chapter 2 that neglected equilibrium field effects can be shown

to be valid even in the presence of the weak fields found in the applications of chapters 4, 5 and 6.

B.1 For a General Field Configuration

Recall from equations 2.5 and 2.8 of section 2.1.2 that the kinetic equation for a species s including

equilibrium electric and magnetic fields is given by

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(
E +

v

c
×B

)
· ∂fs
∂v

= C(fs) = − ∂

∂v
· Jv (B.1)

in which

Jv ≡
qs
ms

〈(
δE +

v

c
× δB

)
δfs

〉
(B.2)

is the collisional current. The collisional current is determined by the linearized O(δ) equation

∂δfs
∂t

+ v · ∂δfs
∂x

+
qs
ms

(
E +

v

c
×B

)
· ∂δfs
∂v

= − qs
ms

(
δE +

v

c
× δB

)
· ∂fs
∂v

(B.3)

along with Gauss’s law

∂

∂x
· δE = 4π

∑

s

qs

∫
d3v δfs. (B.4)

To proceed, we will use the method of characteristics. We first prime all of the (x,v, t) coordinates

in equations B.3 and B.4 to distinguish them from later “end point” values denoted without the primes.

The characteristics are the collisionless trajectories of single particles. For a general equilibrium forcing

function F these are given by

dx′

dt′
= v′ and

dv′

dt′
=

F

ms
(B.5)

subject to the “end point” conditions

x′(t′ = t) = x and v′(t′ = t) = v. (B.6)
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In general F is a function of (v′,E,B, x̄, t̄) where x̄ and t̄ are the space and time-scales for variation

of the equilibrium fields. Note that equilibrium gravitational forces can also be easily included within

this framework.

Integrating the x′ evolution equation leads to an expression of the form x′ = x+d where d depends

on the forcing function F and the same variables (v′,E,B, x̄, t̄). We will consider specific cases for

d in sections B.2 and B.3 where the forcing function is from equilibrium electric and magnetic fields

respectively. For now, we will not specify the particular form for F or d.

Writing equation B.3 in terms of primed variables gives

dδf(x′,v′, t′)
dt′

= − qs
ms

∂fs
∂v
· δE(x′, t′). (B.7)

Note that the ∂fs/∂v term is not written in the primed variables because it is a constant on the short

space and time scales of δf and δE. We apply the so-called “end point” condition for the characteristics

that x′(t′ = t) = x and v′(t′ = t) = v. Integrating from t′ = 0 to t gives

δfs(x,v, t) = δfs(x
′,v′, t′ = 0)− qs

ms

∂fs
∂v
·
∫ t

0

dt′δE(x′, t′). (B.8)

We next apply the Fourier-Laplace transforms, defined by equations 2.14 and 2.15, to each term in

equation B.8. The left side will simply give δf̂s(k,v, ω). The first term on the right is

δf̂s(k,v
′, t′ = 0) =

∫ ∞

0

dt

∫
d3xe−ik·x+iωtδfs(x

′,v′, t′ = 0). (B.9)

Inserting our characteristic equation x′ = x + d gives

δf̂s(k,v, t
′ = 0) =

∫ ∞

0

∫
d3x exp

[
−ik · x′ + ik · d(t′ = 0) + iωt

]
δfs(x

′,v, t′ = 0) (B.10)

=

∫
d3x′e−ik·x

′
δfs(x

′,v, t′ = 0)

︸ ︷︷ ︸
≡δf̃s(k,v,t′=0)

∫ ∞

0

dt exp
[
+ik · d(t′ = 0) + iωt

]

︸ ︷︷ ︸
=
∫ ∞
0
dτ exp[ik·d+iωτ ]

in which we’ve used τ ≡ t− t′. We then have

δf̂s(k,v, t
′ = 0) =

iδf̃s(k,v, t
′ = 0)

ω̄p
(B.11)

in which

1

ω̄p
≡ −i

∫ ∞

0

dτ exp
[
i
(
k · d + ωτ

)]
. (B.12)
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Without equilibrium fields d = vτ and we get ω̄p = ω − k · v, which is a simple way to connect with

the results of chapter 2.

Next consider the electric field fluctuation term of equation B.8;

∫ t

0

dt′δE(x′, t′) =

∫ t

0

dt′
∫

d3k

(2π)3

∫
dω

2π
ei(k·x

′−ωt′)δÊ(k, ω). (B.13)

Noting that exp[i(k · x′ − ωt′)] = exp[i(k · x− ωt)] exp[ik · d + iωτ ] gives

∫ t

0

dt′δE(x′, t′) =

∫
d3k

(2π)3

∫
dω

2π
ei(k·x−ωt)δÊ(k, ω)

︸ ︷︷ ︸
δE(x,t)

∫ t

0

dt′ exp
[
ik · d + iω(t− t′)

]

︸ ︷︷ ︸
=
∫ t
0
dτ exp[ik·d+iωτ ]

. (B.14)

However, on the short timescale of δE, we can take t→∞ in the last integral, so we find

∫ t

0

dt′δE(x′, t′) ≈ iδE(x, t)

ω̄p
. (B.15)

Putting these terms into the transform of equation B.8 gives

δf̂s(k,v, ω) =
iδf̃s(k,v, t

′ = 0)

ω̄p
− qs
ms

iδÊ(k, ω)

ω̄p
· ∂fs
∂v

. (B.16)

Putting equation B.16 into Gauss’s law

k2δφ̂ = 4π
∑

s

qs

∫
d3vδf̂s(k,v, ω), (B.17)

where we have applied the electrostatic fluctuation approximation δÊ(k, ω) = −ikδφ̂(k, ω), gives

δφ̂(k, ω) =
∑ 4πqs

k2ε̂(k, ω)

∫
d3v

iδf̃s(k,v, t
′ = 0)

ω̄p
(B.18)

in which

ε̂(k, ω) = 1 +
∑

s

4πq2
s

k2ms

∫
d3v

k · ∂fs/∂v

ω̄p
(B.19)

is the plasma dielectric function.

Next, we insert the discrete particle initial condition

δf̃s(k,v, t
′ = 0) =

N∑

i=1

e−ik·xioδ(v − vio)− (2π)3δ(k)fs (B.20)

into equations B.16 and B.18. First, in equation B.18 this gives

δφ̂(k, ω) =
∑

s

4πqs
k2ε̂(k, ω)

∫
d3v

N∑

i=1

ie−ik·xioδ(v − vio)

ω̄p
−
∑

s

4πqs
k2ε̂

∫
d3v

i(2π)3δ(k)fs
ω̄p

. (B.21)
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However, the last term vanishes due to quasineutrality. To see this, first notice that

δ(k)

ω̄p
= δ(k)(−i)

∫ ∞

0

dτe−ik·d−iωτ → δ(k)(−i)
∫ ∞

0

dτe−iωτ =
2πδ(k)

ω
. (B.22)

With this, we find

∑

s

4πqs
k2ε̂

∫
d3v

i(2π)3δ(k)fs
ω̄p

→ (4π)(2π)4

k2ε̂

δ(k)

ω

∑

s

qsns

︸ ︷︷ ︸
=0

= 0 (B.23)

and we are left with

δφ̂(k, ω) =

N∑

s,i=1

4πqs
k2ε̂(k, ω)

ie−ik·xio

ω̄p(v = vio)
. (B.24)

Putting the discrete particle term in equation B.16 gives

δf̂s(k, ω) =
∑

s′,i=1

[
ie−ik·xioδ(v − vio)

ω̄p
− i(2π)3δ(k)fs

ω̄p
− 4πqsqs′

msk2ε̂(k, ω)

ik · ∂fs/∂v

ω̄p

e−ik·xio

ω̄p(v = vio)

]
. (B.25)

Using equation B.25 along with

δÊ(k′, ω′) =
∑

s′′,l=1

4πqs′′

k′2ε̂(k′, ω′)
k′e−ik

′·xlo

ω̄′p(v = vlo)
(B.26)

we will calculate the collisional current. Note that here ω̄′p = ω̄p(k
′, ω′).

The transform of the collisional current is

Ĵsv(k,k
′,v, ω, ω′) =

qs
ms

〈
δÊ(k′, ω′)δf̂s(k,v, ω)

〉
(B.27)

and putting in the above gives

Ĵsv =
qs
ms

〈 ∑

s′′,l=1

4πqs′′

k′2ε̂(k′, ω′)
k′e−ik

′·xlo

ω̄′p(v = vlo)

N∑

i=1

ie−ik·xioδ(v − vio)

ω̄p

〉
→ term 1 (B.28)

− qs
ms

〈 ∑

s′′,l=1

4πqs′′

k′2ε̂(k′, ω′)
k′e−ik

′·xlo

ω̄′p(v = vlo)

i(2π)3δ(k)fs
ω̄p

〉
→ term 2

− qs
ms

〈 ∑

s′′,l=1

4πqs′′

k′2ε̂(k′, ω′)
k′e−ik

′·xlo

ω̄′p(v = vlo)

N∑

s′,i=1

4πqsqs′

msk2ε̂(k, ω)

ik · ∂fs/∂v

ω̄p

e−ik·xio

ω̄p(v = vio)

〉
→ term 3.

We will consider each of these three terms individually. Recall from equation 2.25 that the definition

of ensemble average is

〈. . .〉 ≡
N∏

j=1

∫
d3xjod

3vjo
f(vjo)

nV

(
. . .
)
. (B.29)
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Considering term 1. For i 6= l, the
∫
d3xlo integral will give a δ(k′); but these terms→ 0 in the limit

that k′ → 0, so the unlike particle terms vanish. We are then left with the like particle terms for which

s′′ = s, and we have

1 =
qs
ms

N

nV︸︷︷︸
=1

∫
d3xod

3vo
4πiqs

k′2ε̂(k′, ω′)
k′e−ik

′·xo

ω̄′p(v = vo)

e−ik·xo

ω̄p
δ(v − vo)fs(vo). (B.30)

Using ∫
d3xoe

−i(k+k′)·xo = (2π)3δ(k + k′) (B.31)

and changing the dummy variable vo to v′, term 1 can be written

1 =
4πq2

s

msk2

∫
d3v′

ik′(2π)3δ(k + k′)
ω̄′p(v = v′) ω̄pε̂(k′, ω′)

δ(v − v′)fs(v
′). (B.32)

Term 2 vanishes for the same reason as the unlike particle terms in 1 did. That is, because the xl

integral gives a δ(k′) and the term → 0 in the limit k′ → 0.

The unlike particle terms i 6= l of term 3 vanish for the same reason as they do in term 1. This also

implies that only s′ = s′′ terms survive. Performing the xo integral, we find

3 = − 4πq2
s

msk2

∫
d3v′

ik′(2π)3δ(k + k′)
ε̂(k′, ω′) ω̄′p(v = v′)ω̄p

fs(v
′)
∑

s′

4πq2
s′

k2ε̂(k, ω)

k · ∂fs/∂v

msω̄p(v = v′)
. (B.33)

We are then left with the following expression for the collisional current

Ĵsv =
4πq2

s

msk2

∫
d3v′

ik′(2π)3δ(k + k′)
ε̂(k′, ω′) ω̄′p(v = v′) ω̄p

fs(v
′)

[
δ(v − v′)−

∑

s′

4πq2
s′

msk2

k · ∂fs/∂v

ε̂(k, ω)ω̄p(v = v′)

]
. (B.34)

Doing the trivial v′ integral in the first term and multiplying this term by ε̂/ε̂ gives Ĵsv =
∑
s′ Ĵ

s/s′
v in

which

Ĵs/s
′

v =
(4π)2q2

sq
2
s′

msk4

∫
d3v′

ik′(2π)3δ(k + k′)
ε̂(k′, ω′)ε̂(k, ω)ω̄p ω̄p(v = v′)

[
fs(v)k · ∂fs′/∂v′

ms′ ω̄′p(v = v)
− fs′(v

′)k · ∂fs/∂v

msω̄′p(v = v′)

]

(B.35)

+
4πq2

s

k2ms

ik′(2π)3δ(k + k′)fs(v)

ε̂(k′, ω′)ω̄pω̄′p(v = v)ε̂(k, ω)
.

The last term will vanish upon inverse Fourier transforming due to odd parity in k.

We can then write

Ĵs/s
′

v =
(4π)2q2

sq
2
s′

msk4

∫
d3v′

ik′(2π)3δ(k + k′)
ε̂(k′, ω′)ε̂(k, ω)ω̄p ω̄p(v = v′)ω̄′p(v = v)ω̄′p(v = v′)

×
[
ω̄′p(v = v′)

fs(v)k · ∂fs′/∂v′

ms′
− ω̄′p(v = v)

fs′(v
′)k · ∂fs/∂v

ms

]
(B.36)
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which is almost in the Landau form. Usually we have the ω̄p terms in the square brackets→ ω′ because

the terms ∝ k have odd parity and vanish. With equilibrium magnetic fields present this is not so

obvious (and may lead to complications).

It is difficult to extract much more information from the expression for collisional current given

by equation B.36 without specifying a particular forcing function. This is because 1/ω̄p needs to be

specified before the Fourier-Laplace transforms can be inverted to give an expression for a collision

operator in real space and time. In the next two sections we will consider particular forcing functions

and thus specify 1/ω̄p, which leads to more explicit formulations of the collision operator and plasma

dielectric function.

B.2 With an Equilibrium Electric Field

So far, we have assumed that “equilibrium” field quantities (e.g., E) vary over much longer space and

timescales than perturbed quantities (e.g., δE). We denote the long spatial scale l. The perturbed

quantities vary in space on the characteristic scale δl ∼ 1/k. For a stable plasma, k typically ranges

from 1/bmin to 1/λDe. For an unstable plasma, k ranges over all unstable wavenumbers, which for

the instabilities considered in this work are on the order of 1/λDe and have the approximate range

k ∼ 1/λDe − 100/λDe. The uniformity condition of the equilibrium electrostatic potential can be

expressed as

δl

l
∼ 1/k

1/(d lnφ/dx̄)
=

1

kφ

dφ

dx̄
� 1. (B.37)

In this section, our fundamental scaling assumption of equilibrium electric fields given by equation B.37

will be important for evaluating the ultimate contribution of the equilibrium fields to modifying the col-

lision operator and linear wave properties derived in chapter 2. It is also noteworthy that equation B.37

must be satisfied in order for quasineutrality to hold. We have already assumed in equation B.23 that

the plasma is quasineutral.

For an equilibrium electric field, the forcing function is F = qsE, so the characteristic equation B.5 is

dv′/dt′ = qsE/ms. Integrating this over t′ and enforcing the “end point” condition v′(t′ = t) = v gives

v′ = v− qs
ms

Eτ where τ ≡ t−t′. Integrating this and enforcing x′(t′ = t) = x gives x′ = x−vτ+ 1
2
qs
ms

Eτ2.
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Thus we can write x′ in the general form x′ = x + d where

d = −vτ +
1

2

qs
ms

Eτ2. (B.38)

Putting the characteristic of equation B.38 into equation B.12 gives

1

ω̄p
= −i

∫ ∞

0

dτ exp
{
i[(ω − k · v)τ + ω2

Eτ
2]
}

(B.39)

in which

ω2
E ≡

1

2

qs
ms

k ·E (B.40)

is defined for notational convenience. The magnitude of the electric field effects can be estimated by

applying the substitution w = (ω − k · v)τ , which gives

1

ω̄p
=

−i
ω − k · v

∫ ∞

0

dw exp

{
i

[
w +

ω2
E

(ω − k · v)2
w2

]}
. (B.41)

Thus, we find that the importance of electric field effects is associated with the size of ω2
E/(ω− k · v)2.

However,

ω2
E

(ω − k · v)2
∼ 1

2

qs
ms

kE

k2v2
Ts

∼ 1

2

qsφ

Ts

1

kφ

dφ

dx
� 1 (B.42)

which must be small due to the uniformity condition on E from equation B.37. For the weak uniform

fields of a presheath we find

1

kφ

dφ

dx
∼ λDe

l
∼ 10−4, (B.43)

which is extremely small. Here l is the presheath length scale which is typically thousands or tens of

thousands of Debye lengths. Thus, equation B.39 gives ω̄p ≈ ω − k · v and the electric field free results

are returned. Note also that if the equilibrium electric field is strong enough to modify the collision

operator, it implies that the quasineutrality condition of equation B.37 is violated.

Although equation B.43 shows that the weak presheath electric fields do not significantly affect the

collision operator, it may still be useful to obtain the order of corrections due to the field. Equation

B.41 can be written explicitly in terms of exponential and complimentary error functions

1

ω̄p
=

1

ω − k · v
√
πwE exp(w2

E) erfc(wE) (B.44)

in which we have defined

wE ≡
√
−i(ω − k · v)

2ωE
. (B.45)
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Putting equation B.44 into equation B.36 provides an explicit expression for the collisional current,

and hence collision operator, in the presence of a weak equilibrium electric field. For the quasineutral

plasmas of interest, wE � 1. Applying the large argument (|wE | � 1) expansion for the complimentary

error function

erfc(wE) =
exp(−w2

E)√
πwE

(
1− 1

2w2
E

− . . .
)

(B.46)

to equation B.44, we find

1

ω̄p
=

1

ω − k · v

(
1− 2iω2

E

(ω − k · v)2
+ . . .

)
. (B.47)

Thus, corrections due to the equilibrium electric field are O
{
ω2
E/(ω − k · v)2

}
, which is small for

quasineutral plasmas.

B.3 With a Uniform Equilibrium Magnetic Field

For a straight-line magnetic field, B, the characteristic particle trajectories are [33]

d ≡ v⊥
Ωs

{
sinϕ− sin

[
ϕ+ Ωsτ

]}
x̂− v⊥

Ωs

{
cosϕ− cos

[
ϕ+ Ωsτ

]}
ŷ − vzτ ẑ. (B.48)

Recall that

1

ω̄p
≡ −i

∫ ∞

0

dτ exp
[
−ik · d− iωτ

]
. (B.49)

In this case, we find that in the parameter of interest is the size of the gyro-radius compared to k.

Recall that the gyro-radius is defined as

ρs ≡
v⊥
Ωs

=
cmsv⊥
qsB

. (B.50)

Since 1/τ ∼ kv⊥, we find

d ∼ ρs
{

sinϕ− sin
[
ϕ+ 1/(kρs)

]}
x̂− v⊥

Ωs

{
cosϕ− cos

[
ϕ+ 1/(kρs)

]}
ŷ − vzτ ẑ. (B.51)

For the low magnetic fields of interest in this work, and for the wavelengths characteristic of a Debye

length, we find

kρs ∼
ρs
λDe

� 1. (B.52)

Thus, expanding d for 1/(kρs)� 1, yields d ≈ vτ . With this, we find ω̄p ≈ (ω−k ·v) and the magnetic

field free results are returned.
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Hence, we find that the characteristic kinetic scale of interest (which is the Debye length for con-

ventional Coulomb interactions, or the wavelength of the unstable mode for instability-enhanced inter-

actions) must be of comparable magnitude to the gyroradius (for whatever particles one is interested in

calculating a collision operator for) before magnetic fields significantly affect the collision operator. This

could be accomplished by extremely strong fields or long wavelength instabilities. However, neither of

these are found in the plasmas of interest in this work, so magnetic field corrections are negligible here.

Although the magnetic field corrections are negligible for the essentially unmagnetized plasmas of

interest in this work, equation B.49 can be evaluated explicitly in terms of Bessel functions for a uniform

magnetic field. To show this, we first note the Jacobi-Anger expansion

e±iz cos θ =

∞∑

n=−∞
(±i)nJn(z)einθ and e±iz sin θ =

∞∑

n=−∞
Jn(z)e±inθ, (B.53)

which can be proven by expanding eiz sin θ in a Fourier series, then identifying the Fourier coefficients

as the Bessel functions using the integral representation

Jn(x) =
1

2π

∫ π

−π
e−i(nτ−x sin τ)dτ. (B.54)

The second form can be obtained from the first by writing sin θ = cos(θ−π/2) and using the symmetry

relation

Jn(z) = (−1)nJn(−z). (B.55)

Putting equation B.53 into equation B.49, yields

1

ω̄p
= −i exp[i(kxρs sinϕ−kyρs cosϕ)]

∫ ∞

0

dτ exp{[−kxρs sin(ϕ+Ωsτ)+kyρs cos(ϕ+ωsτ)−kzvzτ+ωτ ]}.

(B.56)

From the Jacobi-Anger expansions above, we find

e−ikxρs sin(ϕ+Ωsτ) =

∞∑

n=−∞
Jn(kxρs)e

−inϕe−inΩsτ (B.57)

and

eikyρs cos(ϕ+Ωsτ) =

∞∑

l=−∞
ilJl(kyρs)e

ilϕeilΩsτ . (B.58)

Applying these yields

1

ω̄p
= −i

∞∑

n=−∞

∞∑

l=−∞
ilJn(kxρs)Jl(kyρs)e

i(l−n)ϕei(kxρs sinϕ−kyρs cosϕ)

∫ ∞

0

dτei[ω−kzvz+(l−n)Ωs]τ .

(B.59)
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After evaluating the τ integral

∫ ∞

0

dτei[ω−kzvz+(l−n)Ωs]τ =
i

ω − kzvz + (l − n)Ωs
, (B.60)

we find an explicit expression for ω̄p that includes the effects of a uniform equilibrium magnetic field

1

ω̄p
=

∞∑

n=−∞

∞∑

l=−∞

ilJn(kxρs)Jl(kyρs)e
i(l−n)ϕei(kxρs sinϕ−kyρs cosϕ)

ω − kzvz + (l − n)Ωs
. (B.61)

Putting equation B.61 into equation B.36 provides an explicit expression for the collisional current,

and hence the collision operator, when a uniform magnetic field is present. For the plasmas of interest

in this work, the gyroradius is much larger than the Debye length (which is also approximately the

wavelength of the unstable modes of interest), and the magnetic field provides negligible modifications

to the unmagnetized plasma collision operator derived in chapter 2.
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Appendix C

The Incomplete Plasma Dispersion

Function

The incomplete plasma dispersion function is defined as [83]

Z(ν, w) =
1√
π

∫ ∞

ν

dt
e−t

2

t− w. (C.1)

It is a useful function to use when calculating the contribution to the plasma dielectric function from a

distribution function that can be split in regions of velocity space that are Maxwellians, but may have

different temperatures.

C.1 Power Series and Asymptotic Representations

For the power series, |w| � 1, we can follow the same procedure as with the plasma dispersion function.

After applying the Plemelj formula to equation C.1, we find

Z(ν, w) =
1√
π
P
∫ ∞

ν

e−t
2

t− wdt+ i
√
π

∫ ∞

ν

e−t
2

δ(t− w)dt (C.2)

= i
√
πe−w

2

H(w − ν) +
1√
π
P
∫ ∞

ν

e−t
2

t− wdt

where H is the Heaviside step function. After integrating by parts, we find the power series represen-

tation of the incomplete plasma dispersion function

Z(ν, w) = i
√
πH(w − ν)e−w

2

+
E1(ν2)

2
√
π
− erfc(ν)w +

1√
π

[
e−ν

2

2ν2
− E1(ν2)

2

]
w2 (C.3)

+
2

3

{
erfc(ν)− e−ν

2

2
√
π

[
1

ν
− 1

ν2

]}
w3 + . . . (C.4)
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Analogously for the asymptotic expansion |w| � 1, we find

Z(ν, w) ∼ iσ
√
πH(wR − ν)e−w

2 − 1

w

{
erfc(ν)

2
+

1

2
√
πw

e−ν
2

+
1

2w2

[
erfc(ν)

2
+

ν√
π
e−ν

2

]
(C.5)

+
1

w3

1 + ν2

2
√
π
e−ν

2

+ . . .

}

in which

σ ≡





0 , ={w} > 0

1 , ={w} = 0

2 , ={w} < 0

. (C.6)

The expansions for the conventional plasma dispersion function can be returned by taking the

ν = −∞ limit of these. Doing so yields the power series expansion for |w| � 1

Z(w) = Z(−∞, w) = i
√
πe−w

2 − 2w

(
1− 2

3
w2 +

4

15
w4 + . . .

)
(C.7)

and the asymptotic expansion for |w| � 1

Z(w) = Z(−∞, w) ∼ iσ√πe−w2 − 1

w

(
1 +

1

2w2
+

3

4w4
+ . . .

)
. (C.8)

C.2 Special Case: ν = 0

The special case ν = 0 can be calculated exactly. This is relevant to plasmas where the distribution

function is truncated at v = 0, which can occur, for instance, for the electron distribution function near

a plasma boundary that is biased more positive than the plasma (i.e., an electron sheath). If ν = 0,

equation C.1 is

Z(0, w) = e−w
2[
Z(−iw, 0)− Z(0, 0)

]
+

1

2
e−w

2[
i
√
π

=1︷ ︸︸ ︷
erfc(0) erf(iw) +

E1(0)√
π

]
(C.9)

= e−w
2

[
1√
π

∫ ∞

−iw
dx
e−x

2

x
− 1√

π

∫ ∞

0

dx
e−x

2

x
+ i

√
π

2
erf(iw) +

1

2
√
π

∫ ∞

0

e−y

y
dy

]
.

Notice that the variable change x2 = y allows the last term to be written

1

2
√
π

∫ ∞

0

e−y

y
dy =

1√
π

∫ ∞

0

e−x
2

x
dx, (C.10)
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showing that the second and fourth terms cancel. Noticing also that the first term can be written in

terms of an exponential integral

∫ ∞

−iw

e−x
2

x
dx = −1

2
E1(x2)

∣∣∣∣
∞

−iw
, (C.11)

we arrive at the expression

Z(0, w) =
e−w

2

2
√
π
E1(−w2) + i

√
π

2
e−w

2

erf(iw). (C.12)

C.3 Ion-Acoustic Instabilities for a Truncated Maxwellian

In this section, we calculate the ion-acoustic dispersion relation for a plasma with a flowing Maxwellian

ion species and an electron species that is Maxwellian except that it is truncated for velocities (in one

direction) beyond a critical value, vc. This situation is pertinent in the Langmuir’s paradox application

of chapter 4. To find the dispersion relation, we start from the general dielectric function for electrostatic

waves in an unmagnetized plasma from equation 2.18

ε̂(k, ω) = 1 +
∑

s

4πq2
s

k2ms

∫
d3v

k · ∂fs/∂v

ω − k · v . (C.13)

Since we are concerned with electrons in the presheath, we assume no flow-shift in the truncated

Maxwellian distribution for electrons. Choosing the Cartesian coordinates (χ, η, ζ) aligned along k,

such that k = kζ ζ̂ = kζ̂, the truncated Maxwellian distribution for electrons can be written

f = H(vc,χ − vχ)H(vc,η − vη)H(vc,ζ − vζ)
n

π3/2v3
T

exp

(
−
v2
χ + v2

η + v2
ζ

v2
T

)
. (C.14)

Since k · ∂/∂v = k∂/∂vζ , and k · v = kvζ , the integrals are easier in the χ and η directions. Note

that ∫ vc,χ

−∞
dvχ exp

(
− v

2
χ

v2
T

)
=

√
πvT
2

[
erf
(vc,χ
vT

)
+ 1
]

=

√
πvT
2

erfc

(
−vc,χ
vT

)
(C.15)

where the last step comes from erfc(z) = 1 − erf(z) and the fact that erf is an odd function erf(−z) =

−erf(z). Plugging in the analogous formula for the vη integral we find

4πq2

k2m

∫
d3v

k · ∂fs/∂v

ω − k · v =
ω2
ps

k2
√
πvT

1

4
erfc

(
−vc,χ
vT

)
erfc

(
−vc,η
vT

)∫
dvζ

d
dvζ

H(vc,ζ − vζ) exp
(
− v2ζ
v2T

)

ω/k − vζ
.

(C.16)
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Next, we evaluate the last integral. To do so, first note that

∫
dvζ

d
dvζ

H(vc,ζ − vζ) exp
(
− v2ζ
v2T

)

ω/k − vζ
=

∫
dvζ
−δ(vc,ζ − vζ) exp

(
− v2ζ
v2T

)

ω/k − vζ
+

∫
dvζ

H(vc,ζ − vζ) d
dvζ

exp
(
− v2ζ
v2T

)

ω/k − vζ
(C.17)

= −
exp

(
−v

2
cζ

v2T

)

ω/k − vcζ
+

∫ vcζ

−∞

d
dvζ

exp
(
− v2ζ
v2T

)

ω/k − vζ
,

which looks like the derivative of a plasma dispersion function, but has a cutoff at the upper limit of

integration. Let t ≡ vζ/vT so dt = dvζ/vT and let ν ≡ vc,ζ/vT and w ≡ ω/kvT , then the integral

becomes

1

vT

∫ ν

−∞
dt

d
dte
−t2

w − t =
1

vT

∫ ν

−∞
dt
−2te−t

2

w − t =
1

vT

∫ ν

−∞
dt

[
d

dt

e−t
2

w − t −
e−t

2

(w − t)2

]
(C.18)

=
1

vT

[
e−t

2

w − t

∣∣∣∣
ν

−∞
−
∫ ν

−∞
dt

e−t
2

(w − t)2

]
=

1

vT

[
e−ν

2

w − ν +
d

dw

∫ ν

−∞
dt
e−t

2

w − t

]

=
exp
(
−v

2
c,ζ

v2T

)

ω/k − vc,ζ
+

1

vT

d

dw

[∫ ∞

−∞
dt
e−t

2

w − t︸ ︷︷ ︸
−√πZ(w)

−
∫ ∞

ν

dt
e−t

2

w − t︸ ︷︷ ︸
−√πZ(ν,w)

]
.

Plugging in, we find that for a truncated Maxwellian,

4πq2

k2m

∫
d3v

k · ∂fs/∂v

ω − k · v = − ω2
ps

k2v2
Ts

erfc(−vc,χ/vT ) erfc(−vc,η/vT )

4

[
Z ′(w)− Z ′(ν, w)

]
. (C.19)

For flowing Maxwellian ions and truncated Maxwellian electrons the plasma dielectric function thus

reduces to

ε̂(k, ω) = 1−
ω2
pi

k2v2
Ti

Z ′(ξi)−
ω2
pe

k2v2
Te

erfc(−vc,χ/vT ) erfc(−vc,η/vT )

4

[
Z ′(w)− Z ′(ν, w)

]
(C.20)

where Z(w) and Z(ξ) are the conventional plasma dispersion function of arguments w and ξ and Z(ν, w)

is the incomplete plasma dispersion function. Recall that ξi ≡ (ω − k ·Vi)/(kvTi) and w ≡ ω/(kvTe).

For ion waves where ξi � 1 and ω/kvTe � 1, we find

ω± =

(
k ·Vi ±

kcs√
β(1− erfc(ν)/2) + k2λ2

De

)(
1∓

√
πme/8Mi(

β(1− erfc(ν)/2) + k2λ2
De

)3/2
)

(C.21)

∓
√
πβkcsδ(wR − ν)

4
(
β(1− erfc(ν)/2) + k2λ2

De

)3/2
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in which

β ≡ erfc(−vc,χ/vTe)erfc(−vc,η/vTe)
4

. (C.22)

In a presheath β ≈ 1, ν ≈ 3 and δ(wR − ν) = 0, so the last term drops out. The other corrections are

very small since erfc(ν)/2 ≈ 3× 10−6. Corrections to the conventional ion-acoustic dispersion relation

(not accounting for the truncated electron distribution) are thus O
[
exp(−v2

‖c/v
2
Te)vTe/v‖c

]
� 1, which

is very small. Thus, the model applied in chapter 4 of flowing Maxwellian ions on stationary Maxwellian

electrons accurately describes ion-acoustic instabilities in the presheath.
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Appendix D

Two-Stream Dispersion Relation for

Cold Flowing Ions

In this appendix, we calculate all four roots of the quartic equation

0 = 1 +
1

k2λ2
De

− ω2
p1

(ω − k ·V1)2
− ω2

p2

(ω − k ·V2)2
(D.1)

analytically. To do so we use Ferrari’s method. Applying the notation that the parallel direction is

along the flow, so k ·V1 = k‖V1, equation D.1 can be written

0 = 1 + k2λ2
De −

n1

ne

k2c2s1
(ω − k‖V1)2

− n2

ne

k2c2s2
(ω − k‖V2)2

. (D.2)

Writing this in the standard form

Aω4 +Bω3 + Cω2 +Dω + E = 0 (D.3)

yields

A = 1, (D.4)

B = −2k‖(V1 + V2), (D.5)

C = k2
‖(V

2
2 + 4V1V2 + V 2

1 )− k2c2s
1 + k2λ2

De

, (D.6)

D = −2k3
‖V1V2(V1 + V2) +

2k2k‖
1 + k2λ2

De

(
n1

ne
c2s1V2 +

n2

ne
c2s2V1

)
, (D.7)

E = k4
‖V

2
1 V

2
2 −

k2k2
‖

1 + k2λ2
De

(
n1

ne
c2s1V

2
2 +

n2

ne
c2s2V

2
1

)
. (D.8)

Defining u with the substitution ω = u− B
4A , equation D.3 can be written as a depressed quartic

u4 + αu2 + βu+ γ = 0 (D.9)
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in which

α = −3B2

8A2
+
C

A
, (D.10)

β =
B3

8A3
− BC

2A2
+
D

A
(D.11)

γ = − 3B4

256A4
+
CB2

16A3
− BD

4A2
+
E

A
. (D.12)

For our problem, these coefficients are

α = −1

2
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

, (D.13)

β =
k2k‖

1 + k2λ2
De

∆V

(
n2

ne
c2s2 −

n1

ne
c2s1

)
, (D.14)

γ =
k2
‖∆V

2

4

[
1

4
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

]
. (D.15)

Next, the depressed quartic D.9 can be solved using Ferrari’s method, which essentially reduces it

to solving a cubic equation. To do so, we first add the identity

(u2 + α)2 − u4 − 2αu2 = α2 (D.16)

to the depressed quartic, equation D.9, to give

(u2 + α)2 + βu+ γ = αu2 + α2. (D.17)

This has folded the u4 term into a perfect square: (u2 +α)2. Next, we want to insert a y into equation

D.17 that will fold the right hand side into a perfect square as well. To do this it is convenient to add

the identity

(u2 + α+ y)2 − (u2 + α)2 = (α+ 2y)u2 − αu2 + 2yα+ y2 (D.18)

to equation D.17 to yield

(u2 + α+ y)2 = (α+ 2y)u2 − βu+ (y2 + 2yα+ α2 − γ). (D.19)

We have yet to chose y and we want to chose y such that the right hand side of this equation becomes

a perfect square. To do this, first note that if you expand a perfect square

(su+ t)2 = (s2)u2 + (2st)u+ (t2) (D.20)
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that the square of the second coefficient minus 4 times the product of the first and third coefficients

vanishes

(2st)2 − 4(s2)(t2) = 0. (D.21)

So for equation D.19, we should define y to solve

(−β)2 − 4(2y + α)(y2 + 2yα+ α2 − γ) = 0 (D.22)

which can be written

y3 +
5

2
αy2 + (2α2 − γ)y +

(
α3

2
− αγ

2
− β2

8

)
. (D.23)

With the definition for y given by equation D.22, equation D.19 can be written

(u2 + α+ y)2 =

(
u
√
α+ 2y − β

2
√
α+ 2y

)2

. (D.24)

Taking the square root of both sides and rearranging gives

u2 +
(
∓s
√
α+ 2y

)
u+

(
α+ y ±s

β

2
√
α+ 2y

)
= 0. (D.25)

Which can be easily solved with the quadratic equation to give

u = ±s
1

2

√
α+ 2y ±t

1

2

√
α+ 2y − 4

(
α+ y ±s

β

2
√
α+ 2y

)
(D.26)

in which the s and t subscripts denote the dependent and independent ±’s.

We just need one of the three values of y from the cubic equation D.23, it does not matter which,

and we have our fourth order equation solved. There is a similar, but more brief, method for solving

the cubic equation, but I’ll just quote the results. The solutions of

y3 + ay2 + by + c = 0 (D.27)

are

y = − P

3U
+ U − a

3
(D.28)

in which

P = b− a2

3
, (D.29)

Q = c+
2a3 − 9ab

27
, (D.30)

U =

(
−Q

2
±
√
Q2

4
+
P 3

27

)1/3

(D.31)
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in which the sign before the square root does not matter since both give you the same answer. The 1/3

power leads to the three solutions.

For our problem

a =
5

2
α, (D.32)

b = 2α2 − γ, (D.33)

c =
α3

2
− αγ

2
− β2

8
, (D.34)

so

P = −α
2

12
− γ, (D.35)

Q = − α3

108
+
αγ

3
− β2

8
. (D.36)

Plugging in for our values of α, β, and γ, we find

a = −5

4
k2
‖∆V

2 − 5

2

k2c2s
1 + k2λ2

De

, (D.37)

b =
7

16
k4
‖∆V

4 +
9

4
k2
‖∆V

2 k2c2s
1 + k2λ2

De

+ 2
k4c4s

(1 + k2λ2
De)

2
, (D.38)

c = − 3

64
k6
‖∆V

6 − 13

32
k4
‖∆V

4 k2c2s
1 + k2λ2

De

(D.39)

− k2
‖∆V

2 k4

(1 + k2λ2
De)

2

(
c2s −

1

2

n1n2

n2
e

c2s1c
2
s2

)
− 1

2

k6c6s
(1 + k2λ2

De)
3
, (D.40)

P = − 1

12

(
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

)2

, (D.41)

Q = − 1

108

[
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

]3

+
1

2
k2
‖∆V

2n1

ne

n2

ne

k4c2s1c
2
s2

(1 + k2λ2
De)

2
. (D.42)

Using these values gives

Q2

4
+
P 3

27
= − 1

432
k2
‖∆V

2n1n2

n2
e

k4c2s1c
2
s2

(1 + k2λ2
De)

2
×

[(
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

)3

(D.43)

− 27k2
‖∆V

2n1n2

n2
e

k4c2s1c
2
s2

(1 + k2λ2
De)

2

]

and

U =

(
1

216

[
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

]3

− 1

4
k2
‖∆V

2n1

ne

n2

ne

k4c2s1c
2
s2

(1 + k2λ2
De)

2
(D.44)

±
√

3

36
k‖∆V

√
n1n2

ne

k2cs1cs2
1 + k2λ2

De

√
27k2
‖∆V

2
n1n2

n2
e

k4c2s1c
2
s2

(1 + k2λ2
De)

2
−
(
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

)3)1/3
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We now have all the pieces, and need to plug into

ω = − B

4A
±s

1

2

√
α+ 2y ±t

1

2

√
−3α− 2y ∓s

2β√
α+ 2y

. (D.45)

However, U and thus y are very complicated and the exact answer for ω is so arduous that is essentially

unusable. So, we will consider two limiting cases

k‖∆V �
kcs√

1 + k2λ2
De

and k‖∆V �
kcs√

1 + k2λ2
De

. (D.46)

D.1 Small Flow Difference

Here, we expand in the limit

k‖∆V �
kcs√

1 + k2λ2
De

. (D.47)

First, keep up to order O(ε) where ε = k‖(V1 − V2). Then,

α = − k2c2s
1 + k2λ2

De

+O(ε2), (D.48)

β = k‖∆V
k2
(
n2

ne
c2s2 − n1

ne
c2s1
)

1 + k2λ2
De

, (D.49)

P = − 1

12

k4c4s
(1 + k2λ2

De)
2

+O(ε2), (D.50)

a = −5

2

k2c2s
1 + k2λ2

De

+O(ε2), (D.51)

U =
kcs√

1 + k2λ2
De

[
− 1

216

k3c3s
(1 + k2λ2

De)
3/2
±
√

3

36
k‖∆V

√
n1n2

ne

k2cs1cs2
1 + k2λ2

De

]1/3

+O(ε2). (D.52)

Using the series expansion

(a± ε)1/3 = a1/3 ± 1

3

1

a2/3
ε+O(ε2) (D.53)

and (−1)1/3 = (1/2 + i
√

3/2), gives

U =

(
1

2
+ i

√
3

2

)
kcs√

1 + k2λ2
De

(
1

6

kcs√
1 + k2λ2

De

∓
√

3

3
k‖∆V

√
n1n2

ne

cs1cs2
c2s

)
+O(ε2) (D.54)

The above give

y =
k2c2s

1 + k2λ2
De

∓ i kcs√
1 + k2λ2

De

k‖∆V
√
n1n2

ne

cs1cs2
c2s

. (D.55)
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In this limit, we get two always stable roots

ω1
2

=
1

2
k‖(V1 + V2)± kcs√

1 + k2λ2
De

− 1

2
k‖∆V

(
n2

ne

c2s2
c2s
− n1

ne

c2s1
c2s2

)
(D.56)

and two other roots, only one of which can be unstable

ω3
4

=
1

2
k‖(V1 + V2) +

1

2
k‖∆V

(
n2

ne

c2s2
c2s
− n1

ne

c2s1
c2s2

)
± ik‖∆V

√
n1n2

ne

cs1cs2
c2s

. (D.57)

D.2 Large Flow Difference

Next, we’ll consider the other limit

k‖∆V �
kcs√

1 + k2λ2
De

. (D.58)

First, we keep up to order O(ε2) where ε = kcs/
√

1 + k2λ2
De. Then,

α = −1

2
k2
‖∆V

2 − k2c2s
1 + k2λ2

De

, (D.59)

β =
k‖∆V

1 + k2λ2
De

k2

(
n2

ne
c2s2 −

n1

ne
c2s1

)
, (D.60)

P = − 1

12

(
k4
‖∆V

4 − 2k2
‖∆V

2 k2c2s
1 + k2λ2

De

+O(ε4)

)
, (D.61)

a = −5

4
k2
‖∆V

2 − 5

2

k2c2s
1 + k2λ2

De

, (D.62)

U =
1

6
k2
‖∆V

2 − 1

216

k2c2s
1 + k2λ2

De

± i
√

3

108

√
n1n2

ne

k2cs1cs2
1 + k2λ2

De

. (D.63)

Plugging in the above gives

y =
3

4
k2
‖∆V

2 +
1

2

k2c2s
1 + k2λ2

De

. (D.64)

We find that all four roots are real in this case

ω1
2

=
1

2
k‖V1 ±

√
2

4

kcs√
1 + k2λ2

De

±
√

2

4

k2λ2
De√

1 + k2λ2
De

ω2
p1

kcs
(D.65)

and

ω3
4

=
1

2
k‖V2 ±

√
2

4

kcs√
1 + k2λ2

De

±
√

2

4

k2λ2
De√

1 + k2λ2
De

ω2
p2

kcs
. (D.66)

These look like modified acoustic waves emitting from each of the two beams.
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