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In Paper I [T. Lafleur et al., Phys. Plasmas 23, 053502 (2016)], we demonstrated (using particle-in-

cell simulations) the definite correlation between an anomalously high cross-field electron transport

in Hall effect thrusters (HETs), and the presence of azimuthal electrostatic instabilities leading to

enhanced electron scattering. Here, we present a kinetic theory that predicts the enhanced scattering

rate and provides an electron cross-field mobility that is in good agreement with experiment. The

large azimuthal electron drift velocity in HETs drives a strong instability that quickly saturates due

to a combination of ion-wave trapping and wave-convection, leading to an enhanced mobility

many orders of magnitude larger than that expected from classical diffusion theory. In addition to

the magnetic field strength, B0, this enhanced mobility is a strong function of the plasma properties

(such as the plasma density) and therefore does not, in general, follow simple 1=B2
0 or 1=B0 scaling

laws. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948496]

I. INTRODUCTION

Despite being a mature technology that has seen almost

60 years of development, there are a number of aspects of

Hall effect thruster (HET) operation that are still not under-

stood, resulting in the continued need for semi-empirical

approaches to their design.1–3 Of these unresolved issues, a

recent roadmap article4 identified the poor understanding of

the anomalously high electron transport across the thruster

magnetic field as one of the main hurdles to future develop-

ment and highlighted the need for self-consistent models of

this phenomenon in order to make further progress. Because

HETs are often used in station-keeping or long-term scien-

tific missions, they are required to operate for many thou-

sands of hours. However, bombardment of plasma-facing

surfaces inside the thruster, such as the dielectric walls,

results in erosion3,5 which can degrade the thruster perform-

ance or eventually cause complete failure.3 Therefore, quali-

fication of newly designed thrusters is an important process,

but one which typically requires many months or years of

continual testing in high-vacuum space simulation chambers.

This testing is expensive and time-consuming, and highlights

the need for accurate models and simulations to help predict

erosion rates and lifetimes without needing such long-term

experimental work. In addition, these models are needed to

help design and develop new thrusters to meet future per-

formance requirements, while minimizing costly experimen-

tal optimization campaigns.

Over the last few decades, a large number of different

multi-dimensional simulations have been developed to help

predict HET operation. These include simulations where

both ions and electrons are treated using a fluid descrip-

tion,6–8 hybrid simulations using fluid electrons and a kinetic

description for ions,9–11 and fully kinetic particle-in-cell

(PIC) simulations.12–15 Traditionally, many of these models

have simulated only the axial9 or the axial-radial dimen-

sions,12 because of the apparent azimuthal symmetry exhib-

ited by the thruster. However, in each of these simulations,

including the axial-radial PIC simulations,12 an enhanced

electron collisionality was needed in order to obtain results

similar to experiments.8–10,16–22 This anomalous collisional-

ity is usually chosen empirically based on phenomenological

arguments and experimental measurements, and no self-

consistent model exists yet for its description. This reliance

on experiment significantly reduces the predictive power and

utility of present simulations.

Although HETs appear mechanically symmetric in the

azimuthal direction, the radial applied magnetic field, to-

gether with the axial electric field, produces a preferred elec-

tron E�B drift that breaks this symmetry. Consequently,

experimental measurements,23–28 as well as simulations

modelling the azimuthal direction (such as in 2D axial-azi-

muthal,13 2D radial-azimuthal,14,29 or simply 1D azimuthal

simulations30–32), have shown the presence of an instability

with fluctuations in the azimuthal electric field and the elec-

tron density. These fluctuations typically have frequencies in

the MHz range, and wavelengths of the order of

mm’s.13,14,16 In addition, the magnitude of the azimuthal

electric field fluctuations can be similar to that of the axial

electric field itself. Perhaps the most convincing demonstra-

tion of the importance of these azimuthal instabilities on

HET operation was presented in the 2D PIC simulations of

Ref. 13. There the axial-azimuthal directions of the thruster

were simulated, and with no free parameter or empirical col-

lisionality required, the simulations reproduced a number of

experimental observations. Although these simulations did

not model the radial direction, an approximate model fora)Electronic mail: trevor.lafleur@lpp.polytechnique.fr
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electron-wall collisions was included. Electron-wall colli-

sions were not sufficient to explain the observed electron

transport, and since the radial wall sheaths, as well as sec-

ondary electron emission, were not present, the simulations

suggest that these effects are not the dominant mechanisms

responsible for the anomalous transport.

While the axial-azimuthal simulations of Ref. 13 provide

important insight into the anomalous electron transport mech-

anism, they ignore the radial direction which is vital for the

accurate modelling of real-life HET performance and life-

times. Since simulations of the axial-radial directions alone do

not observe this anomalous transport, it appears that fully ki-

netic 3D PIC simulations are in principle needed. However,

because of numerical simulation stability criteria, such simula-

tions require massive parallelization and are inherently com-

plex and time consuming to run, making it difficult to utilize

them in thruster design. In contrast, electron-fluid based simu-

lations are significantly faster to run, and could be easily used

to evaluate new designs, and while these models do not self-

consistently account for the anomalous transport,10,16,17 good

agreement can be obtained by introducing anomalous electron

collisionalities based on experiment.6,16,21,33,34 Thus if an

externally developed theory of this anomalous transport can

be found,19,35 the reliance on experiment could be reduced

and a self-consistent method for simulating HETs, and an

increased physical understanding, obtained.

In Paper I,31 we presented a simple 1D PIC simulation

similar to that discussed in Ref. 30 that modelled the azi-

muthal direction of a Hall effect thruster. This simulation

included a mutually perpendicular axial electric field, E0,

and radial magnetic field, B0, with the E0�B0 direction in

the azimuthal direction. By controlling the plasma density in

the simulation, we showed that at very low densities, the

cross-field electron transport was classical, but that as the

plasma density increases, a strong instability develops in the

azimuthal direction, and the cross-field transport becomes

significantly enhanced. Associated with this instability are

fluctuations in both the azimuthal electric field, dEh, as well

as the electron density, dne, which results in a non-vanishing

spatially and temporally averaged (over the characteristic

instability wavelength and period) force: qhdnedEhi. We

then presented a theory where the effective cross-field elec-

tron mobility is given by

lef f ¼

q

m�m

1þ x2
ce

�2
m

1� xce

�m

hdnedEhi
neE0

� �
; (1)

where q and m are the electron charge and mass, respec-

tively, �m is the electron-neutral momentum transfer colli-

sion frequency, and xce ¼ qB0=m is the electron cyclotron

frequency. By explicitly evaluating the correlation term,

hdnedEhi, from the PIC simulations, we demonstrated that

the enhanced electron transport could be completely

described by Eq. (1). In the present work, we develop a ki-

netic theory to explicitly calculate this correlation term and

obtain an analytical solution for the anomalous mobility/col-

lisionality that aids physical understanding and offers an

approximate formula that could be incorporated into fluid-

based simulations to self-consistently model HETs.

II. KINETIC MODEL

A. Plasma kinetic equations

We take as our starting point the Vlasov equation and

assume that the particle distribution function for a species s
can be separated into an equilibrium component, fs, and a

fluctuating component, dfs (and similarly for the electric and

magnetic fields). This allows the derivation of the standard

plasma kinetic equations for each component36,37

@fs

@t
þ v � @fs

@x
þ qs

ms
Eþ v� Bð Þ � @fs

@v

¼ � qs

ms
dEþ v� dBð Þ � @dfs

@v

� �
; (2)

@dfs

@t
þ v � @dfs

@x
þ qs

ms
Eþ v� Bð Þ � @dfs

@v

¼ � qs

ms
dEþ v� dBð Þ � @fs

@v

þ qs

ms
dEþ v� dBð Þ � @dfs

@v

� �
� dEþ v� dBð Þ � @dfs

@v

� �
;

(3)

where x and v are phase space coordinates, t is time, qs and

ms are the charge and mass of species s, E(x, t) and Bðx; tÞ
are equilibrium electric and magnetic field components, and

dEðx; tÞ and dBðx; tÞ are fluctuating electric and magnetic

field components. Since the objective is to model transport

associated with the electrostatic instability observed in previ-

ous PIC simulations,12–15,30,31 we will ignore any fluctua-

tions in the magnetic field and set dB ¼ 0. Then the right-

hand side of Eq. (2) represents a collision operator describing

collisions between charged particles.37,38 Here, we will

assume that the only species are electrons and singly charged

ions. By multiplying Eq. (2) by msv and integrating over all

velocities, the electron momentum conservation equation is

obtained

@

@t
mnevdeð Þ þ r � mnevdevdeð Þ

¼ qne Eþ vde � Bð Þ � r �Pe þ Rei: (4)

Here, q and m are the electron charge and mass, ne, vde, and

Pe are the electron density, drift velocity, and pressure ten-

sor, and Rei is an electron-ion frictional drag force (electron-

electron collisions conserve momentum between the electron

species) given by

Rei ¼ �q

ð
d3vv

@

@v
� hdEdfei ¼ q

ð
d3vhdfedEi ¼ qhdnedEi:

(5)

Here, we have made use of integration by parts, noting that

the boundary terms go to zero. Equation (5) demonstrates

that electron-ion frictional drag is directly associated with

correlations in the fluctuations between the electron density
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and the electric field, and connects with the results presented

in Paper I.31 In Sections II B–II F, we explicitly calculate this

correlation term. The equations above do not include

electron-neutral collisions. We will see below that the neu-

tral gas density in the acceleration and downstream regions

of typical HET thrusters is sufficiently low that the effective

collision rate due to wave-particle scattering far exceeds that

associated with electron-neutral collisions. Hence, electron

transport is predominantly anomalous (i.e., associated with

wave-particle interactions). The influence of electron-neutral

collisions is discussed further in Section II F below.

In what follows we make use of a Cartesian coordinate

system to simplify the analysis, where the “axial” thruster

dimension is in the z-direction (with unit vector denoted k̂),

the “radial” dimension is in the x-direction (with unit vector

denoted î), and the “azimuthal” dimension is in the y-direc-

tion (with unit vector denoted ĵ). We also assume that the

applied magnetic field, Bx, is only in the x-direction, that

there is only an equilibrium electric field, Ez, in the z-direc-

tion, and that the ions are unmagnetized.

B. Dispersion relation

Before calculating the electron-ion friction force, we

consider the plasma dielectric function and the dispersion

relation for electrostatic waves (which will be needed later).

A general expression for the plasma dielectric function can

be obtained by making use of the method of characteristics37

and is given by

ê k;xð Þ ¼ 1þ
X

s

q2
s

k2�0ms

ð
d3v

k � @fs=@v

�xp
; (6)

where

1

�xp
¼ �i

ð1
0

ds exp i k � dþ xsð Þ½ �: (7)

Here, d is a distance obtained from the method of characteristics

after integrating over unperturbed particle trajectories (see the

Appendix for further details), �0 is the permittivity of free space,

and x and k are the fluctuation angular frequency and wavevec-

tor. The dispersion relation for a plasma in the presence of a

magnetic field has previously been derived in the context of

beam cyclotron instabilities in Ref. 39, and more recently, in the

context of Hall effect thrusters in Ref. 32. In these works, it was

shown that the effect of the magnetic field is to introduce a

quantization of the dispersion relation with discrete wave fre-

quency and growth rate bands. Additional work in Ref. 40 how-

ever showed that this discrete nature is only significant for very

small wavenumbers parallel to the magnetic field (kx in the nota-

tion used here), and that for larger wavenumbers, the dispersion

relation simplifies to a modified ion-acoustic type relation. In

this case, the only role of the magnetic field is to induce an azi-

muthal electron drift velocity, vde ¼ Ez=Bxĵ.

In order to confirm the results above, we have rederived

the full dispersion relation associated with Eqs. (6) and (7),

which includes finite gyroradius effects, in the Appendix.

This result will later be compared with a simplified disper-

sion relation, which we now derive based on the large

gyroradius limit. The Appendix shows that for kDe=q� 1

(where kDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0Te=qne

p
is the electron Debye length with

Te being the electron temperature in units of eV, and q is the

electron gyroradius), Eq. (7) simplifies to

1

�xp
¼ 1

x� k � v : (8)

We then use a drifting Maxwellian distribution for the ions,

and a general drifting distribution for electrons (in anticipa-

tion of the friction calculation in Sections II C and II E),

given by

fi ¼
ni

p3=2v3
Ti

exp �
v� vdið Þ2

v2
Ti

" #
; (9)

fe ¼
ne

v3
Te

Ð
d3u0g u0ð Þ

g
v� vde

vTe

� �
: (10)

Here, ni is the ion density, vTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qTi=M

p
is the ion thermal

velocity with Ti and M is the ion temperature and ion mass,

vTe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qTe=m

p
is a characteristic electron thermal velocity,

and g(u) is a function representing the electron distribution

and normalized such that ne ¼
Ð

d3vfe. By then substituting

Eqs. (8)–(10) into Eq. (6) and simplifying we obtain

ê k;xð Þ ¼ 1�
x2

pi

k2v2
Ti

Z0
x� k � vdi

kvTi

� �

þ 1

2k2k2
De

ð1
�1

duk
dG=duk
f� uk

; (11)

where Z is the plasma dispersion function of Fried and

Conte,41 xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ne=�0M

p
is the ion plasma frequency and

we have used quasineutrality so that ni � ne; G ¼ GðukÞ ¼Ð
d2ugðu?; ukÞ=

Ð
d3ugðuÞ (with uk a normalized velocity

variable aligned with the wavevector, and u? perpendicular),

and f ¼ ðx� k � vdeÞ=kvTe. Expanding the plasma dispersion

function for large arguments41 gives Z0ðwÞ � w�2 � 2iwffiffiffi
p
p

exp ð�w2Þ. As will be shown below, x� k � vdi � kcs,

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qTe=M

p
, and thus w /

ffiffiffiffiffiffiffiffiffiffiffi
Te=Ti

p
. Since the elec-

tron temperature in typical Hall thrusters can be as high as

25–40 eV,19,40 we will assume that Te=Ti 	 1 and neglect the

second term in the expansion of the dispersion function. This

term is usually associated with ion Landau damping which

acts to stabilize an ion-acoustic instability. Since the instabil-

ity studied here is driven by the electron drift velocity which

is of the order of the electron thermal speed rather than the

ion-acoustic speed, ion Landau damping is not expected to

have a significant effect. Nevertheless, there may be operating

conditions where ion Landau damping is important, in which

case the present analysis will over-estimate the instability

growth rate.

Applying the Plemelj relation to the integral term in Eq.

(11) gives

ê k;xð Þ ¼ 1�
x2

pi

x� k � vdið Þ2
þ a

k2k2
De

� i
pb

k2k2
De

; (12)

with
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a ¼ 1

2
P

ð1
�1

duk
dG=duk
f� uk

; (13)

b ¼ 1

2

dG

duk

				
f

; (14)

and where P represents the Cauchy principal value.

Assuming that the imaginary part in Eq. (12) is small, and

using a complex wave frequency (i.e., x ¼ xR þ ic), we can

solve for the dispersion relation by setting êðk;xÞ ¼ 0 to

obtain

xR � k � vdi6
kcsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ k2k2
De

q ; (15)

c � 6
pbkcs

2 aþ k2k2
De


 �3=2
: (16)

The above equations represent the modified ion-acoustic dis-

persion relation for a general electron distribution function.

If the distribution function is a drifting Maxwellian,

gðuÞ ¼ exp ð�u2Þ, and assuming that f � �k � vde=kvTe

� 1, then a � 1; b � �f=
ffiffiffi
p
p

, and hence Equations (15) and

(16) simplify to

xR � k � vdi6
kcsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2k2
De

q ; (17)

c � 6

ffiffiffiffiffiffiffi
pm

8M

r
k � vde

1þ k2k2
De


 �3=2
: (18)

Based on this dispersion relation, we note a number of impor-

tant points: (1) the relation is continuous with wavenumber

and the wave frequency is essentially linear in wavenumber

for large kz (since k � vdi � kzvdi), (2) there are 2 modes (xþR
and cþ, and x�R and c�), and (3) since k � vde � kyvde, the

growth rate for one mode is positive for ky > 0, while for the

second mode it is positive for ky < 0. However, it can be

shown that the group velocity, @xR=@ky, of both modes (as

well as the phase velocity, xR=ky) are equal, indicating that

the modes are in fact identical.

Having obtained the dispersion relation for a modified

ion-acoustic instability with a drifting Maxwellian distribution

(the same distribution which is used in the derivation of the

full dispersion relation32), we now compare this with the full

dispersion relation found in the Appendix (Eq. (A4)). Figure 1

shows a comparison for typical HET parameters (representa-

tive of the PPS
VR

X000 thruster) where the electron temperature

is Te¼ 25 eV, electron density is ne¼ 2� 1017 m�3, xenon ion

drift velocity is vdi¼ 1.6� 104 ms�1, electric field is

Ez¼ 1� 104 Vm�1, magnetic field is Bx¼ 150 G, and axial

wavenumber is kz¼ 0 m�1. These values give an electron azi-

muthal drift velocity of vde ¼ Ez=Bx ¼ 6:7� 105 ms�1,

and an ion sound speed of cs¼ 4.3� 103 ms�1 (hence

vde=cs 	 1). The above parameters are similar to those used

in Ref. 40. As can be seen, the ion-acoustic relation is in

excellent agreement with the full dispersion relation, except

for very small values of kxkDe. However, because of the finite

channel width in HETs, not all wavelengths, k, will fit. Since

the typical channel width, DR, is of the order of 1 cm, the

smallest parallel wavenumber that can exist is kmin
x kDe

� 2pkDe=DR � 0:05. From Fig. 1, we see that for wavenum-

bers above this, the discrete nature of the full dispersion rela-

tion vanishes, and the modified ion-acoustic relation is an

excellent approximation. This conclusion is consistent with

previous experimental measurements of the dispersion rela-

tion,42,43 where a linear relation is observed instead of a dis-

crete one.

C. Instability-enhanced electron-ion friction force

Developing a theory to predict the correlation term in

Eq. (5) is complicated by the fact that nonlinear effects are

important in the instability evolution. This can be easily

demonstrated as follows. Assuming that the instability is pre-

dominantly in the “azimuthal” direction (i.e., k � kyĵ), we

can find the wavenumber giving the maximum growth rate,

kmax, from @c=@ky ¼ 0. Using c from Eq. (16), this gives

kmax ¼ 6
1

kDe

ffiffiffi
a
2

r
� 6

1ffiffiffi
2
p

kDe

; (19)

where we have assumed that a� 1, which is true for a

Maxwellian electron distribution function. Substituting Eq.

(19) into Eqs. (17) and (18) gives

xRmax ¼ k � vdi6
xpiffiffiffi

3
p ; (20)

cmax ¼
ffiffiffiffiffiffiffiffiffi
pm

54M

r
vde

kDe
: (21)

The growth time of the instability electric field energy den-

sity is therefore sg ¼ 1=ð2cmaxÞ. For the numerical parame-

ters given in Section II B, this gives sg� 0.1 ls. The group

velocity of the instability is given by

vg ¼
@xR

@k
¼ vdi6

k

k

cs

1þ k2k2
De


 �3=2
� vdi: (22)

Thus the “convection time” out of the thruster acceleration

region is sc � Lacc=vdi, where Lacc is the length of the accel-

eration region of the thruster. Using Lacc� 1 cm, we find

sc� 0.6 ls. Thus sc=sg 	 1, and hence the instability will

have a very long time to grow before being convected away.

Therefore, nonlinear effects are needed to model the

electron-ion friction force. These nonlinear effects will deter-

mine both the amplitude of the instability, as well as the

growth rate at saturation. In performing the estimates above,

we have neglected the effect of neutral collisions which

would act to reduce the instability growth rate. The neutral

density in the thruster acceleration and downstream regions

is typically between 1017 and 1018 m�3.16 Using a representa-

tive momentum transfer rate factor of 2.5� 10�13 m�3 s�1,9

we find an electron-neutral collisional mean free time of

around 4–40 ls. Since this is much higher than both the

instability growth time and the convection time of the wave
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in the axial direction, collisions are expected to play a negli-

gible role in the instability evolution.

Since the group velocity of the instability is finite (see

Eq. (22)), the growth rate at saturation will not, in general,

be zero. Rather, velocity-space diffusion of the electron dis-

tribution function will occur so as to significantly reduce the

initial growth rate44 leading to a value at steady-state that is

balanced by wave-convection; that is ssat
g � sc. Before

obtaining these saturation parameters, we now calculate a

general expression for the electron-ion friction force.

Based on the PIC simulations in Paper I,31 ion-wave

trapping was observed which suggests that the instability is

dominated by a single mode (which occurs at the maximum

growth rate). This is also consistent with previous experi-

mental42 and 2D PIC simulation results.16 Thus we will

assume an instability with a single frequency and wavenum-

ber (which is predominantly in the “azimuthal” direction),

which at equilibrium has: dEy ¼ Refd ~Eeiðkyy�xRtÞg and

dfe ¼ Refd~feeiðkyy�xRtÞg. Here, d ~E and d~f e are the complex

fluctuation electric field and electron distribution function

amplitudes at saturation, respectively. The distribution func-

tion can be written in terms of the electric field by making

use of Eq. (3)

d~f e ¼
jqjd ~E

m

i

x� kyvy

@fe
@vy

: (23)

Here, we have ignored the electric and magnetic field terms

on the left-hand side of Eq. (3) (justified based on the com-

parison in Section II B), and the nonlinear terms on the right-

hand side (which will be justified a posteriori below). The

electron density is given by dne ¼
Ð

d3vdfe, which after

making use of the general equilibrium electron distribution

function discussed in Section II B, yields

d~ne ¼
jqjned ~E

mv2
Tejkyj

ð1
�1

duk
i

f� uk

dG

duk
; (24)

where f ¼ �sgnðk � vdeÞvde=vTe. Applying the Plemelj rela-

tion to Eq. (24) above gives

d~ne ¼
2jqjned ~E

mv2
Tejkyj

iaþ pbð Þ: (25)

Here, a and b have the same definition as that in Section II B.

Then using Eq. (5) for the electron-ion friction force, and

averaging over the wave period and wavelength so that

hdnedEyi ¼ 1=2Refd~ned ~E


yg (where the asterix denotes the

complex conjugate), we find the friction force as

Rei ¼ �
pq2nebjd ~Eyj2

mv2
Tejkyj

ĵ: (26)

We now assume that the wavenumber, ky ¼ kmax, is that

which occurs for the maximum growth rate, and thus Eq.

(26) becomes

Rei ¼ �
ffiffiffi
2
p

pq2nebjd ~Eyj2kDe

mv2
Te

ĵ: (27)

The sign of the wavenumber of maximum growth rate in Eq.

(19) deserves special attention. Since electrons drift

upstream towards the anode in HETs, this requires Rei to

point in the negative ĵ direction (for the coordinate system

used here). From Eq. (27) above, this therefore requires that

FIG. 1. Comparison of the wave angu-

lar frequency (xR=xpi) and growth

rate (c=xpi) for the modified ion-

acoustic dispersion relation (dashed-

dotted lines), and the full dispersion

relation (solid lines for xR=xpi and

dashed lines for c=xpi), for different

values of the parallel wavenumber,

kxkDe. For typical HETs, the minimum

wavenumber that satisfies the radial

boundary conditions is kxkDe � 0:05.
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b > 0. Because b ¼ bðfÞ, and since f¼�sgnðk �vdeÞvde=vTe,

the direction of the azimuthal electron drift velocity deter-

mines which wavenumber to choose to ensure this.

The fact that there appears to be only a single dominant

wavenumber that depends on the direction of the electron

drift velocity is in excellent agreement with the experimental

observations made in Ref. 42. We also note in passing that

from Eq. (19), and using the numerical parameters in Section

II B, we obtain an instability wavenumber and wavelength at

maximum growth rate of 8500 m�1 and 0.74 mm, respec-

tively. These values are in very good agreement with the val-

ues of 9500 m�1 and 0.66 mm found experimentally in Ref.

42 for a thruster operating at similar conditions. Also, for

propagation in the azimuthal direction, kz¼ 0, and from Eq.

(20) the instability frequency is, fR¼xRmax=2p�64:7MHz.

This is again in excellent agreement with the experimental

value of 64.5MHz.42

D. Ion-wave trapping

From the PIC simulations in Paper I,31 and from the

theory of beam-cyclotron instabilities,39,45 the amplitude of

an ion-acoustic instability saturates due to ion-wave trap-

ping. Electron-wave trapping does not appear to be a feasible

saturation mechanism because of the strongly enhanced elec-

tron collisionality associated with the instability. Thus, the

amplitude of the potential fluctuations at saturation, jd~/j,
can be given by46,47

jd~/j ¼ 1

2

M

q

xR

kmax

� �2

; (28)

where the term in brackets is the wave phase velocity in the

“azimuthal” direction. Since we have assumed sinusoidal

fluctuations, jd ~Ej ¼ kmaxjd~/j, and using Eqs. (19) and (20)

(with kz¼ 0) we obtain

jd ~Ej ¼ 1

3
ffiffiffi
2
p Te

kDe
: (29)

For typical plasma parameters in the thruster acceleration

region (such as the numerical values in Section II B), the

root-mean square electric field amplitude is jd ~Ej=
ffiffiffi
2
p

� 5� 104 Vm�1. This value is similar to that seen in the PIC

simulations in Refs. 13, 16, 30, and 31. The saturated ampli-

tude from Eq. (29) is expected to be valid in the thruster

acceleration region, and in the near-field downstream of the

thruster exit, but not close to the anode in the upstream

region. This is because the azimuthal electron drift velocity

in this region is very low, and so the instability growth rate

will correspondingly be smaller so that saturation might not

be reached in this region.

E. Conservation of wave energy

In order to find the electron-ion friction force from Eq.

(27), one needs to know b (or equivalently the electron dis-

tribution function) at saturation. This is an exceedingly chal-

lenging problem because the evolution of the distribution

function is itself nonlinear. However, if the growth rate at

saturation, csat, can be determined, then the distribution func-

tion (or rather b) can be estimated directly from Eq. (16).

Since the instability wavelength is of the order of 1 mm,

which is much smaller than typical spatial scales in the

plasma, one can make use of ray-tracing equations to find

the trajectory of the wave energy flow in the plasma.36

Assuming that the plasma dielectric does not change on time

scales similar to the instability frequency, and for a single

well-defined wave packet at the wavenumber of maximum

growth rate, kmax, the instability energy conservation equa-

tion is given by36

@W

@t
þr � vgWð Þ ¼ 2cW; (30)

where

W ¼ 1

2
�0jd ~Ej2xR

@ê
@x

				
xR

(31)

is the wave energy density. The appearance of the plasma

dielectric in Eq. (31) is related to the charged particle energy

associated with the instability motion.36 From Eq. (12),

@ê
@x
�

2x2
pi

x� k � vdið Þ3
: (32)

Thus

xR
@ê
@x

				
xR

� 6; (33)

where we have used Eqs. (19) and (20) (with kz¼ 0). At

steady state, @W=@t ¼ 0, and since the amplitude of the

instability electric field is determined from the ion-wave

trapping criterion found in Section II D above, Eq. 30 pro-

vides a means to determine the growth rate. Thus using Eqs.

(16), (19), (22), (29), (30), (31), and (33), we have

b � 6
3
ffiffiffi
3
p

2p
kDe

csneTe
r � vdineTeð Þ: (34)

In deriving this equation, we have used a � 1 which is true

for a Maxwellian distribution. Although deviations from a

Maxwellian near the wave resonance significantly influence

the instability through the parameter b, they have less affect

on the parameter a. This is because (see Section II B) a is

given by an integral over the entire velocity distribution,

whereas b depends on the derivative of the distribution func-

tion near the wave resonance (see Eqs. (13) and (14)).

Recall from Section II B B that b ¼ bðfÞ where f ¼
ðx� k � vdeÞ =kvTe � �k � vde=kvTe. Since we have assumed

that the instability is mainly in the azimuthal direction, this

gives f � �sgnðk � vdeÞvde=vTe. From Section II C, we must

have that Rei is in the negative ĵ direction (which is towards

the anode in the coordinate system used here), and since there

are two modes in the dispersion relation, we must choose the

sign of Eq. (34) to ensure this. To highlight this, we introduce

an absolute value, and combine Eqs. (34) and (29) with (27)

to obtain an estimate for the saturated electron-ion friction

force
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Rei ¼ �
q

4
ffiffiffi
6
p 1

cs
jr � vdineTeð Þĵj: (35)

In deriving the above equation, we ignored the nonlinear

terms on the right-hand side of Eq. (3), as discussed in

Section II C. This is expected to be valid so long as

jd~nej=ne � 1. From Eq. (28), we find that jd~/j=Te ¼ 1=3,

while from Eqs. (19), (25), and (29) we find that jd~nej=ne

¼ ðjd~/j=TeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2b2

p
� jd~/j=Te ¼ 1=3 < 1. Thus ignor-

ing the nonlinear terms in Eq. (3) is reasonably well justified.

From the 2D PIC simulations in Ref. 14, and the 1D PIC

simulations in Refs. 30 and 31, the amplitude of the density

fluctuations is in the range jd~nej=ne � 0:15�0:3, which is

close to the value of 1/3 predicted with the present theory.

Furthermore, in Ref. 14, for an electron temperature of

10 eV, the amplitude of the potential fluctuations was found

to be about 2–4 V, which gives jd~/j=Te � 0:2�0:4. This

again agrees well with the value of 1/3 found here.

F. Anomalous mobility/collisionality

Having obtained an expression for the electron-ion fric-

tion force, we can now determine the electron mobility and

effective collision frequency. We begin by considering Eq.

(2) for the electrons, but now add an additional collision op-

erator, Cen, to account for electron-neutral collisions. We

assume that these types of collisions have a negligible effect

on the plasma dispersion relation and electron-ion friction

force as calculated in the sections above (which appears jus-

tified based on the PIC simulations in Paper I31). Thus, Eq.

(2) for electrons becomes

@fe
@t
þ v � @fe

@x
þ q

m
Eþ v�Bð Þ �@fe

@v
¼� q

m

�
dE � @dfe

@v

�
þCen:

(36)

Multiplying by mv and integrating over all velocities, we

obtain the electron momentum conservation equation

@

@t
mnevdeð Þ þ r � mnevdevdeð Þ ¼ qne Eþ vde � Bð Þ � r �Pe

� m�mnevde þ Rei;

(37)

where �m is the electron-neutral momentum transfer colli-

sion frequency. We can then introduce an effective

electron-ion collision frequency, �ei, through the definition,

Rei ¼�m�einevde. Since the electron drift is mainly in the

“azimuthal” direction (and hence so to is the frictional

drag), we therefore have

�ei ¼
Rei

mnevde
; (38)

where Rei ¼ jReij. By combining the momentum conserva-

tion equations in the “axial” and “azimuthal” directions

(while ignoring the inertial and pressure tensor terms), we

can obtain an expression for the effective mobility

lef f ¼

jqj
m�m

1þ x2
ce

�2
m

1þ xce

�m

Rei

jqjneEz

� �
: (39)

This mobility is similar to that found in Paper I.31 Finally,

we make three important observations regarding Eqs. (35),

(38), and (39): (1) Since the plasma parameters such as ne,

Te, vdi, vde, and Ez, are all, in general, implicit functions of

the applied magnetic field profile and strength in the thruster,

the enhanced mobility cannot, in general, be fit with simple

1/B2 or 1/B scaling laws. This conclusion agrees with that

obtained experimentally in Refs. 16, 33, 34, 48, and 49. (2)

Even though the electron drift velocity (and hence instability

growth rate/amplitude) is largest inside the thruster, the finite

wave group velocity due to ion acceleration in HETs causes

a convection of the instability into the downstream region.

This conclusion is also in agreement with deductions from

the experiments/simulations in Ref. 50. Thus, the anomalous

collisionality/mobility can be larger in this downstream

region than inside the thruster itself (see Section III below).

(3) Since Eq. (39) depends on the applied axial electric field

itself, the concept of an electron cross-field mobility is

strictly speaking no longer necessarily valid. This agrees

with the conclusions drawn in Ref. 16.

III. COMPARISON WITH SIMULATION/EXPERIMENT

As seen from Eq. (35), the present theory is incomplete in

the sense that we do not have a model to determine ne, Te, or

vdi. These quantities need to be determined self-consistently

with the new instability-enhanced theory developed here,

which will require a global fluid simulation. However, previ-

ous fluid simulations16 have made use of empirically deter-

mined electron mobilities in order to obtain agreement with

experiment, and thus we can use the plasma profiles obtained

from these simulations to check the kinetic theory.

Figure 2 shows the plasma profiles obtained from the

simulations in Refs. 10 and 16 for the PPS
VR

1350 thruster,

while Fig. 3 shows a comparison of the empirical mobility,

together with that predicted from the kinetic theory presented

here and the classically expected value. Since the simulation

profiles correspond to values along an axial line through the

center of the thruster channel, any radial gradients vanish

(i.e., @=@r � 0), and thus r � ðvdineTeÞ ! dðvdineTeÞ=dz in

Eq. (35). As seen, the classical mobility is close to the empir-

ical value near the anode on the left-hand side (z¼ 0 cm) but

diverges in the acceleration and downstream regions, where

the classical value is 2–3 orders of magnitude smaller. In

addition, the minimum mobility is predicted to occur at

z� 3.5 cm, while that obtained empirically occurs at

z� 2.5 cm.

In contrast, the instability-enhanced mobility is signifi-

cantly larger and is of the same order of magnitude as the

empirical mobility, showing particularly good agreement in

the downstream region. Furthermore, the kinetic theory cor-

rectly predicts the location of the minimum mobility, which

occurs when Rei¼ 0. This allows us to propose a generalized
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criteria for finding the spatial location of this minimum mo-

bility from

d

dz
vdineTeð Þ ¼ 0: (40)

Inside the thruster (to the left of the vertical dashed line

in Fig. 3), the kinetic theory also predicts an increased elec-

tron transport, in agreement with the empirical mobility.

However, close to the anode on the left-hand side, the pre-

dicted mobility is significantly higher than the empirical val-

ues. This is expected (see Section II D), because we have

assumed that the instability amplitude reaches saturation lev-

els throughout the thruster. In this region though the electron

azimuthal drift velocity is much lower, the instability growth

rate is not as high and the instability is not expected to reach

saturated levels in this region. In addition, the electric field

taken from Ref. 16 for this calculation is close to zero near

the anode (see Fig. 2(a)), which causes an unphysical overes-

timation of the mobility in this region. In this region though

the empirical mobility is in good agreement with classical

theory, so the kinetic theory is not required here. With the

exception of this anode region, and given the complexity of

the problem (as well as the uncertainty in the empirical mo-

bility anyway), the kinetic theory presented here is in very

good agreement with the empirical values, and represents a

promising step forward.

Determining the true instability amplitude at each loca-

tion without assuming the saturation criterion in Section II D

requires knowing how the growth rate (and hence electron

distribution function) changes with time during the instabil-

ity evolution. Simply assuming a growth rate given by that

for a Maxwellian would result in an unphysically large mo-

bility. This problem was recently encountered using a differ-

ent model in Ref. 19. The location where vdi¼ 0, or Ez¼ 0,

is expected to be a reasonable boundary point after which the

instability amplitude reaches saturation levels. A smoother

transition would be to use the point, where d
dz vdineTeð Þ first

goes to zero inside the thruster. (For the present comparison,

there are two points where the derivative is zero; one inside

the thruster and one outside. It is the outer point that gives

the location of the minimum mobility.) Using this latter cri-

terion and scaling the instability-enhanced mobility to fit the

empirical values, we obtain the results in Fig. 4, which dem-

onstrates the quite robust plasma parameter scaling exempli-

fied by Eqs. (35) and (39).

IV. DISCUSSION

A. Model assumptions and limitations

As demonstrated in Section II C, the electron-cyclotron

instability has a very large growth rate meaning that standard

quasilinear theory is not expected to be valid. It is difficult

FIG. 2. (a) Axial electric field (Ez) and

radial magnetic field (Bx), (b) neutral

gas density (ng) and electron density

(ne), and (c) axial ion drift velocity

(vdi) and electron temperature (Te), as a

function of axial position within the

PPS
VR

1350 thruster. The axial profiles

are taken from Refs. 10 and 16, and

are along an axial line passing through

the center of the thruster channel. The

vertical dashed lines in (a)–(c) indicate

the thruster exit plane.

FIG. 3. Electron cross-field mobility as a function of axial position within

the PPS
VR

1350 thruster. The solid black line is an empirical mobility which

is needed in fluid simulations in order to get agreement with experiment,16

the red line is the mobility based on classical diffusion across a magnetic

field, while the open blue triangles show the mobility due to the saturated

instability-enhanced electron-ion friction force. The vertical dashed line

indicates the thruster exit plane.

053503-8 Lafleur, Baalrud, and Chabert Phys. Plasmas 23, 053503 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.255.35.249 On: Mon, 09 May

2016 17:33:01



however to self-consistently include nonlinear effects while

still leaving the relevant equations tractable. The nonlinear

theory developed here is in some ways similar to that more

rigorously developed in Ref. 51 to describe nonlinear

Landau damping in that we have assumed a monochromatic

instability and have tried to extend the validity of quasilinear

theory by determining the saturated instability amplitude and

growth rate. However, whereas saturation in Ref. 51 occurs

due to electron trapping and instability convection is absent,

here the cyclotron instability saturates due to ion trapping

and convection is important in determining the equilibrium

growth rate which does not go to zero.

To find the saturated growth rate, we made use of the

dispersion relation for a modified ion-acoustic instability,

and approximately accounted for nonlinear effects by using a

generalized electron distribution, which would distort in a

complicated (and nonlinear) manner due to velocity-space

diffusion as a result of the instability. By then using the

wave energy conservation equation, we were able to estimate

the growth rate at saturation; without ever needing to know

the exact distribution function. The basic dispersion relation

though is for a uniform plasma, and still uses some elements

of quasilinear theory. An improved analysis would require

the more complicated nonlinear dispersion relation, such as

that discussed in Ref. 52; although given the good agreement

with the experimentally/numerically determined instability

wavenumber/wavelength and frequency, and fluctuation

amplitudes, the present analysis appears to be a good approx-

imation. Also, we have assumed a monochromatic wave,

whereas in reality a combination of frequencies and wave-

lengths are likely to occur to some extent. Relaxation of the

above assumptions seems like a good direction for future

work.

B. Secondary electron emission and rotating spokes

In the theory presented here, we have not included

electron-wall collisions or secondary electron emission. This

was based on the observation that previous axial-azimuthal 2D

PIC simulations13,15 did not include such effects (or demon-

strated that their effect was too small) and yet still observed

anomalous electron transport similar to experiments.

However, it is known that changes to the thruster wall material

(and hence secondary emission coefficient) have an effect on

the electron transport and the thruster performance.3,53–55

Since the electron-ion friction force (and hence mobility)

found here is a strong function of the plasma density, electron

temperature, ion drift velocity, magnetic field, and axial elec-

tric field inside the thruster though, it is plausible that electron

emission from the channel walls plays only a secondary role.

This is because electron loss and strong emission would

change the electron distribution function, which is then

expected to slightly change the electron temperature, plasma

density (due to different ionization rates), and electric field,

and changes in these quantities will consequently change the

friction force/mobility. Thus, changes in the secondary elec-

tron emission coefficient will necessarily induce changes in

the instability propagation and growth rate, and hence to the

electron transport. The dominant and driving effect, however,

is still the azimuthal instability itself.

In recent years, the study of rotating spoke phenomena

and their role in cross-field electron transport has increased,

with a number of experimental27,28,56 and simulation obser-

vations.57,58 These spokes are typically in the kHz frequency

range and are associated with periodic neutral gas depletion

in the azimuthal direction.57,58 Since the kinetic theory pre-

sented here is essentially collisionless, and yet still predicts a

strongly enhanced electron transport, the analysis suggests

that the enhanced transport observed with rotating spokes is

either due to increased electron-neutral collisionality within

the spokes, or due to the formation of large-scale gradients

(larger than the high-frequency instability wavelengths dis-

cussed here) in the azimuthal direction, and which would

affect the dispersion relation and high-frequency instability

behaviour. Such large-scale azimuthal gradients could be

accounted for with the present theory by observing Eq. (35)

and noting that in cylindrical coordinates, r � A ¼ @Az=@z
þð1=rÞ@ðrArÞ=@r þ ð1=rÞ@Ah=@h, where A ¼ vdineTe, and h
is the cylindrical angular coordinate.

C. Considerations for future kinetic simulations

Many 2D PIC simulations12,15 often include a scaling

factor to reduce the plasma density (or equivalently to

increase the permittivity) so as to lower the computational

cost of running the code. As seen from Eq. (35), the

enhanced electron-ion friction force is a function of the

plasma density. Hence, such PIC codes would not necessar-

ily correctly model the instability and enhanced electron

transport, and for very large scaling factors, could remove

the instability altogether. This is also particularly true in PIC

simulations which use a scaling factor to reduce the thruster

dimensions. In this case, the convection time of the instabil-

ity is artificially reduced, which again changes the instability

FIG. 4. Electron cross-field mobility as a function of axial position within

the PPS
VR

1350 thruster. The solid black line is an empirical mobility which

is needed in fluid simulations in order to get agreement with experiment,16

the red line is the mobility based on classical diffusion across a magnetic

field, while the open blue triangles show the scaled (by a factor of about 1/3)

mobility due to the saturated instability-enhanced electron-ion friction force.

The instability electric field is assumed negligible to the left of the axial

location where dðvdineTeÞ=dz first goes to zero. The vertical dashed line indi-

cates the thruster exit plane.
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evolution, and in the worst case, can prevent the instability

from forming (i.e., if the convection time, sc, is much shorter

than the growth time, sg). The above considerations probably

explain why the anomalous mobility observed in the 2D PIC

simulations in Ref. 15 (where a scaling factor was used) was

found to be lower than that observed in Ref. 13 (where no

scaling factor was used). Furthermore, as discussed in

Section II B, while the full plasma dispersion relation shows

a discrete spectrum, in reality, because of the need to satisfy

the wavelength matching conditions in the radial thruster

direction, the actual dispersion relation is expected to be

closer to the continuum spectrum of an ion-acoustic instabil-

ity. Hence, 2D PIC simulations which model only the axial-

azimuthal directions (and which consequently enforce

kx¼ 0) will not necessarily correctly account for the instabil-

ity. This suggests that, in principle, full 3D simulations of

HETs are necessary, with a grid size that sufficiently resolves

the main instability wavelengths.

V. CONCLUSIONS

In summary, we have presented a kinetic model to

describe the anomalous electron transport in HETs. We have

shown that the dispersion relation is similar to that for an

ion-acoustic wave and does not show the discrete, quantized

bands observed previously, and that the maximum growth

rate occurs for a wavelength of about 1 mm. In the model,

the anomalous electron transport occurs because of an

enhanced electron-ion frictional drag force associated with

an electron cyclotron instability in the azimuthal direction

due to the large azimuthal electron drift velocity. This insta-

bility grows rapidly before nonlinear effects associated with

ion-wave trapping set in to limit the amplitude. The growth

rate after this time does not vanish because of a nonzero

group velocity, thus allowing further wave growth to be bal-

anced by convection. This convection (due to the large ion

drift velocities in the axial direction) carries the instability

downstream and leads to a strong increase in the electron

cross-field mobility that agrees qualitatively and quantita-

tively with that seen experimentally. This mobility is a

strong function of almost all plasma parameters, and conse-

quently, does not scale with simple 1=B2
0 or 1=B0 laws.
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APPENDIX: CALCULATION OF THE FULL
DISPERSION RELATION

To obtain the full dispersion relation from Eqs. (6) and

(7), we must first evaluate the trajectories of unperturbed

particles. These trajectories are characterized by phase space

coordinates given by, x0ðt0Þ and v0ðt0Þ, which are found from

the equations

dv0

dt0
¼ qs Eþ v0 � Bð Þ

ms
and

dx0

dt0
¼ v0 (A1)

subject to the end point conditions: x0ðt0 ¼ tÞ ¼ x and

v0ðt0 ¼ tÞ ¼ v. Also, s ¼ t� t0 and d ¼ x0 � x. By solving

Eq. (A1) in the presence of constant mutually perpendicular

electric and magnetic fields and applying the end point con-

ditions, we obtain after some algebra

d ¼ �vxŝi � vdesĵ þ w?
xce

sin /� sin /þ xcesð Þ½ �̂j

þ w?
xce

cos /þ xcesð Þ � cos /½ �k̂; (A2)

where w2
? ¼ v2

z þ ðvy � vdeÞ2 and tan / ¼ vz=ðvy � vdeÞ. By

then defining k2
? ¼ k2

y þ k2
z and tan w ¼ kz=ky, substituting

Eq. (A2) into Eq. (7), and using standard trigonometric iden-

tities together with the Jacobi-Auger relations, Eq. (7)

becomes

1

�xp
¼
X

n

X
m

Jn bð ÞJm bð Þei /�wð Þ n�mð Þ

x� kxvx � kyvde � mxce
: (A3)

Here, Jn are Bessel functions of the first kind,

b ¼ k2
?v

2
Te=2xce; vTe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qTe=m

p
, and n and m are summa-

tion indices. Substituting this into Eq. (6), assuming drifting

Maxwellian distributions for both electrons and ions, and

making use of the Bessel function identities on page 253 of

Ref. 36, together with the identity,
P1

n¼�1 e�bInðbÞ ¼ 1, the

integrals can be performed providing

ê k;xð Þ ¼ 1�
x2

pi

k2v2
Ti

Z0
x� k � vdi

kvTi

� �

þ 1

k2k2
De

1þ x� kyvde

kvTe

� � X1
n¼�1

e�bIn bð ÞZ
"

� x� kyvde � nxce

kxvTe

� ��
; (A4)

where In are modified Bessel functions of the first kind. This

is identical to the dispersion relation first presented in Ref.

32, except that we have included an ion drift velocity. By

setting êðk;xÞ ¼ 0; we obtain the dispersion relation. This

relation can be solved numerically by making use of the

Gordeev function and the iterative scheme proposed in Ref.

40. If we go back to Eq. (A2), we observe that xces �
xce=kw? ¼ 1=kq; where q is the electron gyroradius. Since

the instability wavelengths of interest are of the order of the

Debye length, we have k � 1=kDe, and thus xces � kDe=q.

However, in typical HETs we have kDe=q� 1. Thus, we

can expand the sin and cos functions in Eq. (A2) to first order

to obtain

d ¼ �vxŝi � vysĵ � vzsk̂: (A5)

In this case, Eq. (7) simplifies to

1

�xp
¼ 1

x� k � v : (A6)
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This form for �xp is used in the derivation of the modified

ion-acoustic dispersion relation in Section II B.
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