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ABSTRACT

Molecular dynamics simulations are used to model ion and neutral temperature

evolution in atmospheric pressure plasmas. Results show that ion-ion interactions

are strongly coupled at ionization fractions as low as 10−5 and that the temperature

evolution is influenced by effects associated with the strong coupling. Specifically,

disorder-induced heating (DIH) is found to rapidly heat ions on a timescale of the ion

plasma period (∼ 1 ps) after an ionization pulse. This is followed by the collisional

relaxation of ions and neutrals, which cools ions and heats neutrals on a longer (∼ns)

timescale. The sequence of DIH and ion-neutral temperature relaxation suggests a

new mechanism for ultrafast neutral gas heating. A model for DIH is developed and

integrated into a global plasma chemistry model for a nanosecond pulsed nitrogen

discharge. It is found that when full ionization is reached, DIH increases the overall

temperature by 20% at one atmosphere and by 60% at ten atmospheres. Furthermore,

it is found that DIH indirectly influences the electron temperature through electron-

ion Coulomb collisions and thus enhances electron impact inelastic processes such as

dissociation and ionization.

Ion diffusion in atmospheric pressure plasmas is examined in the context of strong

coupling. Three regimes are identified. At low ionization fractions (xi ≲ 10−6),

standard weakly correlated ion-neutral interactions set the diffusion rate. At mod-

erate ionization fractions (10−6 ≲ xi ≲ 10−2) there is a transition from ion-neutral

to ion-ion collisions setting the diffusion rate. In this regime, the effect of strong

xix



Coulomb coupling in ion-ion collisions is accounted for by applying the mean force

kinetic theory. At high ionization fractions (xi ≳ 10−2), strongly correlated ion-ion

collisions dominate and the plasma is heated substantially by DIH. Model predictions

are tested using molecular dynamics simulations, which included a Monte Carlo col-

lision routine to simulate the effect of ion-neutral collisions at the lowest ionization

fractions. The model and simulations show good agreement over a broad range of

ionization fractions. The results provide a model for ion diffusion, on a wide range of

ionization fractions and pressures, solely considering the elastic contribution to the

diffusion coefficient - as an illustration of how strong Coulomb coupling influences

diffusion processes in general.

Molecular dynamics simulations are used to test when the particle-in-cell (PIC)

method applies to atmospheric pressure plasmas. It is found that PIC applies only

when the plasma density and macroparticle weight are sufficiently small because of

two effects associated with correlation heating. First, PIC is not well suited to capture

DIH because doing so requires using a macroparticle weight of one and a grid that

well resolves the physical interparticle spacing. These criteria render PIC intractable

for macroscale domains and long timescales due to grid heating. The second effect is

a numerical error due to Artificial Correlation Heating (ACH), like DIH it is caused

by the Coulomb repulsion between particles, but differs in that it is a numerical effect

caused by a macroparticle weight larger than one. Here, we found that avoiding ACH

requires that the macroparticle coupling strength be smaller than one Γw < 1, where

Γw ≡ Γw2/3, Γ = Z2e2/(4πϵoakBT ) is the physical coupling strength and w is the

macroparticle weight. A comprehensive model of ACH is developed that incorporates

electron density, temperature, macroparticle weight, and grid resolution. It is then

tested, delineating the boundaries of the PIC method’s applicability and offering

a predictive framework for ACH. Moreover, this work explores a runaway heating

process induced by ACH in the presence of ionization, which can lead to numerical

xx



instability.
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CHAPTER I

Introduction

1.1 Background

Atmospheric pressure plasmas, in particular cold atmospheric pressure plasmas

(CAPP), have been widely implemented and commercialized for numerous applica-

tions including the inactivation of various pathogens in medicine [7], food industry [8],

agriculture [9], water purification [10], CO2 conversion [11], plasma assisted ignition

(PAI)[12, 13], and plasma assisted combustion (PAC) [12, 13], showing promising re-

sults and an increasing interest in those industries. CAPP technology presents several

advantages over other plasma technologies including operational simplicity, low run-

ning cost, and environmental friendliness, since no vacuum chamber is needed and the

reactor is frequently open [1, 7]. The increasing interest has led to an intensive effort

to understand the main mechanisms responsible for plasma dynamics and its correla-

tion with reactive species delivery [14, 15, 16, 17, 18]. However, still some effort should

be paid to provide a deeper insight into the basic physics mechanisms, including the

ones responsible for fast neutral gas heating [3, 19, 20, 21, 22, 23, 24, 25, 26].

At atmospheric and higher pressures, direct energy transfer from the electric field

to ions is negligible, with electrons being primarily heated by the electric field. The

electrons then transfer energy to heavy particles through ionization, excitation, disso-

ciation of molecules, and elastic collisions. Typical electron temperatures range from
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1 to 3 eV. In atomic gases, energy transfer to heavy particles is mainly through elastic

collisions, while in molecular gases, vibrational excitation predominates within this

temperature range. The efficiency of energy transfer from the electric field to elec-

trons is significantly higher than the collisional energy transfer between electrons and

heavy particles due to the large mass difference, resulting in gas temperatures much

lower than electron temperatures [27].

This highly non-equilibrium behaviour, where electrons are much hotter than

heavy species, promotes chemical reactions of interest making CAPPs of special

interest for multiple applications. In particular, non-thermal atmospheric pressure

plasmas can induce chemical reactions in various gas mixtures without significantly

heating them, thus keeping energy consumption relatively low. The desired chemical

effect is achieved by efficient production of reactive species resulting from the colli-

sion of high-energy electrons with neutral species [27]. If a large ionization degree

is achieved at atmospheric pressure, Coulomb collisions between electrons and ions

start to dominate and both species reach similar temperatures. Under this condition,

the plasma is said to be at a local thermodynamic equilibrium (LTE), as is common

in arc discharges [28].

1.1.1 Discharges at atmospheric pressure

Various types of plasma discharges can be generated at atmospheric pressure,

each with distinct properties and applications [1, 27, 28, 29, 30]. Figure 1.1 illus-

trates the characteristic gas temperature and electron density of different discharges

at atmospheric pressure.
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Figure 1.1: Overview of different atmospheric pressure gas discharges spanning a
range of more than 10 orders of magnitude in electron density. TD stands for
Townsend discharge. Illustration extracted from [1].

The main different types of discharges at atmospheric pressure include streamers,

sparks and arcs which can be generated with nanosecond pulsed discharges. These dis-

charges are initiated by very short, high-voltage pulses between electrodes. Streamer

discharges in this context occur when the pulse ionizes the air to create a conductive

path, which does not necessarily bridge the electrodes completely. This form can

evolve into a spark discharge if the ionized channel extends and makes a direct con-

nection between electrodes, allowing a more substantial current to flow and releasing

more energy. Further escalation of this process can lead to an arc discharge, where

the discharge becomes continuous due to sustained ionization and high conductivity

in the plasma channel, characterized by very high current and thermal energy release.

The ability to transition between these states within nanosecond pulsed discharges

allows for precise control over the discharge characteristics. Applications of nanosec-

ond pulsed discharges include plasma-assisted combustion and flow control, where

precise control over plasma properties is essential. In these applications, different gas

heating mechanisms become of special interest, which is described in the following
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section.

1.1.2 Fast gas heating

Fast gas heating refers to a rapid increase in gas temperature commonly observed

in non-equilibrium low-temperature plasmas at or above atmospheric pressure [3, 19,

21, 22, 23, 26, 31, 32]. It is commonly thought to stem from the electron kinetic energy

via the relaxation of electronically excited states of atoms and molecules [21, 31],

or from the dissociation of molecules [20, 33]. In plasma assisted combustion, the

abrupt temperature increase induces an acceleration of combustion chemistry, thus

shortening the ignition delay time [31]. Therefore, control over gas heating is pivotal

for successful ignition [3]. In plasma aerodynamics, the primary effect of a plasma

discharge on flow is often linked to gas heating in the discharge area, underscoring the

significance of an accurate description of fast gas heating [34, 35]. Employing various

discharges for plasma flow control, the most efficient actions generally involve the

rapid release of thermal energy at specific points within the discharge area [21, 31].

Each of these examples highlight the need to understand the mechanisms underlying

fast gas heating and the timescales on which they operate.

Although ion temperatures are difficult to measure in atmospheric pressure plas-

mas, measurements have been made of neutral gas temperatures that are elevated well

above ambient room temperature [3, 19, 20, 21, 22, 23, 24, 25, 26]. Several mecha-

nisms of neutral gas heating are known. Examples of the typical timescales are shown

in figure 1.2. One is energy transfer from electron-neutral elastic collisions [32], which

is typically expected to occur at timescales of 100’s of ns. Other mechanisms that

can transfer energy from electrons to neutral atoms/molecules include energy transfer

between vibrationally excited states in molecules [36, 37], energy transfer from vibra-

tional to translational states [36, 37, 38], electron-ion recombination processes [23]

followed by ion-neutral elastic collisions, electron impact dissociation reactions [21]
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and quenching of electronically excited molecules by oxygen atoms [22]. In fact, there

are some examples in which one or more of these mechanisms appear to fully explain

the measured neutral gas temperature. These include electron-neutral elastic heating

on timescales of 100s of nanoseconds [24] and vibrational to translational relaxation

on timescales of 10s of microseconds [25], among others [21, 22, 26].

Gas heating mechanisms in low-temperature plasmas have been extensively stud-

ied in the past [3, 19, 20, 21, 22, 23, 24, 25, 26, 32, 33, 36, 37, 38]. In air, electronically

excited states contribute significantly to gas heating through dissociative excitation

or quenching of electronically excited nitrogen molecules, as identified by Popov in

2011 [21]. Specifically, dissociation reactions due to electron impact on O2 and N2

molecules, and quenching processes involving electronically excited N2 molecules by

oxygen atoms, play a crucial role [21, 33]. Vibrationally excited states also contribute

to gas heating due to non-thermal electron impact excitation, storing energy in the

vibrational modes of nitrogen molecules, which is then released through vibration-

translation (VT) and vibration-vibration (VV) relaxations [22, 36, 37, 38]. Energy

exchange through electron-neutral elastic collisions further enhances fast gas heating

in plasma discharges once the ionization fraction is high enough [32].

Moreover, the kinetic model presented by Popov (2011) emphasizes the significant

role of dissociation reactions by electron impact and the quenching of electronically

excited molecules in fast gas heating. At reduced electric fields (E/N) above 200 Td,

the main contribution to gas heating in nitrogen-oxygen mixtures arises from these

processes. Key reactions include the quenching of N2(C
3Πu) by O2, quenching of

N2(B
3Πg) by O2, dissociation of N2 by electron impact, quenching of excited O(1D)

atoms by N2, dissociation of O2 by electron impact, and quenching of N2(A
3Σ+

u )

and N2(a
′1Σ−

u ) by O2 [21]. These processes result in significant energy release and

gas heating. For instance, quenching of N2(A
3Σ+

u ) by O2 leads to the formation

of vibrationally excited N2 and dissociation of O2, significantly contributing to gas
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heating. This model highlights that approximately 30% of the discharge power is

converted to fast heating of nitrogen-oxygen mixtures, with the efficiency depending

on the oxygen content and the reduced electric field [21]. These findings provide a

firm theoretical and experimental basis for understanding gas heating mechanisms in

non-equilibrium atmospheric pressure plasmas.

Ion - Neutral
Temperature 

relaxation

Quenching of 
electronically 
excited states 

~ 1 ns ~ 10s ns

Electron-neutral
elastic scattering

~ 100s ns ~ 10s µs

Vibration-translation 
(VT) relaxation

~ 10 ps

Disorder 
Induced 
Heating

Figure 1.2: Comparison of the typical timescales of the possible mechanisms of fast
neutral gas heating observed. The disorder induced heating and ion-neutral temper-
ature relaxation mechanisms affect the ion and neutral temperatures respectively in
faster timescales compared to the previously studied mechanisms. The timescales
here assume atmospheric pressure and typical ionization fractions [2].

1.1.3 Simulation techniques used for atmospheric pressure plasmas

The most used simulation techniques for low temperature plasmas and in partic-

ular, atmospheric pressure plasmas are 0D global models, fluid simulations and the

particle-in cell method described in the following sections.

1.1.3.1 0D Global models

A global model in plasma chemistry is a method used to simulate the behavior of

plasmas by considering the entire system as a single, well-mixed volume without re-

solving spatial variations. This modeling technique simplifies the plasma dynamics by

averaging the properties over the entire reactor volume, thus reducing the complexity

of the simulations and making it computationally less demanding.

The core of a global model consists of solving a set of rate equations for the

densities of various species involved in the plasma. These equations account for the

production and loss processes of species due to various reactions, such as ionization,
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recombination, excitation, and dissociation. For example, the model presented by

Minesi et al. in 2023 includes these processes in the context of nanosecond pulsed

discharges in atmospheric pressure air [6]. Most of gas heating modeling has been con-

ducted using 0D global models [21, 22, 31]. Global models include as input parameters

initial densities and energy distribution functions for species as well as corresponding

rate coefficients and cross sections, pressure and reduced electric field. Some of these

parameters are typically derived from experimental data or more detailed kinetic

models such as solving the Boltzmann equation [39]. Chapter II describes a global

model developed in this work. When spatial variations need to be accounted for,

the global model can be included in a fluid simulation as described in the following

section.

1.1.3.2 Fluid simulations

Multiple problems of interest in low temperature plasmas have phenomena with

time and length scales that can differ by several orders of magnitude. These problems,

can be solved with a reasonable computational cost by coupling the plasma chemistry

kinetics with fluid dynamics. This approach requires to have a good understanding

of the kinetic mechanisms as well as transport properties such as diffusion coefficients

and thermal conductivity, since they are input parameters for such models [40].

As described by Tochikubo and Komuro (2021) [41], in the fluid model, the trans-

port of species is described by the continuity equation for charged and neutral species

∂nk

∂t
+∇ · Γk = Sk, (1.1)

where nk, Γk, and Sk denote the number density, flux, and source term of the k-th

species, respectively. The flux of the k-th charged species is generally described by

7



the drift–diffusion approximation as

Γk = nkuk = sign(qk)nkµkE−Dk∇nk, (1.2)

where uk, qk, µk, and Dk denote the mean velocity, charge, mobility, and diffusion

coefficient of the k-th species, respectively, and E is the electric field [42]. The drift-

diffusion approximation is valid at pressures above 10 mTorr and at reduced electric

field below 500 Td. Furthermore, the number density of charged species should be

much less than the number density of the background gas, hence the discharge must

be weakly ionized. The plasma must also be collisional which means that the mean

free path between electrons and the background gas must be much less than the

characteristic dimension of the system. The treatment of the background neutral gas

however requires the Navier Stokes equations, in order to include convective transport

effects. The flux for the k-th neutral species Γk is described using only the diffusion

term as:

Γk = −Dk∇nk. (1.3)

The source term Sk for charged species in equation 1.1 represents the creation and an-

nihilation of species through chemical reactions, including electron impact ionization,

electron attachment, and recombination between positively and negatively charged

species. Because the reaction rate coefficients for electron impact reactions are depen-

dent on the electron energy distribution function (EEDF), it is essential to account

for the EEDF when calculating the density conservation equations.

To incorporate the effects of the EEDF, two typical models are employed. The

first model is the local field approximation (LFA). In this approach, the electron mo-

bility, diffusion coefficient, and electron impact reaction coefficients—such as the rate

coefficients for ionization, attachment, excitation, and dissociation—are expressed as

functions of the local reduced electric field, E/N , by solving the Boltzmann equation.
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The second model also solves the Boltzmann equation but expresses the electron mo-

bility, diffusion coefficient, and electron impact reaction coefficients as functions of

the mean electron energy [41]. The local mean electron energy ϵ in eV is obtained by

solving the conservation equation of electron energy density ωe, which is defined as

the product of electron density ne and mean electron energy ϵ, ωe = neϵ, as

∂ωe

∂t
= −∇ · Γω −∇ · (E · Γe)−

∑
k

ϵkνkne − νm
2m

M
ωe (1.4)

where Γω and Γe are the electron energy density flux and electron particle flux, respec-

tively; m and M are the mass of the electron and parent gas, respectively; νm is the

electron momentum transfer collision frequency; ϵk and νk are the threshold energy

and collision frequency, respectively, for the k-th type of inelastic collision. Equation

1.4 accounts for changes in the electron energy density due to electron energy flux,

electron particle flux, inelastic collisions with heavy species and elastic collisions and

it assumes an electron mean energy much larger than the mean energy of the collision

partners. The electron energy density flux is written as

Γω = −5

3
ωeµeE− 5

3
De∇ωe, (1.5)

where the first term represents the energy flux due to drift produced by the electric

field and the second term the diffusion of energy due to gradients in the electron

energy density.

Finally, electric potential is determined self-consistently with the charged species

densities by solving the Poisson equation

∇ · (ϵ0∇ϕ) = −e(ne − n+ + n−) (1.6)

where e, ϵ, and ϕ are the unit charge, vacuum electric permittivity, and potential,
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respectively, with the relation E = −∇ϕ. Subscripts + and − denote a positive ion

and negative ion, respectively.

While fluid models can be useful for different atmospheric pressure plasmas appli-

cations at a reasonable computational cost, some problems require kinetic simulations

tools. In kinetic simulations, one or more species are treated as particles and the cor-

responding equations of motion are solved self consistently with charge densities and

collision dynamics. A commonly used kinetic simulation method is the particle-in-cell

method described in the following section.

1.1.3.3 Particle in cell simulations

The Particle-In-Cell (PIC) method is a commonly used computational approach

in plasma modeling [43, 44, 45] that is primarily characterized by its use of numer-

ical macroparticles. These macroparticles serve as aggregates of physical particles,

allowing the method to simulate macroscopic scales effectively. In a PIC simulation,

the equations of motion of macroparticles are solved self consistently with the electric

field produced by solving the Poisson equation for the instantaneous charge density

locally on a grid. The PIC method requires a series of numerical conditions to ensure

validity. First, the Debye length must be adequately resolved to prevent artificial

“grid heating” [44, 46]. Second, a sufficiently large number of macroparticles per cell

must be maintained to ensure a statistically representative model of the plasma. In

addition, the Courant-Friedrichs-Lewy (CFL) condition must be met to resolve the

corresponding plasma frequency. This condition is a stability criterion that deter-

mines the maximum allowable time step for numerical integration. Specifically, the

time step must be small enough to ensure that a particle does not travel more than

one cell length in a single time step, thus maintaining the stability and accuracy of

the simulation [44]. Adherence to these guidelines enables the PIC method to make

kinetic simulations tractable and to simulate entire plasma devices with a reasonable
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computational cost. This method is described with more details in chapter II.

The PIC method is pivotal in understanding and modeling low-temperature plas-

mas, including those at atmospheric pressure. It is often integrated with Monte Carlo

Collisions (MCC), providing a robust tool for investigating the complex dynamics of

plasma discharges from a kinetic standpoint. The MCC method is a numerical ap-

proach in particle simulations that models particle collisions by randomly sampling

outcomes based on cross-sectional data, effectively capturing the statistical nature of

particle interactions [44]. This capability is especially crucial in non-equilibrium plas-

mas, where electron energy distributions are typically non-Maxwellian. For instance

Klich et al. (2022) used a hybrid PIC/MCC simulation to investigate radio-frequency

(RF) atmospheric pressure plasma jets (APPJs) in the non-neutral regime [47]. Ad-

ditionally, Donkó et al. (2021) described the application of the eduPIC code, an

educational PIC/MCC simulation tool, in modeling capacitively coupled RF plas-

mas, demonstrating detailed plasma characteristics at atmospheric pressure [48].

Moreover, PIC simulations have been extensively used to model streamer dis-

charges at atmospheric pressure, characterized by fast-propagating ionization waves.

Chanrion and Neubert (2008) developed a 2D axi-symmetrical PIC-MCC code to

study the propagation of streamers in air, providing critical insights into the role of

photoionization and the conditions necessary for the formation of runaway electrons

[49]. Kolobov and Arslanbekov (2016) highlighted the importance of adaptive mesh

refinement (AMR) in PIC simulations, specifically for high-pressure gas breakdown

and streamer development, showing that cell-based AMR significantly enhances the

efficiency and accuracy of simulations [50]. Teunissen and Ebert (2016) utilized a

3D PIC-MCC model with adaptive mesh refinement to investigate the inception of

nanosecond pulsed discharges around a sharp anode in nitrogen/oxygen mixtures at

atmospheric pressure, highlighting the impact of photoionization and space charge on

discharge development [51]. The versatility and detailed insights offered by PIC simu-
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lations are indispensable for advancing the understanding of low-temperature plasmas

and their applications, as continuous improvements in computational resources enable

more complex and accurate models of plasma behavior under various conditions.

1.2 Strong correlations

Strong coupling refers to interactions in which the average potential energy of

interacting particles [ϕss′(r = ass′), where ass′ is the average distance between particles

of species s and s′] exceeds their average kinetic energy (kBTss′), i.e. Γss′ ≳ 1, where

s and s′ are the species involved in the interaction and,

Γss′ =
ϕss′(r = ass′)

kBTss′
, (1.7)

where Tss′ = (Ts + Ts′)/2 is a mean temperature characterizing the two interact-

ing species. For example, the Coulomb potential for ion-ion interactions is ϕii =

(Ze)2/4πϵ0aii and the ion-ion Coulomb coupling parameter is Γii = (Ze)2/(4πϵ0aiikBTi).

A weakly coupled plasma is characterized by the dominance of kinetic energy over

potential energy, meaning the average potential energy between particles is much

less than their thermal energy. This leads to weak interactions where long-range

Coulomb forces are screened by the Debye length, and the plasma parameter Λ (which

represents the number of particles in a Debye sphere) is much greater than one. As

a result, weakly coupled plasmas can be described accurately by classical kinetic

theory and the Boltzmann equation, focusing on small-angle collisions and employing

approximations like the standard Coulomb logarithm in the Landau-Spitzer formula.

Conversely, strongly coupled plasmas have a higher interaction strength where the

potential energy between particles is comparable to or greater than their kinetic en-

ergy. This results in significant particle correlations and large-angle collisions, which

invalidate the weak coupling assumptions. Also, many-body interactions are a char-
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acteristic of strong coupling. This has major implications in transport coefficients like

diffusion, thermal conductivity and viscosity and particle dynamics. In this regime,

models need to account for strongly coupled physics, often requiring first principles

molecular dynamics simulations or advanced theoretical approaches to capture the

plasma dynamics accurately [52, 53, 54, 55].

1.2.1 Strongly coupled interactions at atmospheric pressure

In most CAPPs, ions are expected to be in equilibrium with the neutral gas near

room temperature, while electrons have a much higher temperature on the order of

eV or several eV. A consequence is that the hotter electrons are characterized by a

weakly coupled regime (Γee ≪ 1), while the much cooler ions can be strongly coupled

(Γii ≳ 1) if the ionization fraction is large enough.

For a partially ionized plasma with one gas species, neutral-neutral, ion-neutral

and ion-ion interactions are included using the Lennard-Jones, charge induced dipole

and Coulomb potentials respectively [56]

ϕLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
, (1.8)

ϕind(r) = − q2

8πϵ0

αRa
3
0

r4
, (1.9)

and

ϕ(r) =
q2

4πϵ0

1

r
, (1.10)

where ϵ = 120kB, σ = 0.34 nm, and αR = 11.08 for Ar [56] and a0 is the Bohr radius.

Considering an Ar plasma at room temperature and variable ionization fraction and

pressure, the coupling parameter associated with each interaction can be computed

from equations (1.7)–(1.10), using ain = (3/4πnin)
1/3 where nin ≈ xini + xnnn to

estimate the average interparticle spacing between ions and neutrals. Here, xi = ni/n

and xn = nn/n are the ion and neutral concentrations, ni and nn are the ion and
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Figure 1.3: Coupling parameter space for ion-ion, ion-neutral and neutral-neutral
interactions for an Ar gas at room temperature and different pressures and ionization
fractions.

neutral densities, and n = ni + nn is the total density. The pressure and ionization

fraction at which the transition from a weakly to a strongly coupled regime occurs

is estimated from the limit Γ = 0.1, which is the condition where the Boltzmann

equation is known to break down [57, 58].

As shown in figure 1.3, at small ionization fractions and pressures below atmo-

spheric pressure, none of the interactions are strongly coupled. However, by increasing

the ionization fraction or the pressure, it is possible to find a strong ion-ion coupling

region. In fact, the figure shows that ion-ion interactions at many CAPP conditions

are expected to be strongly coupled. In particular, where the ionization fraction is

greater than 10−6 such as streamer, spark and arc discharges as shown in figure 1.1.

If the pressure is increased above ≈ 10 atm, a strong ion-neutral coupling regime is

reached. Further increases in pressure can lead to a strong neutral-neutral coupling

regime at around 1000 atm.

Since the ion-ion Coulomb coupling parameter exceeds 0.1 in many CAPPs ap-
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plications, the binary ion-ion collision picture and hence the Boltzmann equation

are not expected to apply. In this strongly coupled regime, many-body collisions

dominate the interactions between ions and a simulation technique that accounts for

strong coupling effects is necessary for modeling such plasmas when ion dynamics are

important.

1.2.2 Disorder induced heating

Strongly coupled plasmas are influenced by physical effects that fundamentally

differ from those governing weakly coupled plasmas. An example is disorder-induced

heating [59]. This arises in strongly coupled systems when the potential energy land-

scape associated with interactions between particles changes in such a way that par-

ticles move to a lower potential energy configuration, releasing kinetic energy in the

form of heat. One way that this can occur is through the ionization of a neutral

gas. When short-range atomic interactions change to long-range Coulomb interac-

tions, ions reconfigure to a more ordered state due to their mutual repulsion. The

more ordered state has a lower potential energy than the initial state (immediately

after ionization) because ions spread further apart from one another. The decrease

in potential energy in this reconfiguration is compensated by an increase in kinetic

energy. Disorder-induced heating is not important in weakly coupled plasmas be-

cause the kinetic energy gained in the reconfiguration is small compared to the initial

kinetic energy. However, it can be a dominant effect in strongly coupled plasmas.

For example, DIH caused by ionization has been measured and studied in detail in

ultracold neutral plasmas [59, 60, 61, 62].

This work shows that ionization can cause DIH in atmospheric pressure plasmas

as well, and that it can be a dominant effect that determines both the ion and neutral

temperature evolution. Using Molecular Dynamics (MD) simulations, we show that

immediately after ionization ions have a coupling strength much larger than one,
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with Γii ranging from approximately 5 to 25 for simulations when the ionization

fraction ranges from 0.01 to 0.7, corresponding to ion densities from 2.5 × 1023 m−3

to 1.75 × 1025 m−3. Ions then rapidly heat over a timescale of approximately one

ion plasma period (ω−1
pi , where ωpi =

√
e2ni/ϵomi is the ion plasma frequency) to a

condition where Γii ≈ 1. This typically corresponds to a ∼ps timescale. This can

raise the ion temperature several times, depending on the ionization fraction. After

DIH, ions thermally equilibrate with neutrals via elastic scattering, causing them to

cool and the neutral gas to heat. The cooling causes ions to return to a more strongly

coupled state. Depending on the ionization fraction, the neutral heating can be

substantial, leading to neutral temperatures that are several times room temperature.

Ion-neutral thermal equilibration typically takes hundreds to thousands of ion plasma

periods, corresponding to a ∼ns timescale. In addition to the simulations, a model is

developed to describe the main features of the ion and neutral temperature evolution.

These results are described with more details in chapter III. Then, in chapter IV, the

developed model is implemented in a plasma chemistry global model to compare

different sources of fast gas heating with disorder induced heating in N2 nanosecond

pulsed discharges at 1 atm and 10 atm. It is observed that while DIH is not the

dominant heating mechanism, when full ionization is reached, it can increase the

temperature on the order of 20% and 60% at 1 and 10 atm. In particular, when DIH

becomes relevant, the electron density is large enough such that thermalization occurs

and both electrons and ions are at equilibrium with each other. Finally, while DIH is

not the main heating mechanism in the mentioned pressure range, it can indirectly

influence the plasma chemistry by reducing the energy transfer from electrons to

ions and thus, increasing the rates of electron impact inelastic processes including

dissociation and ionization.
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1.2.3 Diffusion

The transport of ionized reactive species in atmospheric pressure plasmas is one of

the main mechanisms of interest and is governed by mobility and diffusion processes.

Furthermore, the transport of reactive species in general is relevant for many of the

mentioned applications from medicine to plasma assisted ignition and combustion.

For example, in plasma assisted ignition, diffusion of reactive nitrogen and oxygen

species (RONS) can influence the ignition process and flame propagation, reducing

the ignition delay time by orders of magnitude and increasing the flame propagation

velocity [13, 63]. In plasma assisted combustion, the relative timescales between diffu-

sion and advection of fuel and reactive species and the combustion reaction rates can

influence the combustion efficiency [64]. Another example is diffuse plasmas: while

constriction into filaments is likely to happen in atmospheric pressure plasmas, Li et al

[65] showed that ambipolar diffusion plays a significant role as a possible mechanism

to generate cost efficient atmospheric diffuse plasma jets for biomedical decontami-

nation and materials processing applications. Similarly, Tang et al [66] showed that

ambipolar diffusion plays a key role in the onset of diffuse direct-current glow dis-

charges at atmospheric pressure. Finally, in CO2 conversion by plasma technology,

modelling the different plasma discharges with fluid simulations requires diffusion co-

efficients as one of many input parameters in order to account for spatial variations

due to transport in the plasma [67].

It is clear that diffusion processes play a key role in a variety of plasma devices

at atmospheric pressure and above. An underappreciated aspect in modeling the

diffusion rate in these plasmas is that ions can be in a regime of strong Coulomb

coupling, since ions are expected to be be strongly correlated (Γii > 1) in atmospheric

pressure discharges, particularly at larger ionization fractions (xi ≳ 10−5). Standard

models of diffusion in plasmas are based on the Boltzmann kinetic equation [68], which

applies to the weakly correlated regime Γii ≪ 1, and therefor are not applicable.
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In this work, we propose a model for diffusion that accounts for strong ion-ion cor-

relations at atmospheric pressure discharges over a wide range of ionization fractions.

The model is an application of the recently developed mean force kinetic theory [52],

which has previously been applied to fully ionized plasma, to the case of partially

ionized atmospheric pressure plasma. We show that the total ion diffusion coefficient

exhibits three regimes: (1) At small ionization fraction (xi ≲ 10−6), corresponding

to ion densities of ni ≲ 1020 m−3, ion diffusion is dominated by weakly coupled ion-

neutral collisions, as usually modeled based on the Boltzmann equation [69, 70, 71].

(2) For moderate ionization fractions (10−6 ≲ xi ≲ 10−2), corresponding to ion den-

sities ranging from ni ≈ 1020 − 1024 m−3, ion-ion collisions are important and strong

ion-ion correlations influence the diffusion processes. (3) At large ionization fraction

(xi ≳ 10−2), corresponding to ion densities ni > 1024 m−3, strongly correlated ion-ion

interactions set the diffusion rate. Furthermore, the strong ion-ion correlations formed

in the ionization process cause disorder-induced heating (DIH), which substantially

increases the ion and neutral temperatures [2]. Here, we show that the temperature

increase due to the DIH considerably increases the expected ion and neutral diffusion

coefficients at atmospheric pressure and this effect becomes more pronounced at larger

pressures, such as the range relevant to plasma assisted combustion [13]. We show

that the plasma densities over which the ion diffusion coefficient is affected by strong

Coulomb coupling are of special interest to nanosecond repetitively pulsed (NRP)

discharges in the regimes of glow (ni ≈ 1019 − 1021 m−3) , spark (ni ≈ 1021 − 1022

m−3) and thermal spark (ni ≈ 1025 m−3) discharges [72].

The model was tested using MD simulations. Including both ions and neutral

atoms in MD simulations can be prohibitively computationally expensive at low ion-

ization fractions. In order to solve this problem, we incorporated a Monte Carlo col-

lision module for ion-neutral collisions described in chapter II. This applies MCC to

model ion-neutral collisions, while solving for the ion-ion interactions self-consistently,

18



as in standard MD simulations. This is similar to the model described in Donko et

al [73] for electron-neutral collisions. Comparing with previous results [2], we show

that the MD+MCC approach is suitable for obtaining both the dynamics and equilib-

rium properties of a discharge. Furthermore, the results obtained with the proposed

method provides a tool to compute the ion diffusion coefficient using the Green-Kubo

relations [74]. The MCC model is valid for ion-neutral interactions because they are

weakly correlated at atmospheric pressure conditions, due to their short-range nature.

These results are described with further details in chapter V.

1.2.4 PIC simulations

An implication of ions being strongly coupled for a wide range of ionization degrees

at atmospheric pressure is that common approaches to modeling atmospheric pressure

plasmas need to be reassessed. Most modeling techniques, including PIC methods

and solutions of multi-fluid equations, are based on solving a Boltzmann equation or

approximations of it (such as multi-fluid models obtained from taking moments of

the Boltzmann equation). However, the Boltzmann equation is valid only for weakly

coupled systems, such as dilute gases and plasmas. At a fundamental level, it does

not treat strong coupling effects that can influence dynamics of atmospheric pressure

plasmas. Disorder-induced heating is an example of this. If strong correlations are not

accounted for, the ion and neutral temperatures could be mistakenly underestimated

as well as transport properties.

Given the transformative impact of atmospheric pressure plasma applications,

understanding and controlling the characteristics of these plasmas is of paramount

importance. Accurate and efficient modeling of plasma discharges at atmospheric

and higher pressures is critical for the advancement and optimization of plasma de-

vices. Simulations, for instance, can aid in identifying optimal operating parameters

like discharge voltage, power, frequency, electrode configuration, and gas mixture for
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diverse applications. Consequently, it is imperative to develop reliable and efficient

computational tools for simulating the behavior of cold atmospheric pressure plasmas.

1.2.4.1 PIC simulations and strongly coupled plasmas

It is found that PIC simulations are not well-suited to atmospheric pressure plas-

mas when the plasma density or macroparticle weight are too large because of effects

associated with correlation heating. Here, we refer to “PIC simulations” in the tra-

ditional sense, not including the P3M method [74], which we consider to be a variant

of MD in this work. The assumptions of the PIC method presume weak coupling

between charged particles, ignoring interactions within a macroparticle and within a

cell. Hence, pure PIC simulations effectively solve the Vlasov equation. In an attempt

to incorporate collisions, PIC is often combined with a Boltzmann collision operator

through the MCC or DSMC methods [44, 45]. It may be expected that creating a

collision routine to incorporate strong correlation effects could enable the successful

application of PIC in these scenarios. However, it is shown here that PIC faces in-

herent challenges when modeling strongly coupled plasmas that can not be remedied

by the addition of a collision routine. These shortcomings stem from the require-

ment that PIC simulations at atmospheric pressure need to resolve very small spatial

scales (here the Debye length and mean ion separation) while using macroparticles

to remain practical.

In fact, a primary factor precluding the effective use of PIC in these scenarios is

disorder-induced heating. Here it is shown that to correctly capture DIH within PIC

simulations, it is necessary to adopt a macroparticle weight (w) of one and to resolve

the physical interparticle spacing. However, adhering to these conditions renders PIC

prohibitively expensive for macroscopic−scale domains, as the computational load

dramatically increases. Compounding the challenge, because the average interparticle

spacing between ions is larger than the Debye length λD, adhering to the requisite
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of the Debye length resolution, the physical interparticle spacing also needs to be

resolved. This leads to less than one macroparticle per cell, inducing grid heating

even if the Debye length is resolved. The combination of these conditions significantly

exacerbates the difficulty of employing PIC for the simulation of strongly correlated,

atmospheric pressure plasmas. These results are described in chapter VI.

1.2.4.2 Artificial correlation heating

Beyond the limitations associated with strongly coupled plasmas, this study re-

veals a new numerical heating mechanism, termed “artificial correlation heating”

(ACH), which can arise even in weakly coupled plasmas. This mechanism is analo-

gous to the cause of DIH, as it stems from Coulomb repulsion, but distinguishes itself

as a numerical effect associated with a macroparticle weight larger than one, w > 1.

Interestingly, like DIH, ACH is also associated with a conversion of potential to ki-

netic energy that arises at strong coupling. However, the coupling strength involved

in this case is a macroparticle coupling strength

Γw
ss′ = Γss′w

2/3, (1.11)

where Γss′ is the physical coupling strength for interactions between species s and

s′, derived in equation 1.11. Thus, even if the physical coupling strength is small,

the macroparticle coupling strength can be large if w ≫ 1. Chapter VI describes

how equation 1.11 is derived by accounting for the effect of macroparticle weight

in the numerical Coulomb coupling parameter. Avoiding ACH requires maintaining

numerous macroparticles per cell, a factor that further complicates the application of

the PIC method.

In the context of atmospheric pressure plasmas, ions may reach a strongly corre-

lated regime and therefore be influenced by DIH, while electrons are expected to be
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weakly coupled due to their larger temperature. This may lead to the expectation

that PIC applies to the electrons. Although that can be true, we find that ACH is an

important consideration if a large macroparticle weight is applied to the electrons.

Since ACH arises as a consequence of a numerically-enhanced Coulomb potential

energy due to a large macroparticle weight, here we propose that in order to avoid

ACH, a PIC simulation must obey a criterion that the macroparticle coupling pa-

rameter be less than one, Γw
ss′ < 1, for each combination of interacting species s and

s′.

Here, we will concentrate on like-particle interactions (s = s′), so ass′ = as =

(3/4πns)
1/3 and Tss′ = Ts is the temperature of species s. The Γw

ss′ < 1 condition limits

how high a macroparticle weight can be for a given density and temperature. If this

condition is not met, then the weakly coupled particles will be represented numerically

as strongly coupled macroparticles, which induces ACH and can significantly raise the

temperature of that species on a short timescale characteristic of the plasma period

of that species ω−1
ps = (ϵoms/Z

2
s e

2ns)
1/2.

Acknowledging the significance of ACH, a comprehensive model is developed that

incorporates density, temperature, macroparticle weight and grid resolution. Vali-

dated against PIC simulations, this model serves as a predictive tool to delineate a

limit of applicability of the PIC method. It is shown that ACH provides an upper

limit on the density scaled by the macroparticle weight squared, nsw
2, for a fixed

temperature. In addition, the consequences of violating the ACH condition (Γw
s < 1)

are explored. In particular, the magnitude of ACH can be reduced if a large number

of macroparticles are present per cell. Specifically, it is found that if ≈ 240 parti-

cles per cell are present, then the temperature rise from ACH remains small even if

Γw
s > 1. However, this approach is not entirely satisfactory because it implies not

resolving the Debye length, and therefore, grid heating occurs. This is because Γw
s ,

the Debye length λDs, the average number of macroparticles per cell Nc and cell size
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∆x are related as ∆x/λDs = (4πNc/3)
1/3

√
3Γw

s . Thus, if Γw
s > 1 and Nc > 1, then

the Debye length is necessarily unresolved.

Finally, it is shown that ACH can induce a runaway heating process in simulations

that include ionization of a neutral gas. As the electron temperature artificially

increases due to ACH, it can trigger nonphysical ionization events, further increasing

the electron density and perpetuating the cycle of heating and, ultimately, resulting

in numerical instability. This positive feedback loop highlights the critical need for

a better understanding and careful application of the PIC method, especially when

simulating plasmas with high densities and large macroparticle weights in 3D domains.

These results are described in chapter VII.
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CHAPTER II

Simulation Techniques

In this work, different numerical approaches have been used to study strongly cou-

pled effects in atmospheric pressure plasmas. While highly expensive from a compu-

tational point of view, molecular dynamics is useful to study basic physics phenomena

as well as to calculate transport coefficients from first principles. This method was

used to study disorder induced heating as well as ion diffusion (chapters III and V

respectively) and it is described in section 2.1. Secondly, the PIC method is a robust

and commonly used technique for a wide range of plasma discharges. Here, a PIC

simulation code is developed to study the limitations of PIC in the strongly coupled

regime by comparing the results with the more first-principles MD simulations. This

method is described in section 2.3 and the results are covered in chapters VI and VII.

Finally, a global model is developed to study the effects of strongly coupled physics

on plasma chemistry for nanosecond pulsed discharges. This method is described in

section 2.2 and the results in chapter IV.

2.1 Molecular dynamics

Molecular Dynamics is a computational technique that serves as a powerful tool

for studying the dynamical behavior of molecular systems, offering valuable insights

into the microscopic mechanisms underlying various physical processes. The method
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provides insights into the equilibrium and transport properties of classical many-body

systems by solving Newton’s equations of motion for a system of interacting particles

over a specified time period [74]. In this section, the principles of MD are described

as well as modifications incorporated into the open source software LAMMPS [75],

used in this work, in order to study diffusion in strongly coupled atmospheric pressure

plasmas.

2.1.1 Basics of molecular dynamics

The core idea of MD simulations is to solve for the particle dynamics from a first

principles standpoint, in the sense that direct forces are calculated over individual

particles by knowing the interaction potentials. While this method is not strictly first

principles since it is classical, it is more accurate than other particle based methods

such as PIC. The standard simulation setup involves the following steps:

1. Initial conditions: A sample is prepared by selecting a model system consist-

ing of N particles. Initial positions and velocities of these particles are assigned,

typically following a Maxwell-Boltzmann distribution. Particles can represent

atoms, ions, electrons or even complex molecular structures.

2. Simulation domain: The simulation domain can be arbitrarily defined de-

pending on the application of interest. In this work, MD simulations are run in

cubic domains with periodic boundary conditions for particles and fields.

3. Force calculation: The forces acting on each particle are computed using in-

teratomic potentials or force fields. Commonly used potentials include Lennard-

Jones, Coulombic interactions, and more complex empirical or calculated po-

tentials for specific species.

4. Integration of equations of motion: Newton’s equations of motion are

integrated to update the positions and velocities of the particles over discrete
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time steps. Algorithms such as the Verlet integration or leapfrog methods are

often employed for this purpose.

5. Equilibration: The system is allowed to evolve until it reaches equilibrium,

where macroscopic properties like temperature and pressure stabilize.

6. Data collection: After equilibration, the system’s properties are sampled and

averaged over time to obtain meaningful physical quantities such as tempera-

ture, pressure, diffusion coefficients, and radial distribution functions.

2.1.2 Interaction potentials

In a MD simulation, the force acting on each particle is a sum of the forces due

to the particle’s interaction with other particles in the system. Forces are calcu-

lated from interaction potentials predefined for each pair of particles (s, s
′
) in the

domain. Interaction potentials are defined as a function of the intermolecular dis-

tances, however they can be classified as either short or long range potentials. Short

range potentials, such as the Lennard-Jones (LJ) potential are usually treated with a

cutoff distance. This is, only particles within a certain radius from a given particle are

considered when calculating the force due to the LJ potential. However, long range

potentials, such as the Coulomb potential are treated differently. A cutoff distance is

usually defined for a long range potential in order to treat differently the contribution

to the force over a particle from particles within the cutoff distance and particles at

larger distances [74]. An example of this is the particle particle particle mesh method

described in the following section.
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2.1.3 The particle particle particle mesh method

The P3M method consists of splitting the Coulomb potential into two parts using

the identity

1

r
=

f(r)

r
+

1− f(r)

r
(2.1)

where f(r) is a switching function. Hence, the P3M method is based on separating

the total interaction between particles into the sum of short-range interactions (first

term in equation), which are computed by direct particle particle summation, and

long-range interactions (second term in equation), which are calculated by solving

Poisson’s equation using periodic boundary conditions. The long-range Poisson solve

part consists of interpolating the charges into a grid within the domain, where the

Poisson equation is solved usually using a fast Fourier transform (FFT), and then the

potential is interpolated back onto the positions of each particle. By doing this, the

P3M method can efficiently handle long range potentials in large simulation domains

without having an O(N2) computer associated time, since the long range part handled

by an FFT has a cost of O( N log N ) [45, 74].

2.1.4 Equations of motion

Once forces on each particle due to the rest of the particles in the system are cal-

culated, Newton’s equations of motion are solved for each particle on every timestep.

The commonly used method is the Verlet algorithm, which is energy conserving with

a local error O(∆t4) in the position and a global error O(∆t2) , both for position and

velocity [74].

2.1.5 Thermostating and energy conserving simulations

Standard MD simulations are split into two stages as described before. First,

a thermostat simulation is run which mimics a canonical ensemble by maintaining
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constant the total number of particles, volume and temperature of the system (NVT

stage). This stage ensures that the system is equilibrated within a temperature range

defined as an input parameter. This equilibration is a necessary step before switching

to an energy conserving stage where microscopic physics phenomena is studied. There

are different algorithms for the NVT stage but the most commonly used is the Nosé-

Hoover thermostat, which consists of extending the Hamiltonian of the system by

using a coordinates transformation in the phase space in order to represent a heat

bath at a constant temperature [74]. This stage imposes a temperature into the

system by bringing it into thermal contact with a large heat bath. This stage is run

until the temperature, as well as the potential energy in the system reach a steady

state.

Once equilibrium is reached, the simulation is switched from NVT to an energy

conserving stage (NVE) where E represents the total energy of the system. This stage

is necessary since in our work we focus on studying the non equilibrium ion dynamics

in the strongly coupled regime, in particular, the evolution of the ion temperature

after ionization. In this stage, the unmodified Hamiltonian is used and equations of

motion are solved using the Verlet or other energy conserving algorithm [45, 74]. In

this stage, thermodynamic properties are calculated to study the system.

2.1.6 Temperature calculation

In MD simulations, temperature is derived from the kinetic energy of the particles.

Using the equipartition theorem, the temperature T can be calculated as

〈
1

2
mv2

〉
=

3

2
kBT, (2.2)

where m is the mass of a particle, v is its velocity, and kB is the Boltzmann constant.

This temperature is termed “kinetic” because it directly relates to the motion of the
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particles. For a system in equilibrium and in the absence of non-conservative forces,

this kinetic temperature aligns with the thermodynamic temperature, which is a mea-

sure of the average kinetic energy per degree of freedom in the system [74]. The kinetic

temperature is used primarily because it provides a computationally straightforward

and instant measure of the system’s temperature, assuming equilibrium conditions.

The instantaneous temperature T (t) in a simulation is given by

T (t) =

∑N
i=1miv

2
i

kBNf

, (2.3)

where Nf is the number of degrees of freedom of the system.

2.1.7 Monte Carlo collision method

To obtain macroscopic transport rates such as diffusion coefficients, MD simu-

lations must include enough particles to represent a macroscopic sample of plasma,

i.e., a fluid element. For example, for a mixture of neutrals and ions, it requires

having a macroscopic volume for even the most dilute species. For low ionization

fractions, a pure MD simulation for both ions and neutrals becomes far too expensive

computationally. For instance, a requirement of 5000 ions at 0.1% ionization fraction

translates to a requirement of 5 × 106 neutrals. On the other hand, ion-neutral and

neutral-neutral interactions are expected to be weakly coupled and well described by

the traditional Boltzmann kinetic equation at atmospheric pressure as described in

chapter I. This justifies a hybrid simulation approach where ion-ion interactions are

computed using MD, and ion-neutral interactions using the Boltzmann kinetic theory.

In order to explore ionization fractions as small as 10−9 without increasing the

computational cost, as shown in chapter V, neutral species were modeled as a back-

ground fluid at equilibrium, as in Donko et al [73]. Here, ion-neutral collisions

were modeled using a Monte Carlo Collision (MCC) module that we implemented
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in LAMMPS source code. The MCC algorithm, similar to that in Ref. [73], is de-

scribed next. Ions and the background neutral gas interact via ion-neutral momentum

transfer collisions. The probability of a collision to occur during a timestep ∆t is

Pcoll = 1− exp(−nnQ
(1)
in (u) u ∆t), (2.4)

where nn is the neutral gas density, u = |vi − vn| is the relative velocity between an

ion and a neutral atom and Q
(1)
in (u) is the momentum transfer cross section for elastic

ion-neutral collisions. The relative velocity between an ion and a neutral atom is

calculated by randomly choosing a velocity vn from a Maxwellian distribution for the

background neutral gas at a temperature T. This probability is calculated for each

ion at each timestep and is compared to a uniform random number R between 0 and

1. If Pcoll ≤ R the collision occurs and the rotation of the relative velocity vector

after scattering through angle β is calculated from

∆u = u
[
sin(β) cos(ϕ)x̂+ sin(β) sin(ϕ)ŷ − 2 sin2(β/2)û

]
(2.5)

where the angles β and ϕ are determined using cos(β) = 1−2R1 and ϕ = 2πR2, where

R1 and R2 random numbers uniformly distributed over the interval [0, 1]. Thus, ion-

neutral collisions are considered isotropic. The random number generator used was

based on the Mersenne twister algorithm proposed by Matsumoto and Nishimura

(1998) [76]. Conservation of momentum implies that ∆vi = (min/mi)∆u, where

min/mi = 1/2 for same species collisions. Hence, the post collision ion velocity is

given by vi(t+∆t) = vi(t) + ∆u/2.

2.1.8 Molecular dynamics simulations of atmospheric pressure plasmas

In this work, molecular dynamics simulations are used as a first principle method

to study the strongly coupled ion dynamics in atmospheric pressure plasmas. Chapter
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III shows the results obtained from MD simulations using the LAMMPS open source

software. Both ion and neutral species are simulated as particles with the respective

interaction potentials for partially ionized atmospheric pressure plasmas. Then, chap-

ter V focuses on the calculation of the ion diffusion coefficient from MD simulations

over a wide range of ionization fractions, treating ions as particles and neutrals as a

background fluid. In these simulations, ion-neutrals collisions are incorporated using

the MCC method described before.

2.2 Global model

The global model described in this section is used in chapter IV to study nanosec-

ond pulsed discharges in atmospheric pressure plasmas. The main approximations

consist of assuming electrons have a Maxwellian distribution at a temperature Te, as

well as ions at Tion and the neutral gas at Tgas. While this is a good approximation for

ions and neutral atoms/molecules, it can significantly differ from the physical EEDF

at low ionization fractions. However, the goal of this work is to focus on the ionization

dynamics and gas heating into regimes where large ionization fractions are achieved,

in particular larger than 1%. In this regime, the EEDF is expected to be Maxwellian

[6].

In a global model, each reaction can be expressed as

∑
i

νinreac,i →
∑
i

ν
′

inprod,i (2.6)

where νi and ν
′
i are the stoichiometric coefficients and nreac,i and nprod,i are the number

densities of reactants and products respectively. The rate of change of each species

density is given by

dnj

dt
=

∑
r

(ν
′

r,j − νr,j)kr(T )
∏
i

nνi
reac,i (2.7)
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where nj is the density of species j and kr(T) is the reaction rate coefficient of reaction

r, which depends on the electron or gas temperature depending on the reaction. Here,

the reaction rate of reaction r can be defined as Rr = kr(T )
∏

i n
νi
reac,i.

The rate of change of the electron temperature is given by,

d

dt

(
3

2
nekBTe

)
=

ne

me

e2E2

νtot
e

−
∑
elastic

Ri

(
2me

Mi

)
3

2
kB(Te − Tgas)

−
∑
elastic

Ri

(
2me

Mi

)
3

2
kB(Te − Tion)−

∑
inelastic

Ri∆ϵi

(2.8)

where E is the electric field, kB the Boltzmann constant, me the electron mass, ne

the electron density, Mi the mass of atom/ion i, molecule or ion in elastic collision

j, Ri the rate of reaction of reaction i, ∆ϵi the electron energy lost in reaction i and

νtot
e is the total electron collision frequency with heavy species including ions and

neutral particles νtot
e =

∑
neutrals ken(Te)nn +

∑
ions kei(Te)ni, where kei is simply the

product of the electron-ion Coulomb collision frequency and ion density. While at low

pressures or low ionization fractions only electron-neutral collisions are accounted for,

here collisions with ions are included in order to not get unphysically large reduced

electric fields at large ionization fractions where Coulomb collisions dominate [6].

The rate of change of neutral gas temperature can be calculated as

d

dt

(
3

2
ngaskBTgas

)
=
∑
CEi

3

2
RikB(Tion − Tgas)−

∑
i

Ri∆Hi

+
∑
elastic

Ri

(
2me

Mi

)
3

2
kB(Te − Tgas)

(2.9)

where ngas is the total number density of neutral atoms and molecules and ∆Hi is

the change in enthalpy of the reaction i. The first term (CEi) corresponds to heating

due to charge exchange collisions. The term −
∑

iRi∆Hi includes gas heating due

to quenching and dissociation. In addition to this equation, ion-neutral temperature

relaxation is accounted for with a model described in chapter III.
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Finally, the rate of change of the ion temperature is calculated as

d

dt

(
3

2
nikBTion

)
=−

∑
CEi

3

2
RikB(Tion − Tgas)+

∑
elastic

Ri

(
2me

Mi

)
3

2
kB(Te − Tion)

(2.10)

in addition to the DIH model and ion-neutral temperature relaxation described in

chapter III.

Each rate coefficient is obtained from the integration of the corresponding cross

section and a Maxwellian distribution at Te or Tgas unless the rate coefficient was

known [42]. The rate coefficient for electron collisions with heavy particles is calcu-

lated as

k(Te) =

∞∫
0

F (ϵ)

(
2ϵ

me

)1/2

σ(ϵ)dϵ (2.11)

where F (ϵ) is the real EEDF and σ the corresponding cross section. Note that

F (ϵ) = f(ϵ)ϵ1/2 where f(ϵ) is the commonly used energy equivalent energy distribu-

tion function. In this work, f(ϵ) is assumed to be a Maxwellian. The rate coefficient

for collisions between heavy particles is calculated as

k(T ) =

(
1

πm∗

)1/2(
2

kBT

)3/2
∞∫
0

σ(ϵ) exp

(
−ϵ

kBT

)
ϵdϵ (2.12)

where m∗ = m1m2/(m1 +m2) is the reduced mass and m1 and m2 are the masses of

the heavy species.

2.3 Particle in cell

To develop a better understanding of what the influence of strong coupling effects

are in different simulation techniques, an in house developed electrostatic PIC code

was developed. This code was used to study under what conditions disorder induced
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heating can be correctly obtained from PIC simulations and how these constraints

compare with traditional PIC simulations of weakly coupled plasmas. These PIC

simulations were bench-marked against molecular dynamics. This section describes

the basics of PIC simulations and the code developed that is used to obtain the results

shown in chapters VI and VII.

In the PIC method, numerical macroparticles represent aggregates of w individual

physical particles in the system, where w is the weight of each macroparticle. The

equations of motion of macroparticles are solved to update positions and velocities on

each timestep, self consistently with the charge density in the domain. To achieve this,

charges are interpolated from macroparticles to a grid, where the Poisson equation

is solved. Then the electric field is calculated on the grid and interpolated back to

the position of each macroparticle. The electric field on each macroparticle is then

used to calculate the force acting on each macroparticle [44]. The combined use of

macroparticles with large weights and calculating forces on particles by interpolating

from the electric field on a grid, helps to significantly reduce the computational cost

when compared to MD simulations, which helps extend traditional PIC simulations

to device scale modeling. The PIC method is illustrated in figure 2.1.
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Figure 2.1: Illustration of the PIC method. Fields are solved in a grid and then
interpolated to the positions of macroparticles. Then the equations of motions are
solved and the charges are interpolated back to the grid.

The code developed in this work adheres to the conventional method of interpo-

lating particle charges onto a structured uniform grid using shape functions. Subse-

quently, field equations are solved, and the resulting fields are interpolated back to

the particle positions to integrate the equations of motion. This process is repeated

throughout each iteration of the PIC simulation [44].

For the Poisson equation solver, the charge density was computed using the ion

density and a uniform background neutralizing electron density to ensure stability

ρ(r) = e (Zni(r)− ne) , (2.13)

where ρ is the charge density, Z is the ion charge state, ni is the ion density and ne is

the background electron density assumed to be constant and equal to
∫
V
ni(r)d

3r/V

where V is the volume of the simulation domain. The Poisson equation for the

electrostatic potential was then solved using the spectral method. That is, by applying
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the Fourier transform and solving the consequent algebraic equation for the electric

potential in the k-space,

∇2ϕ(r) =
−ρ(r)

ϵ0
(2.14a)

ϕk =
ρk
ϵ0k2

(2.14b)

F−1 (ϕk) = ϕ(r) (2.14c)

where ϕ is the electrostatic potential, ϵ0 is the vacuum permittivity and F−1 is the

inverse Fourier transform. The electric field components were obtained by numer-

ically differentiating the electric potential among each direction using finite central

differences of order O(2) and periodic boundary conditions. No external electric fields

were included.

Interpolation of the particle charges to the grid and the electric field from the grid

to the particle positions was performed using the “scatter” and “gather” operations

ρi,j,k =

Ni∑
p=1

Ze

∆Vi,j,k

3∏
d=1

W (n)

(
(ri,j,k − rp) · êd

∆xd

)
(2.15)

and

E(rp) =
∑
i,j,k

Ei,j,k

3∏
d=1

W (n)

(
(ri,j,k − rp) · êd

∆xd

)
(2.16)

where (i, j, k) are the indices of an arbitrary node in the domain, ∆Vi,j,k =
∏3

d=1∆xd

is the volume of the cell within the nodes (i, j, k) and (i+1, j +1, k+1), W (n) is the

shape function of order n, ri,j,k is the position of the node (i, j, k), rp is the position

of the ion p and Ei,j,k is the electric field at the node (i, j, k). The implemented shape

functions ranged from order 2 to order 6. For instance, the shape function of order 2
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is given as follows:

W (2)(x) =


1− |x| for 0 ≤ x ≤ 1,

0 otherwise.

(2.17)

A shape function of order 2 is utilized unless otherwise indicated.

The shape functions of order 4 and 6, used for the analysis on grid heating detailed

in chapter VI are provided below [77]. The order-4 shape function is

W (4)(x) =



2
3
− |x|2 + |x|3

2
for 0 ≤ |x| ≤ 1,

1
6
(2− |x|)3 for 1 ≤ |x| ≤ 2,

0 otherwise ,

(2.18)

and the order-6 shape function is

W (6)(x) =



1
60
(33− 30|x|2 + 15|x|4 − 5|x|5) for 0 ≤ x ≤ 1,

1

120
(51 + 75|x| − 210|x|2 + 150|x|3 − 45|x|4 + 5|x|5) for 1 ≤ x ≤ 2,

1
120

(3− |x|)5 for 2 ≤ |x| ≤ 3,

0 otherwise.

(2.19)

Integration of the equations of motion was conducted using the Verlet algorithm.

The Poisson equation solver through a 3D−FFT, interpolation operations, and in-

tegration of equation of motion were implemented in CUDA−C kernels through the

open source library Cupy and called from python.
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In chapter VII, the present PIC code is modified to study artificial correlation

heating of electrons. For these simulations, ions are considered a background non

interacting species and electrons are modeled as particles.

2.3.1 Monte Carlo collision method

In chapter VII an ionization module is included to study the possibility of a

positive feedback loop between artificial correlation heating and electron-impact ion-

ization. This is done by including a Monte Carlo collision routine [44]. In this part

of the work, a background neutral uniform Xe gas is included at an initial density

given by nn = ng − ne, where ng corresponds to the ideal gas density at atmospheric

pressure and room temperature. Then, in each iteration and for each electron in the

simulation, the probability of ionization is computed as P = 1 − exp (−nnσXeve∆t),

where σXe is the corresponding electron impact ionization cross section for Xe [78]

and ve is the electron speed. Then, this probability is compared to a random number

R from a uniform distribution between 0 and 1. If R < P , then the ionization occurs

and a new electron is added at a random position in the simulation domain with a

velocity sampled from a Maxwellian distribution at the initial electron temperature.

After repeating this process for each electron, the background gas density is updated,

subtracting from nn the increase produced in ne, following the balance nn = ng − ne.
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CHAPTER III

Coulomb coupling influences ion and neutral

temperatures in atmospheric pressure plasmas

3.1 MD simulations setup

Molecular dynamics simulations were carried out using the open-source software

LAMMPS [75] as described in section 2.1. Since electrons are much hotter than ions

and are weakly coupled, they are treated as a background non-interacting species

when modeling ion and neutral dynamics. Thus, they were not included in the sim-

ulation. This is similar to the one-component plasma model [79], which is known

to provide an accurate description of ions in the presence of weakly coupled (com-

paratively hot) electrons, such as in ultracold neutral plasmas [80]. Short (neutral-

neutral), medium (ion-neutral) and long (ion-ion) range interactions were modeled

using the potentials defined in equations (1.8)–(1.10).

Since the charge induced dipole potential is attractive, particles can interact at

arbitrarily short spatial scales. In order to avoid the rare occurrence of close interac-

tions that require a very short timestep to resolve, a repulsive core term was added

to the charge-induced dipole potential from expression (1.9)

ϕind(r) =
q2

8πϵ0

αRa
3
0

r4

(
r8ϕ
3r8

− 1

)
, (3.1)
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where rϕ is the radius at which the repulsive core acts. It was desired to choose rϕ

to be small enough to minimize the occurrence of non-physical force values, but large

enough to decrease the computational cost due to the smaller timestep requirement.

This is similar to what has been done in MD simulations of ultracold neutral plas-

mas [81, 82]. The effect of the repulsive core also depends on the simulation setup. For

simulations conducted at thermodynamic equilibrium, we found that the value of rϕ

sets the number of ions that attach to neutrals; as shown in the Appendix A. However,

this work concentrates on non-equilibrium simulations where rϕ is only a numerical

convergence parameter needed to avoid closely orbiting particles. The reason why

rϕ is not important in the non-equilibrium simulations is that ion-neutral three-body

recombination is slow compared to the DIH and ion-neutral relaxation timescales that

we focus on. For the non-equilibrium simulations we chose rϕ = 0.133ain (here ain

was estimated as ≈ ann for xi < 0.5 and ≈ aii for xi > 0.5). This is the smallest

value at which we can avoid closely orbiting particles and non-physical force values;

see Appendix A and figure 3.1. A convergence test was conducted varying rϕ from

0.133ain to 0.5ain at an ionization fraction of xi = 0.5 (figure 3.1) showing that the ion

and neutral temperature at the end of the simulation (after ion-neutral relaxation) is

independent of rϕ when rϕ < 0.25ain.

In order to study the evolution of a non-equilibrium discharge, a neutral Ar gas

at room temperature and atmospheric pressure was simulated until equilibrium was

reached. This stage of the simulation was run with a Nosé-Hoover thermostat (NVT

ensemble) applied [74]. Then, a fraction of the particles were instantly ionized and a

NVE (microcanonical) simulation was run including the ion-neutral, neutral-neutral

and ion-ion interactions. This simulation setup was repeated for different ionization

fractions. The timestep used was 5×10−4ωpi and the NVE simulation was run until the

equilibrium was reached. The number of particles was varied such that the minimum

number of ions in the system was 2500 and the number of neutral atoms was scaled
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Figure 3.1: Ion and neutral final temperatures for different rϕ values.

in order to achieve the desired ionization fraction in each simulation. The simulation

domain size was scaled with the total number of particles in order to maintain the

desired gas density. The simulation domain was a three-dimensional box with periodic

boundary conditions. The ionization fraction, total number of particles, time step and

length of simulation used for each simulation are specified in table 3.1.

Table 3.1: Parameters used for the molecular dynamics simulations. The time step
value was ∆t× ωpi = 5× 10−4 in all cases.

Ionization
Fraction
(xi)

Number of
Particles

Plasma
Frequency

(ωpi)
× 1012 (rad/s)

Length of
Simulation
(tf × ωpi)

0.01 250000 0.1046 150
0.1 25000 0.3308 500
0.3 10000 0.5731 650
0.5 10000 0.7398 800
0.7 10000 0.8754 1000
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3.2 Molecular dynamics results

As shown in figure 3.2, the evolution of the ion temperature can be divided into

three stages. First, a rapid increase in the ion temperature was observed over the

first ion plasma period of the simulation. This is thought to be due to disorder

induced heating. This stage generates fluctuations in the ion temperature that persist

for several plasma periods; as shown in figures 3.2 and 3.3. Secondly, ion-neutral

temperature relaxation was observed with a timescale characterized by the ion-neutral

collision frequency. Finally, a gradual heating of both ions and neutrals is observed

over a much longer timescale due to three-body recombination of ions and neutrals

(this is difficult to view in figure 3.2, but is demonstrated more clearly below).
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Figure 3.2: Evolution of the ion and neutral temperatures during the discharge at
atmospheric pressure for different ionization fractions.

Figure 3.3: Ion kinetic energy (Ki), neutral kinetic energy (Kn) and total energy ET

for a discharge at atmospheric pressure and an ionization fraction of xi = 0.01. Each
energy is normalized by the number of ions (Ni), neutral atoms (Nn) and total number
of particles N respectively and the kinetic energy at room temperature T0 = 300 K.
Large fluctuations were observed in the ion kinetic energy due to the oscillations in
the Coulomb potential energy after the DIH.
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3.3 Disorder induced heating

Before the ionization pulse is applied, the initial distribution of positions of neutral

atoms corresponds to the equilibrium state of a gas interacting via the short-range

Lennard-Jones potential. Therefore, ionization creates many ions separated by dis-

tances that are much smaller than the average distance between ions aii = (3/4πni)
1/3

where ni is the ion density. Since the interaction between ions is governed by the

Coulomb potential, which is a long range potential, this leads to a large repulsive

force between ion pairs that brings ions apart, as illustrated in figure 3.4.

The separation of ions corresponds to the formation of a correlated state. This

can be quantified by the radial distribution function [g(r)], which is defined by setting

nog(r)4πr
2dr = N(r), where N(r) is the total number of particles in a spherical shell

of radius r and thickness dr centered on a chosen particle. Here, no = N/V is the

average number of particles (N) in a volume (V ); i.e., it is the uniform background

number density. When g(r) = 1 for all distances r, the system is in an uncorrelated

state. Figure 3.5 shows that just after ionization the ion positions correspond to

the weakly correlated state of the neutral gas they were formed from. Correlations

quickly develop as ions spread apart over the timescale of an ion plasma period. This

is indicated by the void of particles that forms from distances r = 0 to approximately

r = aii. Such a void, which is sometimes referred to a Coulomb hole in plasmas, is a

characteristic property of a strongly coupled system. Another characteristic is a peak

near the average nearest neighbor distance (aii), which is also observed at times later

than one ion plasma period.

A simple estimate for the magnitude and timescale of DIH can be obtained by con-

sidering the motion of a typical ion. In the limit that the initial configuration is ran-

dom in space, and the final distribution is perfectly ordered (a lattice), ions will move

an average distance of approximately aii/2. The electrostatic potential change in mov-

ing from a position r1 = aii/2 to r2 = aii is ∆ϕ = ϕ2 − ϕ1 = −eZ/(4πϵ0aii). This will
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Neutral Gas 
at Equilibrium

Ionization Pulse Separation of Ions

r<<aii r<<aii

r~aii

Figure 3.4: After an instant ionization pulse, ions can be at distances much smaller
compared to aii leading to large repulsion forces.

decrease the total potential energy of the ions by a factor of ∆U ≈ −Z2e2/(4πϵ0aii).

Since energy is conserved during the NVE simulation, this leads to a corresponding

increase in the ion kinetic energy ∆K = −∆U ≈ Z2e2/(4πϵ0aii). For ionization frac-

tions above approximately 10−4, the initial value of Γii based on room temperature

(when the ionization pulse is applied) is considerably larger than 1, so the change in

the ion kinetic energy due to DIH is much greater than the kinetic energy before the

pulse. Estimating the temperature after DIH as 3
2
kBT ≈ ∆K, the Coulomb coupling

parameter from equation (1.7) is Γii ≈ 1.5. In all cases simulated, DIH is observed

to increase the ion temperature until a critical value of approximately Γii = 1.9 is

reached; see figure 3.6. This is quite close to the estimate of 1.5. The value of

the temperature directly after DIH is the maximum value observed, Tmax
i , as ions

subsequently cool due to collisional relaxation with neutrals.

The timescale for DIH can be estimated from the time it takes an ion to move

from a position r1 = aii/2 to r2 = aii due to the Coulomb repulsion of a nearby

ion. Considering Newton’s equation of motion, md2x/dt2 = eE and approximating

d2x/dt2 ∼ ∆x/∆t2 ∼ (aii/2)/∆t2, and eE ∼ e2/(4πϵoa
2
ii), the characteristic timescale

for this process is the ion plasma period ∆t ≈ ω−1
pi . This also agrees well with the

simulations, where the maximum ion temperature is reached approximately 1.5ω−1
pi

after the ionization pulse; see figure 3.6.

Disorder induced heating has been previously observed in ultracold neutral plas-
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Figure 3.5: Ion-ion radial distribution function g(r) at different timesteps during
the simulation of a partially ionized Ar plasma with an ionization fraction of xi =
0.01. The ion-ion radial distribution function corresponds to an OCP at the same
equilibrium Γii showing that the ions are strongly coupled and the ion-ion interactions
are not screened by the presence of neutral atoms. In each simulation, the g(r) was
obtained after computing an average over all the ions in the simulation and 100
consecutive time steps that corresponded to a time window of t × ωpi = 0.05. An
ensemble average was also computed using data from 20 different simulations.
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mas formed by photoionizing laser-cooled atoms [60]. Immediately after ionization

ions have a very small kinetic energy since the neutral gas they are formed from was at

millikelvin temperature. However, they have significant excess potential energy since

the ionization has changed the potential energy landscape to that associated with

long-range interactions. As the excess potential energy is converted into kinetic en-

ergy the ions heat to a state where Γii ≈ 1 over a timescale of 1ω−1
pi , just as described

above. The process observed here is essentially the same. One important difference

is that the ionization pulse in an atmospheric pressure plasma typically only par-

tially ionizes the gas, whereas near total ionization is common in an ultracold neutral

plasma.

An implication is that DIH is only expected to be important if the ionization

fraction is high enough. Heating occurs only when the initial ion state (just after

ionization) satisfies Γii > 1. Otherwise, the kinetic energy gained by DIH is small

compared to the initial kinetic energy. Furthermore, the basic mechanism isn’t ex-

pected to apply since the ions remain in a weakly coupled disordered state even after

ionization. Assuming ions are born from neutral gas at room temperature, Γii > 1

requires that xi ≳ 10−4. Thus, at room temperature atmospheric pressure gas condi-

tions, DIH is expected to occur only if the ionization fraction is larger than one part

in ten thousand xi ≳ 10−4.

After DIH, ions overshoot their equilibrium positions leading to oscillations of the

Coulomb potential energy near the ion plasma frequency. Since the total energy is

conserved during the NVE simulation and the ions are strongly coupled after the

DIH, those oscillations translate to observable kinetic energy fluctuations. This is

shown in figure 3.3 from the simulation with an ionization fraction of 0.01. Such

fluctuations are only noticeable in the strongly coupled regime, where the ion kinetic

energy is comparable to the Coulomb potential energy (Γ ≈ 1). These fluctuations

were observed to damp over a period of time between 2ω−1
p and 50ω−1

p depending
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Figure 3.6: Evolution of the Coulomb coupling parameter Γii during the discharge at
different ionization fractions.

on the ionization fraction; see figure 3.2. The presence of large fluctuations in the

ion temperature after DIH has also been observed in ultracold neutral plasmas ex-

periments [60] and MD simulations [81]. While this section described DIH in the

context of an instant ionization pulse, section 3.8 extends the analysis to an arbitrary

ionization dynamics.

3.4 Ion-neutral temperature relaxation

After disorder-induced heating, ion and neutral temperatures equilibrate due to

ion-neutral collisions. This causes the ions to cool and the neutrals to heat by an

amount and at a rate that depends on the ionization fraction. Ion cooling increases

the ion-ion coupling strength, as shown in figure 3.6. This leads to an ion-ion coupling

strength that is larger than one, Γii > 1, after the ion and neutral temperatures relax

for all ionization fractions simulated. It is also noteworthy that fast neutral heating

can be significant, especially when the ionization fraction is high. Neutral heating is
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a common observation in atmospheric pressure plasma experiments [19, 21, 22, 23].

Ion-neutral temperature relaxation was modeled using standard methods based

on the Boltzmann equation [83]. The cross section for ion-neutral interactions was

computed based on two-body collisions interacting through the charge-induced dipole

potential from equation (3.1). The Boltzmann-based approach is expected to be valid

since the ion-neutral interaction is in a weakly coupled regime; see figure 1.3. The

resulting temperature relaxation rate is described by

dTi

dt
= −3

2
νin(Ti − Tn), (3.2)

dTn

dt
=

3

2
νni(Ti − Tn), (3.3)

and

νss′ =
4ns′ v̄ss′

3

∞∫
0

dg Q
(1)
ss′(g)g

5e−g2 . (3.4)

Here, Ti and Tn are ion and neutral temperatures respectively, νss′ is the energy

transfer collision frequency between the species s and s′, g = u/v̄ss′ where u is the

relative velocity and v̄2ss′ = 2kBTs/ms + 2kBTs′/ms′ , where ms and ms′ are both the

Ar mass, and Q
(1)
ss′ is the momentum transfer cross section

Q
(1)
ss′ = 2π

∞∫
0

[1− cos(χ)]bdb, (3.5)

where

χ = π − 2b

∞∫
r0

dr/r2√
1− b2

r2
− 2ϕin(r)

mss′u
2

(3.6)

is the scattering angle. Here, b is the impact parameter, r0 is the distance of closest

approach obtained from the largest root of the denominator in equation (3.6), r is

the radial distance, mss′ is the reduced mass, u is the relative velocity and ϕin is the

charge induced dipole potential from equation (3.1) with rϕ = 0.133ain computed
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Figure 3.7: Ion-neutral momentum transfer cross section at different relative veloci-
ties, obtained for the charge induced dipole potential used in the simulations.

from equation (3.5). The ion-neutral momentum transfer cross section obtained is

shown in figure 3.7.

The evolution of the ion temperature obtained using equations (3.2)–(3.4) is shown

in figure 3.8 for the discharge at an ionization fraction of 0.01. Here, the initial

temperature used in the model was taken from the value of the MD simulations after

DIH. The predictions show good agreement with the MD simulations in both the

equilibrium temperature as well as the relaxation time. At other ionization fractions,

the equilibrium temperature increases with ionization fraction due to smaller neutral

atom densities and due to the larger ion temperature achieved due to the DIH. The

equilibrium temperature was higher than room temperature and the corresponding

coupling parameter was smaller compared to the the initial value of Γii with the

exception of the smallest ionization fraction of 0.01, where the large neutral density

led to an equilibrium temperature similar to room temperature; see figure 3.2.
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Figure 3.8: Evolution of the ion temperature for a discharge with xi = 0.01 along
with the model described in equations (3.2)–(3.4).

3.5 Three-body recombination

As described in section 3.1, rϕ was used as a numerical convergence parameter in

the non-equilibrium simulations and the temperature evolution over the timescale of

DIH and ion-neutral equilibration was independent of rϕ. However, as shown in Ap-

pendix A, for rϕ/ain < 0.133 neutral particles start to orbit ions, which forms bound

states that can cause heating over a much longer timescale than the DIH or ion-neutral

relaxation. In order to compare these time scales, we repeated the non-equilibrium

simulation on a longer time scale with different values of rϕ/ain. Simulations at an

ionization fraction of xi = 0.01 and rϕ/ain values of 0.100 and 0.090 were carried

out with a total simulation time of t × ωpi = 4000 and compared with a simulation

at the same ionization fraction but using rϕ/ain = 0.133. As shown in figure 3.9,

the simulations show a similar ion temperature evolution immediately after the ion-

ization pulse, including DIH followed by ion-neutral temperature relaxation through

collisions. However, at t× ωpi ≈ 50, bound states start to form when rϕ/ain < 0.133,
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Figure 3.9: Evolution of the temperature for a discharge with a ionization fraction
xi = 0.01 for different rϕ values.

which increases the ion temperature when compared to the same simulation with

rϕ/ain = 0.133. This is due to particles becoming trapped in the potential well of the

charge-induced dipole potential, which exchanges a reduction in the potential energy

with an increase in the kinetic energy. The increase of the fraction of ion-neutral

bound states over time is shown in figure 3.10 for both rϕ/ain values. The recom-

bination fraction was determined from a histogram of nearest neighbor positions, as

described in appendix A. The additional heating due to the ion-neutral three-body

recombination causes the temperature to increase by approximately 75 K and 125 K,

reaching a value near 375 K and 425 K at t × ωpi = 4000 for rϕ/ain values of 0.100

and 0.090 respectively. This corresponds to a time at which 97% of ions have at least

one neutral atom orbiting them. It was observed that the timescale of the ion-neutral

three-body recombination is much longer than ion-neutral temperature relaxation;

∼ 1000ω−1
pi corresponds to ∼ 100s ns.
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Figure 3.10: Ion-neutral three-body recombination rate for a discharge with a ion-
ization fraction xi = 0.01 for different rϕ values. For the case rϕ = 0.133 the bound
states fraction is approximately zero.

3.6 Model for maximum and equilibrium ion temperature.

The maximum and equilibrium ion temperatures can be estimated using simple

energy conservation arguments. Since the increase in the ion temperature is due to

DIH, where the ions travel a distance ≈ aii over a plasma period ω−1
p , the maximum

ion temperature corresponds to that which makes the ion-ion coupling parameter

approximately unity. Utilizing the simulation result that Γii ≈ 1.91 at the peak

temperature and equation (1.7), the maximum ion temperature is estimated to be

Tmax
i =

1

1.91

Z2e2

4πϵ0kB

1

aii
(3.7)

where aii = (3/4πxin)
1/3 is the average interparticle spacing between ions. The

maximum ion temperature estimated with the equation (3.7) shows good agreement

with the results obtained from the MD simulations, as shown in figure 3.11.

If we assume that the total kinetic energy is conserved after DIH until thermo-
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dynamic equilibrium is reached, it is possible to write a simple energy equation to

obtain the equilibrium temperature Teq, i.e., the temperature after ion-neutral ther-

mal equilibration,

Teq = xi T
max
i + (1− xi) Tn(t = 0) (3.8)

where Tn is the neutral atom temperature at the beginning of the simulation, xi is the

ionization fraction and Tmax
i is the maximum ion temperature obtained with equa-

tion (3.7). As shown in figure 3.11, the values of Teq and Tmax
i obtained using the

model show good agreement with MD simulations over a broad range of ionization

fractions. Furthermore, the expected coupling parameter with and without account-

ing for the DIH can be calculated by using the correct equilibrium temperature and

the room temperature respectively, as shown in figure 3.12. The values predicted for

Γeq
ii show good agreement with the results from the MD simulations. It is noticeable

how the coupling parameter at equilibrium is smaller than what would be predicted

using room temperature, since the DIH increases the equilibrium temperature of the

system at large ionization fractions. However, at small ionization fractions the values

for Γii(T0, xi) and Γeq
ii (Teq, xi) match due to the large neutral density compared to the

ion density.
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Figure 3.11: Variation of the maximum ion temperature and equilibrium temperature
with the ionization fraction from the MD simulations and the model.

Figure 3.12: The Coulomb coupling parameter at equilibrium is smaller than the cou-
pling parameter at room temperature without accounting for DIH. At small ionization
fractions Γeq

ii (T
eq, xi) converges to Γii(T0, xi) where T0 is the room temperature.
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3.7 Comparison with experiments

Previous measurements have observed considerable neutral gas heating in ns

pulsed spark discharges at atmospheric pressure. For example van der Horst et al

measured a neutral gas temperature of 750 K at at time 1 µs after ignition in a

N2/H2O mixture [32]. They also showed that the pressure due to the discharge in-

creased to 3 bar and the corresponding ionization fraction was xi = 0.16. Using

the model for the equilibrium temperature from equation (3.8) and the pressure and

ionization fraction measured in [32], we calculate an expected ion-neutral equilibrium

temperature of 765 K with a relaxation time of 2.6 ns. This temperature agrees

quite closely with the experimental measurement. The original reference suggested

that the gas heating may be due to elastic collisions between electrons and N2. For

the conditions of this experiment, the energy transfer time due to elastic collisions

is approximately 0.5 µs, which is near the time at which the temperature was mea-

sured. Measurements at a shorter timescale might reveal the degree to which DIH

may contribute to the observed heating.

DIH is predicted to occur over the first 13 ps after ignition for the pressure and ion-

ization fraction measured in [32]. The subsequent ion-neutral temperature relaxation

occurs over 2.6 ns after the ignition. The noticeable separation of timescales shows

that a better time resolution for experiments could help to identify the responsible

heating mechanisms.

A Lo et al showed that in pulsed discharges in air at atmospheric pressure [3] the

neutral gas temperature at the end of the streamer phase in the center of the discharge

was approximately 1200 K and the electron density at the same time and location

was 9.2 × 1018 cm−3. Assuming quasineutrality and using our model for an initial

temperature of 300K and the corresponding total ion density, the gas temperature

after the DIH and ion-neutral temperature relaxation (which occurs in a timescale

smaller than the duration of the streamer phase) is predicted to be 1250 K. This
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Table 3.2: Comparison of the measured neutral gas temperature to the predicted val-
ues accounting for disorder induced heating and ion neutral temperature relaxation.

Gas
composition

Total ion
density
(m−3)

Measured gas
temperature

(K)

Predicted gas
temperature

(K)
Reference

N2 4× 1024 750 765 [32]
air 9.2× 1024 1200 1250 [3]
air 4× 1025 4800 5000 [26]

agrees well with the experimental measurement.

Finally, we note that not all measurements of neutral gas heating appear to be

explained solely by DIH and additional heating mechanisms might contribute signif-

icantly to the heating observed in some cases. N Minesi et al. [26] studied a fully

ionized atmospheric pressure plasma in a thermal spark with an electron density of

∼ 4 × 1019 cm−3. These measured a neutral gas temperature of 48000 K from the

relative emission intensity of N+ excited states, after 10 ns. Using our model for

an initial temperature of 300 K and the measured density the predicted neutral gas

temperature is only 5000 K, which does not agree with the observed increase in the

temperature. This suggests that the DIH is not a dominant effect and other mecha-

nisms are responsible for the very large neutral gas heating in this experiment. It is

also possible that the experimentally derived temperature from the relative emission

intensity, which assumes a Saha-Boltzmann distribution in equilibrium with the elec-

trons, significantly overestimates the actual gas temperature as the excited states are

often not in equilibrium with the electron temperature in gas discharges [84].

Table 3.2 summarizes these comparisons between the model and experiments. The

results presented here suggest that the DIH and subsequent ion-neutral relaxation

should be considered as a possible mechanism for the observed neutral heating in

multiple experiments where high ionization fractions are achieved.
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3.8 Arbitrary ionization dynamics

The sequence of disorder-induced heating (picosecond) and ion-neutral temper-

ature relaxation (nanosecond) suggests a new mechanism for ultrafast neutral gas

heating. Previous sections considered only the case of an instantaneous ionization

pulse, whereas the ionization pulse extends over nanoseconds in many experiments.

Here, molecular dynamics simulations are used to analyze the evolution of ion and

neutral gas temperatures for a gradual ionization over several nanoseconds. The re-

sults are compared with published experimental results from a nanosecond pulsed

discharge, showing good agreement with a measurement of fast neutral gas heating

in the streamer phase.

Results show that since DIH is a consequence of conservation of energy, from a

thermodynamics standpoint, the total increase in temperature does not depend on

the ionization rate. Instead, it relies solely on the initial and “final” potential configu-

rations of the system, which are determined from the ionization fraction and pressure

of the discharge. These findings offer a refined understanding of the underlying mech-

anisms, showing that when ionization occurs on a nanosecond timescale or slower, the

evolution of the neutral gas temperature due to DIH closely follows the ion density

profile.

In order to validate these predictions, MD simulation results for a gradual ioniza-

tion ramp case are compared with experimental measurements of neutral gas temper-

ature in an atmospheric pressure air nanosecond pulsed discharge from Lo et al. [3].

The good agreement between the simulated evolution of the neutral gas temperature

and experimental measurements suggests that DIH followed by ion-neutral tempera-

ture relaxation has a significant influence on neutral gas heating in these experiments.

A conclusion is that DIH should be considered alongside atomic reaction-based mecha-

nisms for fast gas heating. This novel gas heating mechanism stands out as the fastest

reported to date.
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3.8.1 Setup

Molecular dynamics simulations were run using the open-source software LAMMPS

[75]. The configuration employed builds upon that described in previous section 3.1,

but with the assumption of gradual ionization. Partially ionized monatomic N gas

was simulated instead of Ar with Lennard Jones parameters ϵ = 99.8kB, σ = 0.3667

nm (equation 1.8), and αR = 7.5 (equation 1.9) for N [42]. The P3M method was

used to simulate ion-ion interactions. [74] A separation distance of rc = 10 aii was

selected for differentiating the short and long-range parts of the Ewald summation,

and a cutoff distance of 5σ was applied for the Lennard-Jones potential. To prevent

close interactions that require a short timestep due to the attractive charge-induced

dipole potential, we used a repulsive core with radius rϕ. As shown in section 3.5 a

choice of rϕ ≈ 0.133 ain at atmospheric pressure blocks the three-body recombination

that is unable to be simulated in a classical MD simulation. Three-body recombina-

tion is physically expected to influence plasma dynamics on a longer timescale than

is considered here [2]. A cutoff distance of 5ain, where ain represents the average

ion-neutral spacing, was used for the ion-neutral direct-force calculations.

To study the evolution of a non-equilibrium discharge with an arbitrary ionization

rate, a neutral monatomic N gas at room temperature and atmospheric pressure was

simulated until equilibrium was reached as delineated in [2]. This stage of the simu-

lation was run with a Nosé-Hoover thermostat (NVT ensemble) followed by an NVE

simulation once room temperature was reached [74]. The NVE simulation included

neutral-neutral, ion-neutral, and ion-ion interactions with the potentials detailed in

equations 1.8, 1.9, and 1.10. In this stage, the ion density ni(t) was an input param-

eter. The timestep used was 5 × 10−4(ωmax
pi )−1, where ωmax

pi is the maximum plasma

frequency corresponding to the maximum ion density nmax
i . The total number of par-

ticles was 50,000. The simulation domain was a three-dimensional box with periodic

boundary conditions, and the volume was set to ensure that at the initial room tem-
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perature and with 50,000 atoms, the total gas density was approximately 2.5 × 1025

m−3, corresponding to atmospheric pressure.

Here, we compare our MD simulations with a nanosecond pulsed discharge exper-

iment conducted in atmospheric air, as reported by Lo et al. [3]. The experimental

setup involved the generation of a discharge via a positive high-voltage pulse applied

to pin-to-pin electrodes over a duration of 15 ns. Within this time frame, a streamer

phase emerged, propagating between the electrodes, which subsequently transitioned

into a spark phase characterized by low voltage and high current. Optical emission

spectroscopy measurements indicated an ultra-fast gas heating, reaching tempera-

tures up to 1200 K at 15 ns post-current rise [3]. In addition, the electron density

was measured at the end of the streamer phase to be 9.2× 1024 m−3. Our analysis is

particularly concentrated on this initial streamer phase.

To replicate these experimental conditions in the MD simulations, we employed

the following method during the second NVE stage. A subset of neutral atoms was

randomly ionized at intervals of every nt timesteps, resulting in the conversion of

approximately 10 neutral atoms into ions per ionization event. The value of nt was

dynamically adjusted to achieve a desired ion density profile, denoted as ni(t). It is

crucial to note that we have intentionally omitted certain heating mechanisms com-

monly believed to contribute to gas heating in order to isolate the effect of DIH and

assess its potential impact on the neutral gas temperature. Specifically, our sim-

ulations employed a monatomic nitrogen gas model, thereby neglecting dissociation

processes. Furthermore, quenching of electronically excited species was not accounted

for and no external electric field was included.

Figure 3.13(a) illustrates three distinct ionization profiles, xi(t) = ni(t)/n, used

in the simulations: an instant ionization profile, a linear ionization profile, and an

ionization profile proportional to the deposited energy measured in the experiment

reported by Lo et al. [3]. The maximum ion density simulated was 9.2 × 1024 m−3
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(xi ≈ 0.368), aligning with the maximum electron density documented in reference

[3].

3.8.2 Results

Figure 3.13(b) illustrates the evolution of ion and neutral gas temperatures for

each of the ionization profiles. In the cases of gradual ionization, the ion temperature

exhibits a peak on a ns timescale. This is associated with ionization events that cause

DIH on a timescale that is shorter than the ion-neutral relaxation timescale. Following

this initial surge, the ion temperature declines as the ion and neutral temperatures

approach one another on a timescale of a few nanoseconds. At later times, the ion

and neutral temperatures are approximately equal, and rise at the same rate. This

incremental rise is attributed to disorder-induced heating, occurring continuously with

ion-neutral temperature relaxation as the neutral gas undergoes ionization during

the simulation. Ionization proceeds at a much slower pace compared to DIH and

the ensuing ion-neutral temperature relaxation. Therefore, both ions and neutrals

elevate their temperature according to the same temperature profile, defined by the

ionization fraction xi(t). The dynamics of ion and neutral temperatures contrasts

with the instantaneous ionization case, assumed in section 3.3 [2], where for the same

ionization fraction ions heat much faster, on a ps timescale to a maximum temperature

of ∼ 2800 K. Then, ions cool through ion-neutral collisions, increasing the neutral

gas temperature on a ∼ ns timescale.

It is noteworthy that the moment the ionization ceases (at 15 ns for the gradual

ionization profiles) the temperatures of the ion and neutral gases align, reaching a

state referred to as “equilibrium”. The “equilibrium” temperature between ions and

neutrals, discerned in figure 3.13(b), is measured at 1275 K and does not depend on

the ionization dynamics, since all the simulated ni(t) profiles reach the same final

temperature. This is in agreement with the model described in equation 3.8, which
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Figure 3.13: (a) Ionization fraction profiles used in the MD simulations. (b) Evolution
of ion and neutral temperatures from MD simulations for each ionization fraction
profile shown in (a). Continuous lines represent the ion temperature while dashed
lines represent the neutral gas temperature. A vertical dashed line marks the instant
at which ionization stops for the cases of gradual ionization.
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forecasts an equilibrium temperature of 1272 K. Beyond the 15 ns mark, the simula-

tions persists without alterations in the ionization degree, and no further changes in

the temperature are observed. It is noteworthy that although the three different MD

simulations have different ionization timescales, they all converge to the same “equi-

librium” temperature. The congruence of the final temperature for all the simulations

and its accord with equation 3.8 highlights that the total energy released by DIH is

independent of the ionization dynamics, depending only on the initial conditions and

final ionization state.

3.8.3 Comparison with experiment

Figure 3.14 presents a comparison between the neutral gas temperature obtained

from MD and the published measurements from Lo et al [3]. Molecular dynamics

results are shown for both of the gradual ionization profiles depicted in figure 3.13(b).

The final “equilibrium” temperature from the MD simulations aligns well with the

experimental results. The simulations also agree with the experimental measurements

of the temperature evolution, extending from the initiation of the discharge up to 15

ns. Moreover, the temperature determined using an ionization profile founded on the

deposited energy profile measured experimentally, demonstrates good agreement with

the measured temperature [3].

It is important to highlight that the MD simulations did not incorporate heating

mechanisms related to plasma chemistry, such as spontaneous dissociation or quench-

ing of electronically excited molecules, nor did they include the external electric field

or elastic electron-neutral collisions. Furthermore, the simulation domain consisted

of a small periodic box with a total number of atoms and ions of 50,000, and thus

excluded geometric effects. The simulation setup rests exclusively on thermodynamic

arguments and it still is able to recover the experimentally observed temperature

profile, including only interactions between ion and neutral atoms through the poten-
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tials described in equations 1.8-1.10. Conversely, Lo et al.[3] attribute the detected

gas heating in the streamer phase to the well-recognized quenching of electronically

excited species by oxygen molecules. However, the commonly assumed mechanism

is more likely to have occurred over 10’s of ns and was thus a significant mechanism

for spark-timescale temperature increases but not the streamer initiation-timescale

heating. This suggests that DIH and ion-neutral temperature relaxation might con-

stitute an essential ultra-fast heating mechanism, one that has been overlooked in the

current analysis of cold atmospheric pressure plasmas.

In Lo et al. [3], the discharge transitioned into a spark after 15 ns, with the gas

heating persisting over an extended timescale. This concurs with the timescale argu-

ment employed here, suggesting that while alternative heating mechanisms commonly

found in partially ionized plasmas still occur, DIH can significantly influence the ion

and neutral gas temperatures on a much shorter timescale and should be incorporated

in future analyses.
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Figure 3.14: Evolution of the neutral gas temperature from molecular dynamics, using
the gradual ionization fraction profiles shown in figure 3.13(a) and from a nanosecond
pulsed discharge in atmospheric air [3].

3.9 Effect of rotational degrees of freedom in molecular plas-

mas

Previous sections described DIH in the context of atomic gases after an instant ion-

ization pulse, here we extend these results to molecular plasmas. The work presented

in this section was led by Jarett LeVan and the author of this thesis participated

as a coauthor. A main finding is that the energy gained by ions in disorder-induced

heating gets spread over both translational and rotational degrees of freedom on a

nanosecond timescale, causing the final ion and neutral gas temperatures to be lower

in the molecular case than in the atomic case [4]. However, it is important to note

that in a real discharges in molecular gases, large ionization fractions are achieved

after dissociation, making these results less relevant at the regimes where DIH con-

tributes significantly to gas heating. The importance of dissociation to achieve large
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ionization fractions and its influence in gas heating are described in chapter IV.

Using molecular dynamics (MD) simulations of Nitrogen gas (N2), we find that

DIH causes the ion translational temperature to rapidly increase over approximately

one ion plasma period (≈ 1 ps). This is followed by translational-rotational and ion-

neutral relaxation processes that occur in roughly 1 ns. The latter process leads to

fast neutral gas heating. A main finding is that the translational-rotational energy

exchange leads to a lower total temperature resulting from DIH than in the atomic

case. This is because the kinetic energy gained by ions from DIH gets distributed

amongst more degrees of freedom in the molecular case. Considering N2, the kinetic

energy gain is eventually spread equally over 3 translational and 2 rotational degrees

of freedom, for a total of 5. This contrasts with the 3 degrees of freedom in the

atomic case. Furthermore, we confirm that this principle extends to molecules with

3 rotational degrees of freedom by simulating an N4 molecular plasma. Despite the

reduction in temperature due to the presence of rotational degrees of freedom, DIH

can still cause a temperature increase on the order of thousands of Kelvin.

3.9.1 Setup

Molecular dynamics simulations were run using LAMMPS [75]. Nitrogen (N2)

molecules were modelled as rigid rotors, allowing for no vibration, and all ions were

modelled as N+
2 , consisting of a neutral atom rigidly bonded to an ion. A bond length

of 1.09 Å[85] was held constant using the “fix rigid” command in LAMMPS, which

solves the forces and torques on each rigid body by summing the forces and torques on

its constituent atoms. This approach ignores vibration, an assumption expected to be

valid because the characteristic vibrational temperature of N2 is 3374 K [86] and the

temperature is far below this for the majority of the simulation. Additionally, DIH

and the subsequent ion-neutral energy relaxation occur at the nanosecond timescale

or less, while translational-vibrational energy exchange in N2 occurs on a microsecond
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timescale [87]. A real ionization process will certainly create excited vibrational states,

but this does not affect DIH because the ion and neutral atom temperatures are too

low to couple to the vibrational modes.

Electrons were left out of the simulation because their high temperature in CAPPs

make them weakly coupled as described in previous chapters. In strongly coupled

plasmas, treating electrons as a non-interacting background species yields accurate

ion and neutral dynamics, as commonly done in the one-component plasma (OCP)

model [88]. Chemical effects were also left out as they are beyond the scope of this

chapter, however they will be discussed in chapter IV.

Interactions were modelled on a per-atom basis, with the ion-ion, ion-neutral, and

neutral-neutral interaction potentials given by the Coulomb, charge-induced dipole,

and Lennard-Jones potentials described in equations 1.10, 3.1, 1.8 with ϵ = 99.8kB,

σ = 0.3667 nm, and αR = 7.5 for N2.

This section will focus on data from the N2 simulations. However, for comparison’s

sake, simulations of N and N4 were also run. The atomic nitrogen simulations were run

in the exact same fashion as the previous sections and in [2]. In the N4 simulations,

N4 was modelled using an open-chain geometry as described by Glukhovtsev and

Laiter [89]; a structure which, importantly, has three rotational degrees of freedom.

All N4 ions were modelled as N+
4 , with one of the two middle atoms ionized and a

modified LJ coefficient ϵ = 29.0kB was used in order to prevent significant neutral

gas correlations.

To start the simulations, 10,000 molecules of neutral gas was evolved under the

influence of a thermostat until equilibrium at room temperature was reached. Then,

a fraction of the molecules were instantly ionized and an NVE (microcanonical) sim-

ulation was run with timestep ∆t = 5 × 10−4ω−1
pi , a value found to be sufficiently

small for conserving energy. Molecule positions and velocities were output once ev-

ery plasma period and used to calculate translational and rotational temperatures.
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The simulation domain was a 3-dimensional box with periodic boundary conditions.

Three simulations for each of N, N2, and N4 were run at every tenth ionization fraction

from 0.10 to 0.70. Data was averaged across the three trials to minimize statistical

deviation.

3.9.2 MD results

The averaged time-evolution of the component temperatures from a particular set

of simulations, N2 at a 0.30 ionization fraction, can be seen in figure 3.16. This plot

shows results of the NVE stage simulation and t = 0 refers to the time immediately

following ionization. A sharp spike can be seen in the translational temperature of

N+
2 , reaching its peak after 2.22 ps (1.52 ω−1

pi ). This is disorder-induced heating.

Molecules, upon being ionized, structurally rearrange themselves until they reach

their state of minimal potential energy, increasing their translational kinetic energy

in the process. This heating is followed by collisional relaxation, during which the

N+
2 translational temperature equilibrates with the rest of the degrees of freedom in

the simulation over the course of one nanosecond, ultimately reaching an equilibrated

temperature of 732 K. Figure 3.15 shows an illustration of this process.

Figure 3.15: Illustration of the disorder-induced heating process. Ionization trans-
forms neutral gas into a nonequilibrium plasma. Coulomb repulsion causes the ions
to separate on a picosecond timescale, causing significant translational heating. Col-
lisions then distribute this energy across neutral and rotational degrees of freedom
until they reach an equilibrium. The collision relaxation timescale near atmospheric
pressure is often characteristic of nanoseconds.

Simulations of each gas type, N, N2, and N4, followed a similar time-evolution to
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figure 3.16. Ion translational temperatures always peaked after 1.5 plasma periods,

consistent with the atomic ion case [2], and equilibration always occurred in roughly

one nanosecond. However, they all produced differing equilibrium temperatures. We

found the equilibrium temperature scales with the ionization fraction x
4/3
i , again

consistent with section 3.6. This is caused by an increased ion density and thus an

increased chance of two ions being generated in close enough proximity to gain an

energy exceeding the initial thermal energy as they repel.

It is also observed that the equilibrated temperature is inversely proportional to

the number of degrees of freedom present, implying Teq,N > Teq,N2 > Teq,N4 , as shown

in figure 3.17. This comes as a direct consequence of the equipartition theorem.

Figure 3.18 shows that, for a given ion density, N, N2, and N4 plasmas convert the

same amount of potential energy to kinetic energy. However, in N4, this energy must

be spread across 6 degrees of freedom (3 translational and 3 rotational), while it is

spread across just 5 in N2 and 3 in N. It is clear, then, that DIH models must consider

the number of active degrees of freedom.
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Figure 3.16: Simulated time-evolution of the temperature components of an N2

plasma at a 0.30 ionization fraction. Lines correspond to the ion translational temper-
ature (blue), ion rotational temperature (orange), neutral molecule rotational tem-
perature (green), and neutral molecule rotational temperature (red).

Figure 3.17: Simulated and predicted temperatures of N, N2, and N4 plasma using
the approximate and precise formulation from [4] with the ion-ion g(r) computed from
MD. These models are based on the same principle described in previous sections,
conversion from potential to kinetic energy due to DIH.
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Figure 3.18: Change in total kinetic energy density (with respect to t = 0) for N, N2,
and N4. This data comes from simulations at an ionization fraction of 0.30.

3.10 General model for DIH and temperature evolution

While a model based on conservation of energy to estimate the increase in ion and

neutral gas temperatures due to DIH was described in section 3.6 [2], it is limited

to the instant ionization case. This section describes a generalized model for DIH in

the context of an arbitrary ionization dynamics, and validates it against molecular

dynamics simulations. Subsequently, this model is incorporated into a global plasma

chemistry model for a nanosecond pulse discharge in atmospheric N2 in chapter IV.

The importance of developing a general model for DIH under an arbitrary ioniza-

tion dynamics lies in how plasmas discharges are modeled. Most nanosecond pulsed

discharges are studied using plasma chemistry global models, as described in section

2.2. In these models, the evolution of the gas and ion temperatures are solved by

integrating equations 2.9 and 2.10 over time. Hence, it is necessary to have a model

for DIH that can be easily integrated in a numerical algorithm where equations 2.9

and 2.10 are solved.
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3.10.1 Setup

The molecular dynamics setup used consists in what is described in section 3.8.1

but with a smaller number of ionization steps. Here, only 40 ionization steps are used

to showcase the difference in timescale between DIH and the ion-neutral temperature

relaxation. This is done in order to illustrate how the model for DIH is implemented.

A linear ionization rate is assumed with a final ionization fraction of 20% after 5 ns,

then the simulation continues for 1.5 ns without additional ionization. Hence, the

ionization fraction increases by 0.5% on each ionization step and the time between

ionization steps is 0.125 ns. The timestep used for the MD simulation was 10−3/ωmax
pi ,

where ωmax
pi is the ion plasma frequency at the maximum ion density, after 5 ns. The

total number of particles was 50000 and the parameters used for the charged induced

dipole and Lennard Jones potential are given in section 3.8.1 for atomic nitrogen.

3.10.2 MD results

In a discharge with an arbitrary but gradual ionization rate, DIH occurs contin-

uously as ions are created from the background neutral gas. To illustrate this, figure

3.19 shows the ion-ion radial distribution function g(r), right after ionization and after

1.5 the inverse of the ion plasma frequency, once DIH happens in one of the ionization

steps. As observed, there is a small peak at a short distance after ionization, which

corresponds to the newly created ions at random positions. After DIH happens, the

newly created ions separate from the ions closest to them and the system evolves to

the lowest potential configuration increasing the kinetic energy. The g(r) after DIH

corresponds to a one component plasma at the corresponding coupling strength [2].

Figure 3.20 shows the evolution of ion and neutral gas temperatures from molec-

ular dynamics using the described setup. The choice of doing 40 ionization steps was

done to showcase how DIH happens every time an ionization step occurs. The ion

temperature follows two stages between ionization steps. First, a rapid increase due
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Figure 3.19: Ion-ion radial distribution function right after ionization and after DIH.
The peak at small distances after ionization correspond to the newly created ions.

to DIH on a timescale given by the instantaneous value of 1.5ω−1
pi , followed by an

ion-neutral temperature relaxation through collisions, as described in previous sec-

tions. This process is repeated until the final ionization fraction is reached. The

neutral gas temperature however, continuously increases due to collisions with ions

until equilibrium is reached with the ion temperature after the last ionization step.

Doing the ionization steps numerically more gradually, while maintaining the same

ionization rate, would not change the rate of increase of the neutral gas temperature

in this case. Hence, the model that is described in the following section also applies to

the limit where the same timestep is used for ionization and temperature relaxation.

3.10.3 Model and discussion

In order to model DIH it is necessary to capture the change in the ion-ion g(r)

between each ionization event and the subsequent DIH. In addition, this is followed

by ion-neutral collisions that cool ions and heat neutrals, thus, the model can be
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Figure 3.20: Evolution of ion (Ti) and neutral gas (Tn) temperatures from a molec-
ular dynamics simulation using the numerical setup described in [5] but with a final
ionization fraction of 20% and having only 40 ionization substeps.

separated in two stages, DIH and ion-neutral relaxation through collisions. Hence,

the calculation of the change in potential energy between the two described states

of ions, after ionization and after DIH, is necessary. From statistical mechanics, the

change in potential energy of ions in the system between two consecutive states where

ionization happened is given by

∆PEk+1
ii = 2πnk+1

i xk+1
i

∞∫
0

drr2ϕc(r)
[
g̃k+1
ii − g

′k
ii

]
(3.9)

where k and k+1 corresponds to the two instants of time, after ionization and after

DIH, g̃k+1
ii is the ion-ion radial distribution function after DIH and g

′k
ii after ionization,

ϕc(r) is the Coulomb potential and xi the ionization fraction.

The radial distribution function right after ionization, g
′k
ii can be expressed as a

function of the ion-ion radial distribution function gkii and the ion-neutral distribution

74



function gkin right before ionization

g
′k
ii =

xk
i

xk+1
i

gkii +
∆xk

i

xk+1
i

gkin. (3.10)

Using equation 3.10, the change in potential energy can be rewritten as

∆PEk+1
ii =

e2

2ϵ0
nk+1(ak+1

ii )2
[
I∗(Γmin

ii )−
(

xk
i

xk+1
i

)
I∗(Γk

ii)−
(
∆xk

i

xk+1
i

)
I∗(gkin)

]
(3.11)

where I∗(Γii) =
∫∞
0

drr (g(r)− 1), with g(r) the OCP radial distribution function for

Γii and I∗(gkin) =
∫∞
0

drr
(
gkin(r)− 1

)
. The radial distribution function gkin(r) can be

approximated as a step function at r = 0.133ain, with ain the average interparticle

distance between ion-neutral pairs, since ion-neutral interactions are weakly coupled

and the distance at which gkin(r) becomes 1 corresponds to hard core radius used in

equation 3.1 [2]. Figure 3.21 shows a fit to I∗(Γii),

I∗(Γ) =
a

(b+ Γ)c
+ d (3.12)

with parameters a = 0.6032, b = 0.0372, c = 0.1549 and d = −0.9917. Then, to

calculate the change in the ion temperature due to DIH one needs to solve

T̃ k+1
i =

(
xk
i

xk+1
i

)
T k
i +

(
∆xk

i

xk+1
i

)
T k
n − 2

3kB
∆PEk+1

ii (3.13)

iteratively on to find T̃ k+1
i . After each DIH step, the ion-neutral temperature relax-

ation must be calculated at the corresponding time between k and k+1, starting with

an ion temperature given by T̃ k+1
i and a neutral temperature of T k

n . The ion-neutral

temperature relaxation is done by solving equations 3.2 and 3.3 until temperatures

T k+1
i and T k+1

n are calculated. This process is repeated every time there is an increase

in ni due to ionization.
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Figure 3.21: Integral I∗ =
∫∞
0

dr̃ r̃ [g(r̃)− 1] for different values of the macroparticle
coupling parameter Γw

ee and fit I∗(Γ) = a/(b + Γ)c + d with parameters a = 0.6032,
b = 0.0372, c = 0.1549 and d = −0.9917.

The ion and neutral gas temperatures calculated with the model are shown in

figure 3.20. In addition, the maximum ion temperature, after each DIH stage (T̃ k+1
i )

is shown. The model described for DIH and ion-neutral temperature relaxation shows

a good agreement with the temperatures obtained from molecular dynamics. The

following chapter integrates this model into a global plasma chemistry model of a

nanosecond pulsed discharge.
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CHAPTER IV

Global model for a nanosecond pulsed discharge in

atmospheric N2 with disorder induced heating

4.1 Global model

This chapter introduces a comprehensive model integrating disorder induced heat-

ing in a global plasma chemistry model to examine nanosecond pulse discharges in

atmospheric nitrogen. While traditional global models have focused predominantly

on mechanisms such as dissociation and excitation of molecular nitrogen, this work

extends the modeling framework to include DIH, offering a detailed exploration of

its role alongside other fast gas heating mechanisms. It is observed that while disso-

ciation remains a dominant heating mechanism at high reduced electric fields, DIH

additionally increases the temperature by 20% after reaching full dissociation and

ionization at atmospheric pressure. Furthermore, if the initial pressure of the neu-

tral gas is increased to 10 atmospheres, DIH increases the overall temperature by

60% after reaching full ionization. It is also observed that when the reduced electric

field is not large enough to fully ionize the gas, but large enough such that the total

ion density makes DIH relevant, electrons lose less energy to ions through collisions

due to the larger ion temperature, increasing the rate of inelastic processes. Hence,

when DIH is included in the model, it indirectly helps to increase the dissociation

77



and ionization degrees. This effect becomes more important as the pressure increases

above one atmosphere. These results indicate that while DIH is not the predominant

source of gas heating in atmospheric pressure plasmas, it can be non negligible and

indirectly influence the plasma chemistry. This indicates that DIH could potentially

have major implications in discharges at higher pressures and should be included in

global models for such conditions.

4.2 Reaction set for molecular nitrogen

The reaction set used in this work is based to what is described by Minesi et al [72]

for an atmospheric air nanosecond pulsed discharge global model with the difference

that here, all the reactions involving oxygen are removed and quenching reactions

relevant for gas heating mechanisms are incorporated. In addition, the energy released

due to dissociation of molecular nitrogen is accounted for in order to include possible

gas heating mechanisms. It is important to remark that, vibrational states are not

included with the exception of N2(A
3Σ)(v=1-10), which are grouped into the N2(A

3Σ)

excited state [6, 90]. This approximation was made in order to simplify the reaction

set, however, it reduces the possible number of dissociation and ionization pathways

and thus, gas heating mechanisms. Future work should include a more complete

reaction set to include additional possible dissociation pathways in order to have a

more accurate gas heating analysis. Here, we only focus on having a simple but first

comparison between different chemistry-related gas heating mechanisms and DIH and

its influence in the overall plasma chemistry at and above atmospheric pressure.

In the reaction set used in this work, for electron-heavy reactions, the rate coeffi-

cient is a function of the electron temperature. For heavy-heavy reactions, the rate

coefficient is a function of the gas temperature with the exception of charge exchange

where the rate coefficient is calculated using the ion temperature. The rate coefficients

are calculated assuming a Maxwellian distribution at the corresponding temperature
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as described in chapter II. The approximation of a Maxwellian EEDF is valid for

atmospheric N2 and air nanosecond pulsed discharges at ionization fractions above

1% as described in [6, 91]. The cross-section of electron-impact excitation of N2 to

N2(A
3Σ+

u ) is the sum of the cross-sections to the N2(A, v = 1− 10) levels taken from

[6, 90]. The N2(B
3Πg, B

3Σ−
u , W

3∆u) states are lumped together in the N2(B) state,

using the cross-sections of [92] as described by [6]. Differently than in [6], N2(C
3Πu,

E3Σ+
g ) states are not grouped. In addition, instead of grouping N2(a

′1Σ−
u , a1Πg,

w1∆u) singlet states in the N2(a
′) state [6], here we only group N2(a

′1Σ−
u , w

1∆u) into

N2(a
′) and we track separately the N2(a

1Πg) state because their dissociation cross-

sections differ by one order of magnitude. The electronic excitation of N2(A, B, C,

a′,a1, E) by electron impact as well as the transitions between the N+
2 (X, A, B, C)

states by electron impact are taken from [93]. The ionization cross-sections of N2(X)

to N+
2 (X, B), were estimated in [94]. The ionization cross-sections of N2(A, B, a

′,

a1, C, E) are taken from [93]. The dissociation cross-section of N2 ground state, is

taken from [95, 96], whereas the dissociation cross-sections of the electronically ex-

cited states are from [93]. In electron-impact dissociation of any electronic state of

N2, the fragments are N(4S) and N(2D) [95, 96]. We neglect the formation of excited

electronic states of N+. A summary of the electronic levels of N2 and N modeled in

the present reaction set is given in table 4.1. In this model, the N2 dissociation and

ionization by electron-impact are state-specific and more details are given in table

4.6 with the cross sections taken from [93]. The quenching of N2 excited states is

taken from the work of Popov [22] and provided by Mark Zammit at Los Alamos. It

was shown in [22] that this set reproduces the ultrafast heating observed in [20] and

[33, 97]. Electron impact excitation and ionization of N are taken from [98, 99]. Pen-

ning and associative ionization of N2 reactions are included from [100]. The present

reaction set does not include spontaneous emission from N2 excited states and photo

ionization of molecular nitrogen.

79



In order to account for gas heating mechanisms, the energy released (∆H < 0) in

the electron impact dissociation reactions as well as quenching of N2 excited states

is accounted for. In the case of dissociation, since some of the excited states are

lumped together, ∆H is calculated as a weighted average based on the dissociation

cross sections from each of the grouped excited states. Tables 4.6 and 4.9 show the

dissociation and quenching reactions with the respective ∆H values. Additional gas

heating mechanisms are included, as described in chapter II, due to charge exchange

and momentum transfer collisions between neutrals and ions. In order to have a

more complete reaction set, additional dissociation pathways should be included, in

particular from vibrational excited states.

While this reaction set and the global model implemented in this work, described

in chapter II, do not include reverse rates it is important to remark that when full

ionization is achieved in experiments at atmospheric pressure, the plasma is expected

to be at LTE. This means that the results obtained in this chapter could change in

terms of the relative population of excited states and final ionization degree. However,

the current analysis is focused on a simple comparison between DIH and already

studied gas heating mechanisms. Future work, should include the model for DIH

presented in this work in a more accurate global model with a more complete reaction

set. In addition, the reaction set described here is used at one and ten atmospheres

of initial pressure. However, for pressures larger than one atmosphere, three body

reactions should be included. In addition to the mentioned approximations, this

work does not include any diffusion loses or gas flow, since we only consider very

short nanosecond pulses focusing on the ionization dynamics and disorder induced

heating.
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Table 4.1: Electronic levels of N2, N included in the reaction set. The energy is given
relative to the ground state. The main difference with [6] is that here we incorporate
the N2(a

1Πg) and N2(E
3Σ+

g ) states. A total of 19 different species are included in the
model.

State Configuration E (eV)
N(4S◦) 2s22p3 0
N(2D◦) 2s22p3 2.38
N(2P◦) 2s22p3 3.575
N(4P) 2s22p3(3P )3s 10.33
N(2P) 2s22p3(3P )3s 10.68
N(4P) 2s22p4 10.92
N(2S◦) 2s22p2(3P )3p 11.60
N(4D◦) 2s22p2(3P )3p 11.75

N2(X
1Σ+

g ) 0
N2(A

3Σ+
u ) 6.23

N2(B
3Πg) 7.40

N2(a’
1Σ−

u ) 8.55
N2(a

1Πg) 8.89
N2(C

3Πu) 11.06
N2(E

3Σ+
g ) 11.88

N+
2 (X

2Σ+
g ) 0

N+
2 (A

2Πu) 1.13
N+

2 (B
2Σ+

u ) 3.16
N+

2 (C
2Σ+

u ) 8.02
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Table 4.2: Electron Impact excitation of N2

# Reaction
1 e + N2 → e + N2(A

3Σ)(v=0-4)
2 e + N2 → e + N2(A

3Σ)(v=5-9)
3 e + N2 → e + N2(A

3Σ)(v=10)
4 e + N2 → e + N2(B

3Π)
5 e + N2 → e + N2(a

1Π)
6 e + N2 → e + N2(a

′1Σ)
7 e + N2 → e + N2(C

3Π)
8 e + N2 → e + N2(E

3Σ)
9 e + N2(A

3Σ) → e + N2(B
3Π)

10 e + N2(A
3Σ) → e + N2(a

′1Σ)
11 e + N2(A

3Σ) → e + N2(a
1Π)

12 e + N2(A
3Σ) → e + N2(C

3Π)
13 e + N2(A

3Σ) → e + N2(E
3Σ)

14 e + N2(B
3Π) → e + N2(a

′1Σ)
15 e + N2(B

3Π) → e + N2(a
1Π)

16 e + N2(B
3Π) → e + N2(C

3Π)
17 e + N2(B

3Π) → e + N2(E
3Σ)

18 e + N2(a
′1Σ) → e + N2(a

1Π)
19 e + N2(a

′1Σ) → e + N2(C
3Π)

20 e + N2(a
′1Σ) → e + N2(E

3Σ)
21 e + N2(a

1Π) → e + N2(C
3Π)

22 e + N2(a
1Π) → e + N2(E

3Σ)
23 e + N2(C

3Π) → e + N2(E
3Σ)
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Table 4.3: Electron Impact Ionization of N2

# Reaction
24 e + N2 → e + e + N+

2

25 e + N2(A
3Σ) → e + e + N+

2

26 e + N2(B
3Π) → e + e + N+

2

27 e + N2(C
3Π) → e + e + N+

2

28 e + N2(a
′1Σ) → e + e + N+

2

29 e + N2(a
1Π) → e + e + N+

2

30 e + N2(E
3Σ) → e + e + N+

2

31 e + N2 → e + e + N+
2 (A

2Πu)
32 e + N2 → e + e + N+

2 (B
2Σ+

u )
33 e + N2 → e + e + N+

2 (C
2Σ+

u )
34 e + N2(A

3Σ) → e + e + N+
2 (A

2Πu)
35 e + N2(A

3Σ) → e + e + N+
2 (B

2Σ+
u )

36 e + N2(A
3Σ) → e + e + N+

2 (C
2Σ+

u )
37 e + N2(B

3Π) → e + e + N+
2 (A

2Πu)
38 e + N2(B

3Π) → e + e + N+
2 (B

2Σ+
u )

39 e + N2(B
3Π) → e + e + N+

2 (C
2Σ+

u )
40 e + N2(C

3Π) → e + e + N+
2 (A

2Πu)
41 e + N2(C

3Π) → e + e + N+
2 (B

2Σ+
u )

42 e + N2(C
3Π) → e + e + N+

2 (C
2Σ+

u )
43 e + N2(a

′1Σ) → e + e + N+
2 (A

2Πu)
44 e + N2(a

′1Σ) → e + e + N+
2 (B

2Σ+
u )

45 e + N2(a
′1Σ) → e + e + N+

2 (C
2Σ+

u )
46 e + N2(a

1Π) → e + e + N+
2 (A

2Πu)
47 e + N2(a

1Π) → e + e + N+
2 (B

2Σ+
u )

48 e + N2(a
1Π) → e + e + N+

2 (C
2Σ+

u )

Table 4.4: Electron impact excitation of N2 ions

# Reaction
49 e + N+

2 → e + N+
2 (A

2Πu)
50 e + N+

2 → e + N+
2 (B

2Σ+
u )

51 e + N+
2 → e + N+

2 (C
2Σ+

u )
52 e + N+

2 (A
2Πu) → e + N+

2 (B
2Σ+

u )
53 e + N+

2 (A
2Πu) → e + N+

2 (C
2Σ+

u )
54 e + N+

2 (B
2Σ+

u ) → e + N+
2 (C

2Σ+
u )
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Table 4.5: Electron impact excitation of atomic N

# Reaction
55 e + N → e + N(2D0)
56 e + N → e + N(2P 0)
57 e + N → e + N(4P )
58 e + N → e + N(2P )
59 e + N → e + N(2s22p4)
60 e + N → e + N(2S0)
61 e + N → e + N(4D0)
62 e + N(2D0) → e + N(2P 0)
63 e + N(2D0) → e + N(4P )
64 e + N(2D0) → e + N(2P )
65 e + N(2D0) → e + N(2s22p4)
66 e + N(2D0) → e + N(2S0)
67 e + N(2D0) → e + N(4D0)
68 e + N(2P 0) → e + N(4P )
69 e + N(2P 0) → e + N(2P )
70 e + N(2P 0) → e + N(2s22p4)
71 e + N(2P 0) → e + N(2S0)
72 e + N(2P 0) → e + N(4D0)
73 e + N(4P ) → e + N(2P )
74 e + N(4P ) → e + N(2s22p4)
75 e + N(4P ) → e + N(2S0)
76 e + N(4P ) → e + N(4D0)
77 e + N(2P ) → e + N(2s22p4)
78 e + N(2P ) → e + N(2S0)
79 e + N(2P ) → e + N(4D0)
80 e + N(2s22p4) → e + N(2S0)
81 e + N(2s22p4) → e + N(4D0)
82 e + N(2S0) → e + N(4D0)
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Table 4.6: Electron Impact Dissociation of N2 and N+
2

# Reaction ∆H (eV)
83 e + N2 → e + N + N(2D0) -0.90
84 e + N2(A

3Σ) → e + N + N(2D0) -0.72
85 e + N2(B

3Π) → e + N + N(2D0) -0.84
86 e + N2(a

′1Σ) → e + N + N(2D0) -3.05
87 e + N2(C

3Π) → e + N + N(2D0) -0.43
88 e + N2(E

3Σ) → e + N + N(2D0) -2.78
89 e + N2(a

1Π) → e + N + N(2D0) -2.45
90 e + N+

2 → e + N(2D0) + N+ -0.34
91 e + N+

2 (A
2Πu) → e + N(2D0) + N+ -1.34

92 e + N+
2 (B

2Σ+
u ) → e + N(2D0) + N+ -0.96

93 e + N+
2 (C

2Σ+
u ) → e + N(2D0) + N+ -0.96

Table 4.7: Electron impact ionization of atomic N

# Reaction
94 e + N → e + e + N+

95 e + N(2D0) → e + e + N+

96 e + N(2P 0) → e + e + N+

97 e + N(4P ) → e + e + N+

98 e + N(2P ) → e + e + N+

99 e + N(2s2p4) → e + e + N+

100 e + N(2S0) → e + e + N+

101 e + N(4D0) → e + e + N+

Table 4.8: Associative and Penning ionization

# Reaction
102 N(2D0) + N(2P 0) → e + N+

2

103 N(2P 0) + N(2P 0) → e + N+
2

104 N2(a
′1Σ) + N2(a

′1Σ) → e + N2 + N+
2

105 N2(a
′1Σ) + N2(A

3Σ) → e + N2 + N+
2

Table 4.9: Quenching

# Reaction ∆H (eV)
106 N2(A

3Σ) + N2(A
3Σ) → N2(B

3Π) + N2 -4.99
107 N2(A

3Σ) + N2(A
3Σ) → N2(C

3Π) + N2 -1.31
108 N2(B

3Π) + N2 → N2 + N2 -7.35
109 N2(B

3Π) + N2 → N2(A
3Σ) + N2 -1.18

110 N2(C
3Π) + N2 → N2(a

′1Σ) + N2 -2.63
111 N2(a

′1Σ) + N2 → N2(B
3Π) + N2 -1.05
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Table 4.10: Electron - neutral elastic scattering

# Reaction
112 e + N2 → e + N2

113 e + N2(A
3Σ) → e + N2(A

3Σ)
114 e + N2(B

3Π) → e + N2(B
3Π)

115 e + N2(C
3Π) → e + N2(C

3Π)
116 e + N2(a

′1Σ) → e + N2(a
′1Σ)

117 e + N2(E
3Σ) → e + N2(E

3Σ)
118 e + N2(a

1Π) → e + N2(a
1Π)

119 e + N → e + N
120 e + N(2D0) → e + N(2D0)
121 e + N(2P 0) → e + N(2P 0)
122 e + N(4P ) → e + N(4P )
123 e + N(2P ) → e + N(2P )
124 e + N(2s2p4) → e + N(2s2p4)
125 e + N(2S0) → e + N(2S0)
126 e + N(4D0) → e + N(4D0)

Table 4.11: Coulomb collisions

# Reaction
127 e + N+ → e + N+

128 e + N+
2 → e + N+

2

129 e + N+
2 (A

2Πu) → e + N+
2 (A

2Πu)
130 e + N+

2 (B
2Σ+

u ) → e + N+
2 (B

2Σ+
u )

131 e + N+
2 (C

2Σ+
u ) → e + N+

2 (C
2Σ+

u )

Table 4.12: Charge exchange

# Reaction
132 N+

2 + N2 → N2 + N+
2

4.3 Setup

The numerical setup is described in chapter II, including momentum transfer

collisions between ion and neutral species based on the model described in chapter

III, as well as disorder induced heating for ion species with the model described in

3.10. The initial condition consist in an electron and N+
2 ion population of 1020
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m−3 and a N2 neutral gas density of 2.5 × 1025 m−3 in the ground state. In the

case of simulations at 10 atmospheres, these densities are scaled accordingly. The

timestep used is 0.1 and 0.01 ps at 1 and 10 atmospheres respectively. The discharge

is assumed to happen in a pin to pin electrode configuration with a separation of

1.2 mm, similar to [6]. The initial ion and gas temperature is 300K and the initial

electron temperature is 0.1 eV. The applied voltage has a Gaussian shape with a

variable amplitude, a FWHM of 3 ns and a mean of 3.5 ns at atmospheric pressure,

and 10 times smaller FWHM and µ at 10 atmospheres.

4.4 Results at atmospheric pressure

Figure 4.1 shows a) the applied voltage and reduced electric field for a simulation

at atmospheric pressure and b) the electron temperature and deposited power per unit

volume with and without including the model for DIH described in section 3.10. The

reduced electric field is calculated accounting for the effective electron mobility, which

includes both electron-ion and electron-neutral collisions since at large ionization

fractions Coulomb collisions dominate. For this applied pulse, a difference between the

voltage and reduced electric field curves is observed due to dissociation of molecular

nitrogen. The profile of the deposited power is similar to what is experimentally

observed in [6] for air with a similar voltage pulse. It is important to note that here,

the Gaussian pulse is just an approximation and in actual experiments, the voltage

drops slower after reaching its maximum value, leading to a finite reduced electric

field that continues to heat electrons after full ionization is reached [6].

As shown in figure 4.1 b), the electron temperature rapidly increases to approx-

imately 4 eV and then inelastic collisions decrease it until full ionization is reached

and electrons are at equilibrium with ions [91]. The final electron temperature is 20%

higher when DIH is turned on. This is because electrons lose less energy to ions due

to the larger ion temperature compared to when DIH is turned off. Hence, while
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DIH only affects ions in a direct way, it can affect both neutral (see chapter III) and

electron temperatures through collisions.

a)

b)

DIH

no DIH

Figure 4.1: a) Gaussian voltage pulse and reduced electric field and b) electron tem-
perature and deposited power per unit volume.

Figure 4.3 shows the evolution of the electron, atomic ion and total molecular

ion densities over time in a) linear and b) log scale. Molecular ions are dominant

up to 2.5 ns in the discharge, then dissociation of molecular nitrogen and ionization

of atomic nitrogen becomes more important, significantly increasing the atomic ion
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density. After 3 ns, molecular ions are dissociated and atomic ions become the dom-

inant species. It is observed that during the transient, the case with DIH turned on

presents a faster increase in ionization and a slightly larger atomic ion density and

smaller molecular ion density. The reason why this happens is that DIH heats ions

reducing the temperature difference with electrons. This smaller temperature differ-

ence between electrons and ions means that electron-ion Coulomb collisions leads to

a smaller change in the electron temperature. This increases the rate coefficients of

the inelastic collisions including dissociation and ionization with respect to the case

without DIH. Figure 4.2 shows the time evolution of the molecular ions. A rapid

increase of the excited states (A,B,C) is observed between 2 and 2.5 ns. Then, the

electron density and temperature are large enough to dissociate these states. When

DIH is turned on, the density of the excited states B and C decrease faster due to

the higher electron temperature and density.

DIH

no DIH

Figure 4.2: Evolution of molecular nitrogen ion densities in ground and excited states.
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DIH

DIH

a)

b)

no DIH

no DIH

Figure 4.3: Evolution of electron, atomic ion and total molecular ion densities over
time in a) linear and b) log scale.
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a)

b)

DIH

no DIH

DIH

no DIH

Figure 4.4: Evolution of ground and excited states of a) molecular and b) atomic
nitrogen.

Figure 4.4 a) shows the evolution over time of the ground and excited states of

molecular nitrogen. The total molecular nitrogen density remains constant for up to

2.5 ns in the discharge until it decreases due to dissociation. The ground state of

N2 is the dominant species over the excited states. In the same timescale there is
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a build up of concentration of the excited states with N2(a
1, a′, B) being the most

important ones, followed by dissociation after 2.5 ns. The increase in the population

of the excited states of N2 follows the same profile as the increase in the molecular

ion densities, indicating that the ionization pathway of N2 happens mostly through

electron impact of the excited states. The highest energy level N2(E
3Σ) has the

lowest concentration, due to the smaller electron impact excitation cross section [93].

Similarly, figure 4.4 b) shows the evolution over time of the ground and excited states

of atomic nitrogen. The present model includes seven different excited states of atomic

nitrogen as shown in tables 4.1 and 4.5. There is an abrupt increase in the density of

both ground and excited states of N around 2.5 ns, due to the large dissociation rate

observed in the same timescale. The dominant species is N(2P 0), which corresponds

to the second excited state of atomic nitrogen. The model used in this work includes

multiple electron impact excitation and ionization pathways of atomic nitrogen, which

is fundamental to explain large ionization fractions and full ionization at atmospheric

pressure as demonstrated in [6, 91]. For both molecular and atomic nitrogen species,

when DIH is included, the concentrations decrease faster at longer times due to the

higher electron temperature and density as described before.

Figure 4.5 shows the evolution of the ion and neutral gas temperatures with and

without DIH. As expected from MD simulations described in chapter III, at atmo-

spheric pressure both ion and neutral species are practically at equilibrium on a ns

timescale and any change in one of the temperatures is going to be rapidly equilibrated

through collisions with the other species. A rapid increase in both temperatures is

observed at around 3 ns, due to both DIH and dissociation. When DIH is turned on,

the ion and gas temperatures are approximately 20% larger at the end of the simu-

lation. This is in accordance with what is observed in the evolution of the electron

temperature shown in figure 4.1 since, full ionization is reached and the electron ion

equilibration timescale is shorter than the duration of the pulse, leading to thermal-
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ization [91]. This thermalization occurs due to the large electron-ion elastic collision

frequency at such high electron densities.

DIH

no DIH

Figure 4.5: Evolution of ion and neutral gas temperatures as function of time.

The different contributions to the rate of increase of the ion temperature are shown

in figure 4.6 a). The major contribution to the ion temperature comes from elastic

collisions with electrons, followed by disorder induced heating. Again, this is due to

the large electron ion collision frequency once the ion and electron densities become

significant (≥ 10%). Charge exchange collisions have a negligible effect on both ion

and neutral gas temperatures. The main energy loss mechanism for ions is elastic

collisions with the neutral species. Figure 4.6 b) shows the different contributions

to the rate of change of the neutral gas temperature. The most important heating

mechanism for the neutral gas up to 4 ns into the discharge is elastic collisions with

ions, followed by dissociation. Here it is important to remark that dissociation is the

dominant mechanism that directly heats neutrals, since the gas temperature increase

due to collisions with ions indirectly comes from a combination of ion heating due

to electron-ion collisions and DIH. After 4 ns, a reverse process is observed, where

93



neutral species lose energy due to collisions with ions. This is due to the decrease in

the ion temperature due to collisions with electrons, since electrons lose energy due

to electron impact dissociation of N2 and they are at equilibrium with ions due to the

large electron density. It is important to remark that at large ionization fractions,

quenching becomes irrelevant as a source of gas heating, being orders of magnitude

below dissociation and elastic collisions between neutrals and ions. Furthermore,

elastic collisions between electrons and neutral species do not contribute significantly

to gas heating. Finally, the difference between including DIH or not is that when DIH

is turned on, there is a larger rate of gas heating due to dissociation since electrons

have more available energy which increases the dissociation rates as well as other

inelastic processes.
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a)

b)

Figure 4.6: Rate of increase dT/dt for a) ion and b) neutral gas temperatures from
different contributions.

4.4.1 Varying the reduced electric field

Here, the amplitude of the applied voltage pulse is changed such that it results

in different reduced electric fields in the simulations. Figure 4.7 shows a) the final

fractional dissociation δ and b) the final electron density with and without DIH as
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function of Emax/N0 where Emax is the electric field that corresponds to the voltage

pulse amplitude and N0 is the initial total gas density. The difference between with

and without DIH is that DIH helps to slightly increase the dissociation and ionization

fractions. This happens because when DIH becomes relevant (xi ≥ 10%), ions are

at equilibrium with electrons and any increase in the ion temperature due to DIH

increases the available energy of electrons for different inelastic collisions with the

neutral gas, including dissociation and ionization. While this difference is not signif-

icant at atmospheric pressure the following section shows that at larger pressure it

becomes more important due to the scaling of DIH with the total ion density.

Figure 4.8 shows the electron and gas temperatures as function of the reduced

electric field with and without DIH. At large ionization fractions the temperatures

are at equilibrium due to the large electron density. Between 200 and 250 Td, there is

not a significant change in the electron and gas temperature, since all the additional

power goes to inelastic processes, including dissociation and ionization 4.7. At near

full ionization DIH increases the final temperature by approximately 20%.
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a)

b)

Figure 4.7: a) Final fractional dissociation δ and b) final electron density with and
without DIH as function of Emax/N0.
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a)

b)

Figure 4.8: a) Electron and b) gas temperatures with and without DIH as function
of Emax/N0.

4.5 Results at 10 atmospheres

While the reaction set used in this work does not include three body reactions that

can be important at larger pressures, our objective here is to give a simple comparison
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between DIH and gas heating mechanisms as well as its potential influence in plasma

chemistry. Here we show that, due to the scaling of disorder induced heating with the

ion density, it becomes more important at pressures above one atmosphere. Figure 4.9

a) shows the Gaussian voltage pulse and the reduced electric field at ten atmospheres.

Since both the amplitude of the pulse and initial pressure are increased by a factor

of 10 when compared to atmospheric pressure, the reduced electric field has the same

profile. The difference between the voltage pulse and the reduced electric field is

due to dissociation of molecular nitrogen. Figure 4.9 b) shows the evolution of the

electron temperature and deposited power per unit volume with and without disorder

induced heating. As shown, when DIH is turned on, the final temperature is 60%

larger. This difference is substantially larger than what was observed at atmospheric

pressure. This is because when full ionization is reached at a larger pressure, the

final total ion density is 10 times larger and DIH scales with a power of 1/3 of the

ion density. This is, the energy released per ion by DIH increases with the total ion

density; see section 3.6.

Figure 4.10 a) shows the evolution of the ion and gas temperatures. When DIH

is turned on, the final temperature is 60% larger, the same temperature increase is

seen the electron temperature because fast thermalization is induced by the elastic

electron–ion collisions [91]. Figure 4.10 b) shows the evolution of electron, atomic ion

and total molecular ion densities. When DIH is turned on, full ionization is reached

faster, due to the excess energy that helps to increase the dissociation and ionization

rates. Here, the difference is more noticeable than at atmospheric pressure, due to

the scaling of DIH with the ion density.
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a)

b)

DIH ~ 61%

Figure 4.9: a) Evolution of Gaussian voltage pulse and reduced electric field and b)
electron temperature and deposited power per unit volume as function of time with
and without DIH at 10 atmospheres.
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a)

b)

DIH

no DIH

DIH

no DIH

Figure 4.10: a) Evolution of ion and neutral gas temperatures and b) evolution of
charged species densities with and without DIH at 10 atmospheres.

The rate of increase of ion and neutral gas temperatures are shown in figures

4.11 a) and b) respectively. The main contribution to the ion temperature increase

is due to elastic electron-ion collisions, as was observed at atmospheric pressure.

However, DIH contributes significantly more due to the larger ion density. The main

energy loss mechanism for ions is elastic collisions with the neutral gas. Charge
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exchange collisions have a negligible effect on the ion temperature. The neutral gas

temperature increases predominantly due to elastic collisions with ions up to 0.4 ns.

Then, ions lose energy to electrons through elastic collisions, which reverses the rate of

change of the gas temperature. The main direct source of gas heating is dissociation,

which is enhanced when DIH is turned on due to the larger electron temperature and

thus electron impact dissociation rates. This difference is more noticeable than at

atmospheric pressure due to the scaling of DIH with the ion density. As at atmospheric

pressure, the contribution of quenching to the neutral gas heating is also negligible

at 10 atmospheres, since electrons have enough energy in this particular case to

significantly increase the dissociation and ionization fraction. Hence, the molecular

nitrogen excited states don’t live long enough to release energy due to quenching. This

is contrary to what happens at significantly lower pressures or ionization fractions [21].
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a)

b)

DIH

no DIH

Figure 4.11: Rate of increase of a) ion and b) neutral gas temperatures with and
without DIH at 10 atmospheres.

4.5.1 Varying the reduced electric field

Figure 4.12 shows the final value of a) fractional dissociation and b) electron den-

sity as a function of the reduced electric field with and without DIH. When compared

to the atmospheric pressure case, here the difference is more noticeable in particular
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between 220 and 260 Td. In this range of reduced electric fields, DIH combined with

thermalization due to the large electron density, provides a mechanism for enhanced

dissociation and ionization. This effect increases with pressure due to the scaling of

DIH with the ion density. Therefore, it is expected to increase and become even more

important at larger pressures.
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a)

b)

Figure 4.12: a) Fractional dissociation and b) electron density as function of the
reduced electric field at an initial neutral gas pressure of 10 atmospheres.
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4.6 Implications of disorder induced heating in plasma chem-

istry

The main takeaway is that disorder induced heating is important when the ioniza-

tion fraction reaches values above 10% at atmospheric and larger pressures. DIH can

significantly affect the final temperature, especially at larger pressures since it scales

with the ion density to a power of 1/3. In the same regime, thermalization between

electrons and ions occurs rapidly due to the large elastic collision frequency [91].

This makes DIH influence the electron temperature indirectly, providing a physical

mechanism that enhances the rate coefficients of electron impact inelastic processes

such as dissociation and ionization. Thus, DIH can potentially influence the plasma

chemistry in an indirect way in this regime. It is important to remark that the energy

released per ion due to DIH increases with the ion density, while the energy released

due to dissociation of molecules or quenching does not depend on the pressure. This

means that the relative importance of DIH to the already well studied gas heating

mechanisms [21] increases as the pressure gets larger. This statement maintains as

long as the neutral-neutral and ion-neutral interactions are weakly coupled which has

a limitation as the pressure increases above 1000 atmospheres; see figure 1.3. Hence,

the potential influence of DIH on the plasma chemistry can have a sweet spot at

intermediate pressures between one atmosphere and 1000 atmospheres.

Finally, the analysis presented in this work concentrated on molecular nitrogen.

While DIH does not depend on the chemistry in a direct way since it only depends on

the overall increase in the total ion density, its relative importance to other heating

mechanisms as well as its potential influence on the plasma chemistry does depend

on the gas composition. As an example, molecular oxygen requires less energy to

dissociate compared to nitrogen and discharges with noble gases can have completely

different excitation and ionization pathways and required energies. Hence, DIH could
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be more important in gases where less energy is lost in inelastic processes.
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CHAPTER V

Influence of strong Coulomb coupling on diffusion

in atmospheric pressure plasmas

Ion diffusion in atmospheric pressure plasmas is examined and particular attention

is paid to the fact that ion-ion interactions can be influenced by strong Coulomb cou-

pling. Three regimes are identified. At low ionization fractions (xi ≲ 10−6), standard

weakly correlated ion-neutral interactions set the diffusion rate. At moderate ioniza-

tion fractions (10−6 ≲ xi ≲ 10−2) there is a transition from ion-neutral to ion-ion

collisions setting the diffusion rate. In this regime, the effect of strong Coulomb cou-

pling on ion-ion collisions is accounted for by applying the mean force kinetic theory.

Since both ion-neutral and ion-ion interactions contribute a comparable amount to

the total diffusion rate, models (such as particle-in-cell or fluid) must account for both

contributions. At high ionization fractions (xi ≳ 10−2), strongly correlated ion-ion

collisions dominate and the plasma is heated substantially by disorder-induced heat-

ing. The temperature increase due to disorder-induced heating strongly influences

the ion diffusion rate. This effect becomes even more important, and occurs at lower

ionization fractions, as the pressure increases above atmospheric pressure. In addi-

tion to ion diffusion, disorder-induced heating affects the neutral gas temperature,

therefore influencing the neutral diffusion rate.

Model predictions are tested using molecular dynamics simulations, which in-
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cluded a Monte Carlo collision routine to simulate the effect of ion-neutral collisions

at the lowest ionization fractions. The model and simulations show good agree-

ment over a broad range of ionization fractions. The results provide a model for ion

diffusion, on a wide range of ionization fractions and pressures, solely considering

the elastic contribution to the diffusion coefficient - as an illustration of how strong

Coulomb coupling influences diffusion processes in general.

5.1 Theoretical model

In this section, we first summarize the approach for computing the diffusion rates

based on an arbitrary potential between species s and s′. [83] Section 5.1.1 describes

the calculation of the total ion and neutral diffusion coefficients from the contribu-

tion of the interdiffusion coefficients given by ion-neutral, ion-ion and neutral-neutral

interactions. A method for calculating the neutral-neutral, ion-neutral, and ion-ion

contributions is described in sections 5.1.2, 5.1.3, and 5.1.4 respectively. Finally, the

results are applied to assess the ion-neutral and ion-ion collision frequency param-

eter space and the total ion and neutral diffusion coefficients for a broad range of

ionization fractions at atmospheric pressure in section 5.1.6.

5.1.1 Theoretical framework

The following summarizes the results of the Chapman-Enskog solution of the

Boltzmann equation to compute diffusion coefficients. Although the Boltzmann equa-

tion is not expected to apply to the strongly coupled ion-ion interaction, the same

basic framework is easily adapted to the mean force kinetic theory [52, 101] that

will be used to model the ion-ion component, as described in section 5.1.4. The

Chapman-Enskog solution is described in textbooks [83, 102]. Here, we quote the

results.

The Chapman-Enskog solution solves the Boltzmann equation as a perturbation
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from equilibrium by applying a polynomial expansion of the velocity distribution

function. Here, we make use of the first-order term in that expansion. At this lowest

order, the total diffusion coefficient for species s in a plasma consisting of two species

(s and s′) is [83]

Ds =

(
xs

Dss

+
xs′

Dss′

)−1

, (5.1)

where xs = ns/n is the concentration of species s, xs′ = ns′/n is the concentration

of species s′ and n = ns + ns′ is the total number density. The mobility and dif-

fusion coefficients of charged species s are intrinsically linked. This connection is

formally described by the Einstein relation: Ds = kBTsµs/qs, where µs is the mo-

bility coefficient, kB is the Boltzmann constant, and qs and Ts are the charge and

temperature of species s, respectively. In the rest of the chapter, the analysis will pri-

marily focus on the diffusion coefficients. Here, electron interactions are not included

in the analysis following the argument discussed in Ref. [2]; since electrons are much

hotter than ions and neutrals, and are in the weakly coupled regime, they act as a

non-interacting charge-neutralizing background. In equation (5.1), the interdiffusion

coefficient between species s and s′ is

Dss′ =

√
π

2

xs′

χss′mss′νss′
, (5.2)

where

νss′ =
4ns′ v̄ss′

3

∞∫
0

dξ Q
(1)
ss′(ξ)ξ

5e−ξ2 , (5.3)

is the momentum-transfer collision frequency,

Q
(1)
ss′ = 2π

∞∫
0

[1− cos(β)]bdb, (5.4)
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is the momentum transfer cross section, and

β = π − 2b

∞∫
r0

dr/r2√
1− b2

r2
− 2ϕss′ (r)

mss′u
2

(5.5)

is the scattering angle. In these equations, mss′ = msms′/(ms +ms′) is the reduced

mass, T is the temperature (assumed to be approximately equal for ions and neutrals

in the Chapman-Enskog description), v̄2ss′ = 2kBT/ms + 2kBT/ms′ , ξ = u/v̄ss′ and

u = |v − v′| is the relative velocity between two particles in a binary interaction.

In equation (5.5), b is the impact parameter, r0 is the distance of closest approach

obtained from the largest root of the denominator, and ϕss′(r) is the potential of inter-

action between species s and s′. The distinction between weakly correlated neutral-

neutral or ion-neutral interactions and strongly correlated ion-ion interactions enters

through how the interaction potential ϕss′ and collision enhancement factor χss′ are

treated in each case, as described in sections 5.1.2, 5.1.3, and 5.1.4.

5.1.2 Neutral-neutral collisions

Neutral-neutral interactions are short-range and weakly coupled at atmospheric

pressure [2]. A common model for the interatomic interaction is the Lennard-Jones

potential defined in equation 1.8 [103]

ϕLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
, (5.6)

where ϵ is the depth of the potential well and σ is the distance at which the potential

energy is zero. The accepted values for Ar are σ = 3.4× 10−10 m and ϵ = kB120(K)

[42]. A cutoff distance of 500σ. Since neutral-neutral interactions are weakly coupled,

the traditional Boltzmann-based approach based on the bare interaction potential

from equation (1.8) is valid and the collision enhancement factor in equation (5.2) is
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negligible: χnn = 1.

5.1.3 Ion-neutral collisions

Like neutral-neutral interactions, ion-neutral interactions are short-range and weakly

coupled at atmospheric pressure. The bare (unscreened) charged induced dipole po-

tential was used to model ion-neutral interactions 3.1[42]

ϕind(r) =
q2

8πϵ0

αRa
3
0

r4

(
r8ϕ
3r8

− 1

)
, (5.7)

where rϕ = 0.133ain and ain = (3/4πnin)
1/3 with nin ≈ xini + xnnn, is the average

interparticle spacing between ions and neutrals and αR = 11.08 for Ar [56]. Here,

rϕ is a parameter that is implemented in the MD simulations to prevent particles

getting to close to one another to resolve with a finite timestep. It is chosen to be

small enough so as not to influence the resulting diffusion coefficient in either the

theoretical model calculations or MD simulations. The specific value of rϕ = 0.133ain

comes from a numerical convergence test described in [2] and in section 3.1. Here, the

Boltzmann-based approach is expected to be valid since the ion-neutral interaction is

in a weakly coupled regime; see Ref. [2]. In addition, since the ion-neutral interactions

are weakly coupled, the collision enhancement factor in equation (5.2) is negligible:

χin = 1.

5.1.4 Ion-ion collisions

The Coulomb coupling parameter for ion-ion interactions can be as large as 10

at atmospheric pressure [2]. Hence, the binary collision approach of the Boltzmann

equation is no longer valid and strong ion-ion correlations need to be accounted for.

To model this regime, we apply the mean force kinetic theory. [52, 104] This is a

recently developed generalization of the Boltzmann equation that has been shown to

accurately describe collisions and the associated transport into the strongly coupled

112



regime (generally for Γ ≲ 20) [105, 106, 107]. The results of this model fit within the

Champan-Enskog framework described previously, but where the interaction potential

in equation (5.5) is the potential of mean force

ϕ → w(2)(r) = −kBT ln [g(r)] . (5.8)

Here, g(r) is the ion-ion pair correlation function. The potential of mean force repre-

sents the interaction potential between two particles at a distance r averaging all the

equilibrium configurations of the other N − 2 particles of a system. The potential of

mean force is related to the pair correlation function by equation (5.8) and includes

many-body effects of the background plasma including screening and correlations [52].

In order to solve for [g(r)], the hypernetted chain approximation was used as a closure

for the Ornstein–Zernike equation [108],

g(r) = exp

[
−ϕ(r)

kBT
+ ni

∫
c(|r− r′|)h(r′)dr′

]
(5.9a)

ĥ(k) = ĉ(k)[1 + niĥ(k)] (5.9b)

where ϕ(r) is the bare Coulomb potential, ni is the ion density, T the temperature,

h(r) = g(r)−1 and ĥ(k) denotes the Fourier transform of h(r). The hypernetted chain

approximation has been shown to be an accurate closure to model the radial distribu-

tion function for a one component plasma across different coupling regimes [104]. It

is worth noting that at weak coupling the potential of mean force is the usual Debye-

Hückel screened potential, but at strong coupling it differs substantially from this,

including oscillatory components at nearest neighbor positions. [104] The motivation

for comparing with a one component plasma arises from the observation that, in the

regimes considered here, electrons and neutrals exhibit weak coupling. Consequently,

ion-ion interactions can be treated as an OCP. In addition, the elevated electron tem-

perature makes electron screening of ions negligible, permitting the application of the
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bare Coulomb potential for ion-ion interactions, as observed by Shaffer et al. [109]

While the potential of mean force accounts for aspects of many-body effects, there

is an additional enhancement of the collision frequency associated with the reduction

of space that particles can occupy because ion centers cannot be closer than their

physical diameter plus an additional distance due to the Coulomb repulsion [83].

This exclusion volume, characteristic of the short range correlations in ion-ion inter-

actions, depends on the Coulomb coupling strength of the ion species. The Enskog

correction factor in the interdiffusion coefficient equation (5.2) accounts for this exclu-

sion radius surrounding individual ions associated with Coulomb repulsion [101, 110].

The Enskog correction factor for ion-ion collisions can be calculated with the virial

coefficients of the thermodynamic equation of state for hard spheres,

χii = 1 + 0.6250 bρ+ 0.2869 (bρ)2 + 0.115 (bρ)3 + ... (5.10)

where bρ is the co-volume,

bρ ≈ 1

3
πniσ

3 (5.11)

and σ is the effective ion diameter, calculated as g(r = σ) = 0.87, [110] which depends

on the Coulomb coupling strength. In this work, the g(r) used to calculate σ̄ and χii

was modeled using the hypernetted chain approximation from equations (5.9b) and

(5.9b).

5.1.5 Disorder induced heating

Figure 5.1 shows the Coulomb coupling parameter for ion-ion interactions at at-

mospheric pressure and different ionization degrees using the equilibrium tempera-

ture calculated with equation 3.8 which accounts for disorder induced heating. It

is well known that the Boltzmann equation breaks down when Γii ≳ 0.1, so strong

coupling effects are expected to onset for xi ≳ 10−7 (≈ 1018 m−3) at atmospheric
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pressure [57, 58].

It is important to note that the ion-neutral “equilibrium” temperature in equation

(3.8) does not consider other potential heating mechanisms found in partially ionized

plasmas, such as Joule heating, quenching of electronically excited states, and VT

relaxation [2]. The analysis presented here can be expanded to encompass additional

heating mechanisms by incorporating their respective contributions to the tempera-

ture. Here, we focus attention on the effects that are directly associated with strong

Coulomb coupling.

Figure 5.1: Coulomb coupling parameter and equilibrium temperature at atmospheric
pressure for different ionization fractions. The temperature used to compute Γii is
the equilibrium temperature from equation (3.8).

5.1.6 Diffusion coefficients

Considering a partially ionized Ar plasma with single ion and neutral species, the

ion diffusion coefficient depends on ion-neutral and ion-ion collisions, as described

in equation (5.1). An estimate for which process controls the total diffusion rate is

provided by the ratio between the ion-ion and ion-neutral momentum transfer collision
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frequencies. This is shown for a range of gas pressure and ionization fractions in figure

5.2. The temperature used for the calculation of the collision frequencies corresponds

to the equilibrium temperature from equation (3.8), which accounts for the disorder

induced heating.

Figure 5.2: Ratio between the ion-ion and ion-neutral collision frequencies in a
pressure-ionization fraction parameter space for an Ar plasma. Ion-ion collisions
are expected to determine the diffusion rate when this ratio is large.

As shown in figure 5.2, ion-neutral collisions are much more frequent than ion-

ion collisions at sufficiently low ionization fraction. For example, at 1 atm, ion-

neutral collisions are at least 10 times more frequent than ion-ion collisions when

xi < 10−6 (ni < 2.5× 1019 m−3). In the other limit, ion-ion collisions are much more

frequent than ion-neutral collisions when the ionization fraction is sufficiently large.

For example, at 1 atm, ion-ion collisions are at least 10 times more frequent than

ion-neutral collisions when xi ≳ 6× 10−3 (ni > 1.5× 1023 m−3). A transition region

where both types of interactions contribute to the diffusion rate is expected in the
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broad intermediate region (10−6 < xi < 10−3). The figure also shows the pressure

dependence of these regimes away from atmospheric pressure.

Figure 5.3 shows the ion diffusion coefficient computed from equation (5.1) at

atmospheric pressure. It also shows results of the ion-neutral and ion-ion interdiffusion

coefficients from equation (5.2), and the total ion diffusion coefficient ignoring the

DIH effect (by assuming the temperature is room temperature). This comparison

shows that three different regimes are present. First, at small ionization fractions

(xi ≲ 10−6) the ion diffusion coefficient converges to the ion-neutral interdiffusion

coefficient, where ion-neutral collisions are dominant. Second, over an intermediate

range of ionization fractions from xi = 10−6 to xi = 10−2, both ion-neutral and ion-ion

collisions influence the total diffusion coefficient. Within this region, for ionization

fractions larger than xi = 5 × 10−5, ion collisions are more frequent and become

the main contribution to the total diffusion. Finally, a third regime is observed for

ionization fractions larger than xi > 10−2. Here, ion-ion collisions dominate and

the total diffusion coefficient merges with the ion-ion interdiffusion coefficient. In

this regime, DIH also causes a significant temperature increase that increases the ion

diffusion coefficient substantially.
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Figure 5.3: Ion diffusion coefficient (green solid line) as a function of ionization frac-
tion. Also shown are the ion diffusion coefficient assuming room temperature (purple
dotted line), which neglects the DIH effect, the ion-neutral (blue dash-dotted line)
and ion-ion (black dashed line) interdiffusion coefficients. The ion diffusion coefficient
obtained from the MD simulations is shown in red dots.

Figure 5.4 shows a comparison of the ion-ion interdiffusion coefficient obtained

with the standard Coulomb logarithm (Landau-Spitzer) and with the mean force

theory described in 5.1. For ionization fractions smaller than 10−6, both interdiffusion

coefficients agree because this corresponds to the weakly coupled regime (see figure

5.1). For ionization fractions larger than 10−5, the interdiffusion coefficient calculated

with the standard Coulomb logarithm diverges because the argument of the Coulomb

logarithm (i.e., the plasma parameter) approaches 1. This signifies the well-known

and dramatic breakdown of the usual plasma theory, which is based on weakly coupled

assumptions. [104] On the other hand, the diffusion coefficient calculated from the

mean force kinetic theory shows good agreement with the MD data over the entire

range of ionization fraction, as shown in figure 5.3. This confirms that strong Coulomb

118



coupling influences the ion diffusion coefficient for ionization fractions larger than 10−6

and these strong correlations that are absent in the currently applied models need to

be accounted for.

Figure 5.4: Ion-ion interdiffusion coefficient obtained using the Chapman-Enskog
solution of the mean force kinetic theory (black dashed line) and using the traditional
Landau-Spitzer solution. There is a clear divergence of the diffusion coefficient in the
Landau-Spitzer solution as the argument of the Coulomb logarithm approaches zero.

Finally, using equation (5.1), the neutral diffusion coefficient was computed ac-

counting for neutral-ion and neutral-neutral collisions with the equilibrium temper-

ature from equation 3.8. Figure 5.5 shows the total neutral diffusion coefficient and

its contributions due to neutral-ion and neutral-neutral collisions. The temperature

increase for ionization fractions xi > 10−2 at atmospheric pressure is not negligible,

as shown in figure 5.1. This increase affects the total neutral diffusion coefficient,

leading to a considerable rise compared to the expected value without accounting

for the DIH effect. These results indicate that strong ion-ion correlations can indi-

rectly influence the neutral diffusion process through DIH, even when the interactions
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between neutrals and ions, as well as between neutral species, are weakly coupled.

Figure 5.5: Neutral diffusion coefficient at atmospheric pressure for a broad range of
ionization fractions (red solid line). Also shown are the neutral diffusion coefficient
ignoring DIH (black dashed line), and the neutral-ion (purple dotted) and neutral-
neutral (blue dashed line) interdiffusion coefficients.

It is crucial to elucidate that in this chapter, we contemplate a model atomic Ar

characterized solely by elastic collisions, ignoring charge exchange collisions [111] and

ion conversion processes [112]. Here, our focus is exclusively on the effects of strong

ion-ion correlations on the ion diffusion coefficient. Subsequent inclusion of non-elastic

processes is feasible in the ion-neutral interdiffusion, while employing the described

model for the ion-ion interdiffusion which accounts for these strong correlations.

5.2 Molecular dynamics simulations

Molecular dynamics simulations were carried out using the open-source software

LAMMPS [75]. Following the same argument from [2], electrons were assumed to be
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weakly coupled due to their much larger temperature and were treated as a back-

ground non-interacting species when modeling the ion dynamics. Thus, they were

not included in the simulation. Ion-ion interactions were modeled using the Coulomb

potential

ϕC(r) =
Z2e2

4πϵ0

1

r
(5.12)

where Ze is the ion charge and ϵ0 is the vacuum permittivity. The P3M method was

used to simulate ion-ion interactions. [74] A distance of rc = 10 aii, where aii is the

average interparticle distance between ions, was chosen to separate short and long

range parts of the Ewald summation. Ion-neutral interactions were modeled using a

MCC module described in section 2.1.7.

The timestep was chosen to resolve both the ion-neutral and ion-ion collision

times, as shown in table 3.1. To determine the timestep requirement in the limit

of low ionization fraction, a convergence test was conducted for the ion diffusion

coefficient at the lowest ionization fraction considered (xi = 10−9); see figure 5.6.

This shows that the ion diffusion coefficient is independent of the timestep chosen for

∆tνin ≲ 10−3. In the limit where ion-ion collisions are dominant, the timestep was

chosen to well resolve the ion plasma frequency.
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Figure 5.6: Convergence test for the total ion diffusion coefficient at an ionization
fraction of 10−9 with different timesteps ∆t.

To compute diffusion coefficients, simulations were first run in an NVE ensemble

including the Monte Carlo Collision method for a one component plasma 2.1.7. Here,

NVE refers to constant number of particles, volume and total energy. The NVE

ensemble was run for a duration of 1000ω−1
pi , when equilibrium was reached, at which

point the temperature and potential energy remained constant, on average, over time.

The ion and neutral gas densities used for each simulation corresponded to a fixed

ionization fraction at atmospheric pressure. The neutral gas temperature used in the

MCC module was calculated using equation (3.8). Once equilibrium was reached, a

second NVE stage was run and the ion velocity vector was recorded every 10 timesteps

for the calculation of the ion velocity auto correlation function (described in section

5.2.2). The ionization fraction, ion plasma frequency, ion-neutral collision frequency,

time step and length of simulation used for each simulation are specified in table 5.1.

The total number of ions in all the simulations was Ni = 5000 and the total number

of timesteps was 3× 105.
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Table 5.1: Parameters used for the MD-MCC simulations. The number of ions was
Ni = 5000 and the total number of timesteps was 3× 105 for all simulations.

Ionization
Fraction
(xi)

Ion-Neutral
Collision
Frequency

(νin)
×109

(1/s)

Plasma
Frequency

(ωpi)
(rad/s)

Length
of

Simulation
(tf )

Timestep
(∆t)
(s)

10−9 3.24 3.31× 107 2.72× 10−8 9.06× 10−14

10−8 3.24 1.05× 108 2.87× 10−8 9.56× 10−14

10−7 3.24 3.31× 108 2.72× 10−8 9.06× 10−14

10−6 3.24 1.05× 109 2.87× 10−8 9.56× 10−14

10−5 3.24 3.31× 109 2.72× 10−8 9.06× 10−14

10−4 3.24 1.05× 1010 2.87× 10−8 9.56× 10−14

10−3 3.24 3.31× 1010 2.72× 10−8 9.06× 10−14

10−2 3.21 1.05× 1011 2.87× 10−8 9.56× 10−14

10−1 2.98 3.31× 1011 9.06× 10−9 3.02× 10−14

5× 10−1 2.31 7.40× 1011 4.05× 10−9 1.35× 10−14

5.2.1 Validation of the MCC + MD simulation setup

In order to test the ion-neutral MCC model, a comparison was made between the

MD+MCC setup and a simulation that used MD for all particles (ions and neutrals).

An ionization fraction of xi = 10−2 was chosen because this is a low enough value that

the presence of neutrals have a significant effect on the ion temperature evolution, but

it is a high enough value that it can be simulated directly with MD at an acceptable

computational cost. Additionally, it is a low enough value that the neutral tempera-

ture does not change significantly from the initial room temperature value assumed

in the MCC routine. Specifically, section 3.2 showed that the maximum ion temper-

ature due to DIH is ≈ 1030 (K) while the equilibrium temperature is similar to room

temperature ≈ 300 (K) [2]. Figure 5.7 shows the evolution of the ion temperature

from both simulation setups. The observed relaxation rate is nearly-identical and the

maximum ion temperature is correctly resolved, showing that the MD+MCC method

is able to reproduce the dynamics of the discharge obtained from the first-principles
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MD simulation.

Figure 5.7: Evolution of the ion temperature for a discharge at atmospheric pressure
and an ionization fraction of xi = 10−2 using an MD+MCC simulation setup (black
line) and a MD-only simulation (red line). The MD+MCC module correctly repro-
duces the dynamics and equilibrium at a lower computational cost than MD only.

A second aspect of validation of the MD+MCC method was obtained by comput-

ing the radial distribution function of ions for different ionization fractions, as shown

in figure 5.8. The results are compared with MD simulations of the one-component

plasma (OCP) at the same equilibrium coupling parameter Γii. The good agree-

ment shows that ion-ion interactions are not significantly screened by the presence

of neutral atoms for a broad range of ionization fractions at atmospheric pressure,

which justifies the weak ion-neutral interaction assumption that is the basis of the

MD+MCC method. This is, the presence of the neutral atoms does not modify how

ions interact with other ions since the ion-neutral interaction is short range while

the ion-ion interaction is long range. Thus, the simulation setup proposed correctly

resolves both the ion dynamics and equilibrium of a partially ionized atmospheric

pressure discharge.
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Figure 5.8: Ion radial distribution function at equilibrium from the MD+MCC simula-
tions at different ionization fractions (colored lines). The radial distribution function
of an OCP at the corresponding equilibrium Γii parameter (black lines).

5.2.2 Calculation of the ion diffusion coefficient

The ion diffusion coefficient was computed using a standard MD method where the

velocity autocorrelation function is obtained from a time-history of particle velocities

at equilibrium. [74] The diffusion coefficient is then computed from the Green-Kubo

relation, which is the time-integral of the velocity autocorrelation function. Velocities

of all ions were recorded during the second NVE stage of the simulations and used to

compute the velocity autocorrelation function,

Z(t, t0) =
1

Ni

Ni∑
i

vi(t+ t0) · vi(t0) (5.13)

where t0 is an initial time used to compute Z(t, t0), vi is the velocity vector of ion

i and the time t was taken once every 10 timesteps. A total of Nk = 3000 values of

t0 were used, where t0 was taken once every 100 timesteps. In order to improve the
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statistics of the velocity autocorrelation function Z(t, t0) was averaged over all Nk

values of t0 to get Z(t). [74] Due to the incremental values used for t0, the velocity

autocorrelation functions exhibited an increased level of noise at the longest time

t. Figure 5.9(a) shows the averaged value of Z(t) for each simulation. The ion self

diffusion coefficient was then computed from the Green-Kubo relation [74]

D̃(t) =
1

3

t∫
0

Z(t′)dt′, (5.14)

taking the limit of the integral for t → ∞. Since the simulations provide only a finite

time series, the ion self diffusion coefficient D was obtained from the taken as the

plateau value of D̃(t) in the long time limit, as shown in figure 5.9(b).
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b)

a)

Figure 5.9: (a) Velocity autocorrelation function of ions Z(t)/Z(0) for different ion-

ization fractions and (b) integral D̃(t) = 1
3

∫ t

0
Z(t′)dt′ for different ionization fractions.

The ion self diffusion coefficient was taken as the plateau value of D̃(t).
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5.3 Molecular dynamics results

Results of the velocity autocorrelation function are shown in figure 5.9. At low

ionization fractions, the velocity autocorrelation function monotonically decays at an

exponential rate characterized by the ion-neutral collision frequency. Since νin ≫ ωpi

in this limit, the decay rate is fast compared to the ion oscillation timescale. Exponen-

tial decay is expected for weakly correlated interactions, such as the ion-neutral inter-

actions in these simulations. As the ionization fraction increases above xi ≳ 10−3, the

decay rate approaches the ion plasma period and is no longer exponential, rather ex-

hibiting non-monotonic features that are indicative of strong correlations. The change

of the decay rate indicates a transition to ion-ion collisions being more frequent than

ion-neutral collisions. For Coulomb coupling parameters above approximately 1, the

ion-ion collision rate is expected to be approximately 0.2ω−1
pi ,[104] in agreement with

the simulated rates. It is also noteworthy that the largest correlation features are

observed for xi ≈ 1×10−1. This agrees with the predicted maximum ion-ion coupling

parameter from figure 5.1, as Γii decreases for xi ≳ 10−1 due to disorder-induced

heating.

Figure 5.3 shows the ion diffusion coefficient for ionization fractions ranging from

xi = 10−9 to xi = 1. The first noticeable result is that the ion diffusion coeffi-

cient computed from the model in equation (5.1) agrees well with the results of the

MD+MCC simulations. Since the simulation technique is essentially first principles,

this serves as a measure of validation of the theoretical model. Furthermore, the three

characteristic regimes described in the theoretical model section are be observed as a

function of the ionization degree from the MD+MCC simulations as well.

The main physical relevance of these results is that diffusion coefficients, commonly

used as input parameters for fluid simulations, are influenced by strong coupling

effects and ion-ion interactions. Currently, it is common to model diffusion using

models that are relevant only in the weakly coupled regime or only accounting for
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ion-neutral collisions, even when encountering an ionization fraction where ion-ion

collisions are important. Furthermore, in the regimes that correspond to glow (ni ≈

1019 − 1021 m−3), spark (ni ≈ 1021 − 1022 m−3) and thermal spark (ni ≈ 1025 m−3)

regimes of NRP discharges [72, 113], the ion diffusion coefficient needs to be calculated

as we show in this work, accounting for both ion-neutral and ion-ion collisions and

including the strong ion-ion correlations, in particular the disorder induced heating

effect in the cases where large ionization fractions are reached.

5.4 Pressure dependence

While ions are strongly coupled at atmospheric pressure when the ionization frac-

tion is high enough, it is natural to ask how the results extend to pressures both above

and below atmospheric pressure. Figure 5.10 shows the ion-neutral equilibrium tem-

perature computed using equation (3.8) for ionization fractions ranging from 10−2

to 1 and pressures ranging from 102 Pa to 107 Pa. A continuous line indicating an

equilibrium temperature of 300 K separates the regions that are not affected by disor-

der induced heating to the regions that are. For near fully ionized plasmas, disorder

induced heating affects the equilibrium temperature and becomes more significant as

the pressure increases due to the larger ion density.
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Figure 5.10: Equilibrium temperature for different pressures and ionization fractions
computed using equation (3.8). This accounts for disorder induced heating and ion-
neutral temperature relaxation.

For pressures up to 10 atm, ion-neutral interactions remain weakly coupled as

shown in [2]. Using the method described in section 5.1, the ion diffusion coefficient

was calculated as a function of the ionization fraction for pressures ranging from

10−3−10 atm. Figure 5.11 a) shows the ion diffusion coefficient at different pressures

normalized by the average interparticle spacing between ions and the ion plasma pe-

riod and b) in cm2/s. The same general trend of three distinct regimes is observed

at each pressure: For the smaller ionization fractions, the main contribution to the

ion diffusion is due to ion-neutral collisions. At intermediate ionization fractions,

the ion diffusion exhibits a local maximum value that depends on the pressure and

corresponds to the ionization fraction at which the ion-neutral and ion-ion collision

frequencies equal each other. In this regime, ion-neutral and ion-ion interactions both

contribute but disorder-induced heating is negligible. Finally at the largest ionization
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fractions, the ion diffusion coefficient increases due to the higher equilibrium tempera-

ture produced by the disorder induced heating and ion-neutral temperature relaxation

described. The main distinction as the pressure varies is the values of the ionization

fraction at which these transition occur. The location of the local maximum of the

diffusion coefficient associated with the intermediate regime increases with pressure,

whereas the location at which disorder-induced heating onsets decreases with pres-

sure. At 10 atm, disorder-induced heating onsets at an ionization fraction that is only

slightly above the local maximum where ion-neutral and ion-ion collisions balance.

Another interesting observation is that for pressures larger than 10−3 atm and full

ionization, the normalized diffusion coefficients converge to the same value (in units

of a2iiωpi). The reason this happens is that the initial Coulomb coupling parameter

is larger than 1, so disorder induced heating occurs and the expected equilibrium

coupling parameter is around 1.9 (as shown in [2]), for all the pressures mentioned

and full ionization. Thus, each case corresponds to a fully ionized one-component

plasma at Γ = 1.9, and therefore has the same value of the ion diffusion coefficient in

the normalized units.
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a)

b)

Figure 5.11: Ion diffusion coefficient predicted from the model of section 5.1 for dif-
ferent pressures and ionization fractions. The dashed lines represent the diffusion
coefficients at room temperature while the solid lines correspond to the case where
disorder induced heating is accounted for and the equilibrium temperature is com-
puted from equation (3.8).

Figure 5.12 shows the effect of pressure on the neutral diffusion coefficient. For

ionization fractions smaller than 10−2 and pressures below 10 atm, disorder induced
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heating does not affect the equilibrium temperature. However, for ionization fractions

larger than 10−2, the equilibrium temperature increases above room temperature and

this effect becomes more pronounced as the pressure increases, increasing the neutral

diffusion coefficient. It is noteworthy that within the range of pressures and ionization

fractions considered, even though neutral-neutral and ion-neutral interactions are

weakly coupled, strong ion-ion coupling influences neutral diffusion rates indirectly

because DIH has a significant impact on the equilibrium temperature, which, in turn,

affects the neutral diffusion coefficient.

Figure 5.12: Neutral diffusion coefficient at different pressures and ionization frac-
tions. The dashed lines represent the diffusion coefficients at room temperature while
the complete lines correspond to the case where disorder induced heating is accounted
for and the equilibrium temperature from equation (3.8) is used.
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CHAPTER VI

When should PIC simulations be applied to

atmospheric pressure plasmas? Impact of

correlation heating

Accurate and efficient modeling of plasma discharges at atmospheric and higher

pressures is critical for the advancement and optimization of plasma devices for mul-

tiple applications, as described in chapter I. Simulations, for instance, can aid in

identifying optimal operating parameters like discharge voltage, power, frequency,

electrode configuration, and gas mixture for diverse applications. Consequently, it is

imperative to develop reliable and efficient computational tools for simulating the be-

havior of cold atmospheric pressure plasmas. The PIC method is one of the commonly

used computational approach in plasma modeling [43, 44, 45]

Molecular dynamics simulations are used to test when the PIC method applies

to atmospheric pressure plasmas. It is found that PIC applies only when the plasma

density and macroparticle weight are sufficiently small because of disorder-induced

heating. PIC is not well suited to capture DIH because doing so requires using a

macroparticle weight of one and a grid that well resolves the physical interparticle

spacing. These criteria render PIC intractable for macroscale domains. Furthermore,

it is shown that simulations in reduced dimensions exacerbate these issues.
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6.1 Simulation setup

Molecular dynamics simulations were used to test the applicability of the PIC

method. The simulation domain consisted of a cubic box with periodic boundary

conditions. The size of the simulation domain was calculated such that for a given

number of particles, the particle density met a desired value. The basic molecular

dynamics and PIC setups are described in chapter II.

6.1.1 Molecular dynamics

Since the objective of this chapter is to test the limitations of PIC simulations

when ions are strongly coupled, no ion-neutral interactions were included in the MD

simulations. That is, only a one-component plasma model [79] was simulated, which

is known to provide an accurate description of ions in the presence of weakly coupled

electrons, such as in ultracold neutral plasmas [80]. In order to study the evolution of

a non-equilibrium discharge, a neutral Ar gas at room temperature and atmospheric

pressure was simulated until equilibrium was reached. This stage of the simulation

was run with a Nosé-Hoover thermostat applied [74] and the Lennard Jones potential

[2]. Then, the entire set of particles was instantly ionized and a NVE simulation was

run where ion-ion interactions were modeled using the Coulomb potential 1.10. The

P3M method was used to include both short and long range contributions in ion-ion

interactions. [74] A distance of rc = 10 aii was chosen to separate short and long

range parts of the Ewald summation. The timestep used was 10−3ωpi where ωpi is the

ion plasma period. The number of particles was 5000. The simulated ion density was

2.5×1024 m−3 which is equivalent to the ion density of an atmospheric pressure plasma

with an ionization fraction of 10%. This value was chosen as an example because DIH

is significant, and it is relevant to a number experiments [3, 32]. Furthermore, a lower

ion density within the strongly coupled regime could have been used and the same

analysis would still apply [2].

135



6.1.2 Particle in cell

For the PIC simulations ions were simulated as macroparticles. The number of

macroparticles was 5000, and the simulated ion density was 2.5 × 1024 m−3 with a

timestep of ∆t = 10−3ω−1
pi . The positions of the macroparticles were initialized with

a uniform random distribution and the velocities with a Maxwellian distribution at

room temperature. No electron or neutral species were included since the objective

of this part is to study strongly coupled ion-ion interactions in atmospheric pressure

plasmas [2]. To justify not including neutral atoms, the ion-neutral collision frequency

at large ionization fractions is much smaller than the ion plasma frequency which sets

the timescale of DIH [2, 114]. In addition, the elevated electron temperature makes

electron screening of ions negligible, as observed by Shaffer et. al. [109]. Thus,

electrons are considered as a background non-interacting neutralizing species. Thus,

they were not included in the simulation [2, 114]. Consequently, ion-ion interactions

can be treated as an one-component plasma.

6.2 Disorder-induced heating

6.2.1 Molecular dynamics results

Figure 6.1 presents the evolution of the ion temperature over the first 10 ion

plasma periods, obtained from the MD simulation described in section 6.1.1. The ion

temperature rapidly increases from room temperature to a peak of ≈ 2000 K during

the initial time period of 1.5ω−1
pi . Throughout the evolution, the ion temperature

exhibits pronounced fluctuations, a result of oscillations in the exchange of poten-

tial and kinetic energy as the system relaxes to equilibrium at a Coulomb coupling

parameter larger than unity [2, 60]. The absence of ion-neutral interactions in the

simulation prevents the relaxation of ion and neutral temperatures that was studied

in earlier MD simulations [2]. The ion temperature shown in figure 6.1 provides a
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target to obtain with PIC simulations.

Figure 6.1: Evolution of the ion temperature obtained with a 3D3V PIC simulation
with a grid spacing of ∆x/aii ≈ 0.042 and from an MD simulation for the same initial
conditions and density.

After ionization the ions have significant excess potential energy since the interac-

tions between particles changes from a short range (Lennard-Jones) to a long range

(Coulomb) potential. Hence, ions move to their lowest potential configuration con-

verting the excess potential energy into kinetic energy. This, combined with an initial

Coulomb coupling parameter Γ ≈ 12 results in the temperature increase observed in

figure 6.1, known as DIH [2, 60] and described in previous chapters. After DIH, ions

overshoot their equilibrium positions leading to oscillations of the Coulomb potential

energy near the ion plasma frequency. Since the total energy is conserved during the

MD simulation and ions are strongly coupled after DIH, those oscillations translate

to observable fluctuations in ion temperature as shown in figure 6.1.
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6.2.2 PIC: influence of grid resolution

Figure 6.2 presents the evolution of ion temperature from initial room temperature

and a random distribution of positions for different uniform grid spacing ∆x and

unity macroparticle weight. At the simulated density, the expected maximum ion

temperature after tωpi = 1.5 is approximately 1800 K from equation (3.7). The results

demonstrate that when ∆x/aii > 1 and ∆x/λDi
> 1, where λDi

is the ion Debye

length, DIH is not fully observed, nor is grid heating absent. Here, DIH corresponds

to the rapid initial temperature increase over ∼ 1.5ω−1
pi , while grid heating is the

longer-time linear increase over tens of ω−1
pi . If ∆x/aii < 1 and ∆x/λDi

> 1, the

temperature increase due to DIH aligns more closely with the expected value, but

grid heating still persists. Ultimately, when both λDi
and aii are resolved, DIH is

fully observed and there is an agreement with the expected temperature increase.

Furthermore, the evolution of the ion temperature for the smallest grid spacing of

∆x ≈ 0.042aii shows a good agreement with the target evolution obtained with MD

over the 10ω−1
pi timescale, as shown in figure 6.1.

Figure 6.3 shows the maximum ion temperature, taken from the first peak of

each simulation, for different grid spacing. It is clear that in order to fully capture

DIH with a PIC simulation, the grid spacing must be ∆x ≲ 0.1aii. It is important to

underscore that in strongly coupled plasmas, the average interparticle spacing is larger

than the Debye length. Thus, resolving the Debye length to avoid grid heating requires

resolving the average interparticle spacing. This implies that, on average, there are

fewer particles in the simulation than grid cells, contradicting the standard practice

in PIC simulations where multiple macroparticles per cell are essential to mitigate

statistical noise. As an example, for a grid resolution of ∆x = 0.1aii and the simulated

density, there is an average of 2.38×10−4 macroparticles per cell. This contrasts with

the normal operation of PIC simulations of weakly coupled plasmas, where λDi
≫ aii

and the Debye length can be resolved while having multiple macroparticles per cell.
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Figure 6.2: Evolution of the ion temperature for an ion density of ni = 2.5×1024 m−3

and initial room temperature obtained from MD and using the PIC method for dif-
ferent grid spacing.

Figure 6.3: Ion temperature of the first peak (at t ≈ 1.5 ω−1
pi ) for different grid

spacing values ∆x/aii. The maximum ion temperature converges to the expected
physical value for ∆x/aii ≤ 0.1.
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6.2.3 PIC: influence of macroparticle weight

Figure 6.4 presents the evolution of ion temperature for different macroparticle

weights w, using a grid spacing of ∆x/aii ≈ 0.042. When w > 1 the observed

ion temperature exceeds the expected physical value. Conversely, when w < 1, the

observed temperature is lower. This shift in ion temperature with varying w becomes

more pronounced as w is further increased or decreased from unity. The effect of the

macroparticle weight on the change in the ion temperature, from room to equilibrium,

is shown in figure 6.5. This highlights the tendency that temperature artificially

increases rapidly with macroparticle weight.

Figure 6.4: Evolution of the ion temperature using a grid spacing of ∆x/aii ≈ 0.042
for different macroparticle weights w.
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Figure 6.5: Change in the ion temperature obtained with PIC simulations at different
macroparticle weights. The change in temperature obtained with the scaling law
∆Tw

i = w2/3∆Ti is shown for comparison.

Figure 6.6 aims to provide a qualitative illustration of this influence. In standard

PIC simulations of weakly coupled plasmas, the ion Debye length is much larger

than the average interparticle spacing. Therefore, a large number of macroparticles is

included within each cell and the resulting charge density aligns closely with the actual

physical density in the computational grid. However, this is not the case in strongly

coupled plasmas. Here, maintaining an average of fewer than one macroparticle per

cell (∆x ≤ 0.1aii) is vital for accurately resolving the strong ion-ion correlations and

for obtaining a precise representation of DIH. For the same increase in particle weight,

a strongly coupled simulation suffers a greater change in the density across adjacent

cells when compared to a weakly coupled simulation. Raising the macroparticle weight

above one results in a numerical localization of the charge density, which locally

augments the electric field and subsequently elevates the overall potential energy.

Conversely, lowering the macroparticle weight below one incurs the opposite effect,

smoothing the charge density artificially resulting in the lower DIH observed in figure
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6.4.

w = 1 w > 1

Γ<<1
λD > aii

λD < aii

Γ>1

w = 1 w > 1

ρi,j,k(w=1) ≈ ρi,j,k(w>1)  

ρi,j,k(w=1) ≠ ρi,j,k(w>1)  

Figure 6.6: Illustration of the distribution of macroparticles in PIC simulations for
(top) weakly vs. (bottom) strongly coupled plasmas assuming a grid spacing of
approximately the Debye length.

Next, we consider a quantitative description of the influence of the macroparticle

weight on the ion temperature. The potential energy of ions in an OCP at equilibrium

can be expressed as [108]

PE = 2πniNi

∞∫
0

dr r2ϕ(r)g(r), (6.1)

where ni is the ion density, Ni the number of ions, ϕ(r) is the interaction potential

and g(r) is the ion pair correlation function. It is a density profile of other particles

referenced to a particle at the origin, normalized to the background density. If there

is a change in the potential energy between two configurations, the corresponding
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change in the ion temperature is

∆Ti = − ∆PE
3
2
kBNi

, (6.2)

where Ti is the ion temperature. Combining expressions (6.1)-(6.2) and scaling the

radial distance using the average interparticle distance between ions, the change in

the ion temperature from a randomly distributed configuration in space to a final

equilibrium state characterized by the pair correlation function g(r) is expressed as

∆Ti =
1

3

niq
2
i a

2
ii

kBϵ0

∞∫
0

dr̃ r̃[1− g(r̃)], (6.3)

where the pair correlation function of the initial randomly distributed configuration

is taken as 1 at any radial distance and r̃ = r/aii. Equation (6.3) can be used to

estimate the change in temperature when the macroparticle weight is w = 1. For the

more general case, w ̸= 1, the corresponding scaling laws nw
i → ni/w, q

w
i → qi w

and awii → aii w1/3 must be replaced in equation (6.3). The expected change in

temperature for an arbitrary macroparticle weight can be expressed as

∆Tw
i =

1

3

niq
2
i a

2
ii

kBϵ0
w5/3

∞∫
0

dr̃ r̃[1− g(r̃)], (6.4)

where ni, qi and aii are the physical values of the density, charge and average in-

terparticle spacing respectively. Since the macroparticle temperature is the physical

temperature times the macroparticle weight [Tw
i = Tiw], the change of the physical

ion temperature is predicted to scale proportionally to w2/3: ∆Ti ∝ w2/3. This means

that for macroparticle weights w ̸= 1, the change in temperature due to DIH com-

puted from PIC will differ from the physical value by a factor of w2/3, assuming that

the interparticle spacing of macroparticles is well resolved.

Figure 6.7(a) displays the pair correlation function g(r), obtained by averaging
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over all macroparticles between the time intervals tωpi = 9.5 and tωpi = 10, for

different weights. The pair correlation function of an OCP at the same equilibrium

temperature is included for comparison. As expected, the pair correlation function

corresponding to a macroparticle weight w = 1 aligns well with the OCP g(r) since

individual physical particles are simulated. However, for w ̸= 1, the pair correlation

functions appear shifted relative to the OCP function. Not surprisingly, when the

radial distance is scaled by the corresponding average macroparticle distance awii , all

g(r) values align with the OCP g(r) at the equilibrium temperature, as shown in

figure 6.7(b).
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a)

b)

Figure 6.7: Pair correlation function g(r) for different macroparticle weights at equi-
librium taking as reference the physical average interparticle spacing (a) and taking
as reference the average macroparticle spacing awii (b). The pair correlation function
of an OCP at the equilibrium Γii is shown for comparison.

The scaling law ∆Tw
i = w2/3∆Ti demonstrates excellent alignment with the in-

crease in the ion temperature obtained from PIC simulations across various macropar-

ticle weights, as exhibited in figure 6.5. While employing macroparticles is standard

in traditional PIC simulations, these findings suggest that in strongly coupled plasmas
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the weight of macroparticles significantly impacts potential energy and consequently

the kinetic energy and overall plasma dynamics. This effect does not physically

manifest in weakly coupled plasmas, where the average Coulomb potential energy is

significantly less than the kinetic energy (Γii ≪ 1), thereby facilitating the use of

macroparticles.

The main takeaway of these results is that in order to capture DIH and, generally,

strong correlations with PIC simulations it is necessary to resolve the average inter-

particle spacing, combined with a unity macroparticle weight. Furthermore, the need

to resolve such a small spatial scale adds an extra constraint to the timestep, since

macroparticles should not travel a distance larger than a cell per timestep. These

additional constraints make traditional PIC simulations intractable for atmospheric

pressure plasmas due to the prohibitive associated computational cost. To illustrate,

consider a simulation run at atmospheric pressure with an ionization fraction of 10%,

and 106 macroparticles of unity weight. In this scenario, the simulation volume would

only span an approximate length of 736 nm. Contrastingly, a simulation run under

similar conditions of ionization fraction and total macroparticle count, but at a lower

pressure of 1 mTorr and with a macroparticle weight of 107, would encompass a sim-

ulation volume with a length of approximately 14 cm - akin to the length scale of a

plasma device. These discrepancies in scale underscore the limitations of PIC simula-

tions in capturing the behavior of strongly coupled plasmas at atmospheric pressure,

urging us to explore alternative computational approaches in future work. More-

over, if a fluid approach is used to model ions at atmospheric pressure and conditions

relevant to the strongly coupled regime, effects such as DIH or changes in diffusion

rates will be completely missed and the neutral gas temperature could be mistakenly

underestimated, making the results from a simulation highly questionable due to im-

portant physics being ignored. Chapters III and IV show a solution for this problem.

A possible solution for PIC simulations would be to use the P3M method instead
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of traditional PIC, however to capture the correct change in the Coulomb potential

the particle-particle part of P3M would require ions to have a unity macroparticle

weight. While this would reduce the computational cost associated to the grid reso-

lution, it would still make simulations of device-scale plasmas intractable due to the

unity macroparticle weight.

6.2.4 Grid heating and influence of interpolation scheme

In PIC simulations, it is crucial that the grid resolution is sufficiently refined to

accurately resolve the Debye length. Failure to meet this requirement can yield nu-

merical artifacts and inaccurate simulation outcomes [44]. A well-known artifact is

the numerical phenomenon of “grid heating”, leading to an overestimation of the

plasma temperature [46]. This artifact emerges due to the aliasing of interpolation

errors that occur between the mesh quantities and macroparticles. Figure 6.2 displays

the manifestation of grid heating in simulations where the ion Debye length is inade-

quately resolved. It is noteworthy that in strongly coupled plasmas, where λDi
< aii,

avoiding grid heating by resolving the Debye length implicitly ensures the resolution

of the average interparticle spacing − a prerequisite identified in this study.

Resolving the smallest Debye length eradicates grid heating in dilute plasmas.

However, in the strongly coupled regime, grid heating persists. When a PIC simula-

tion of a strongly coupled plasma resolves both the Debye length and the average inter-

particle distance, there is, on average, less than one macroparticle per cell. This leads

to a discontinuity in the electric field every time a particle crosses a cell boundary,

thereby inducing grid heating. Therefore, even when all relevant physical distances

are correctly resolved, grid heating still occurs on a much longer timescale—hundreds

to thousands of plasma periods. This effect is demonstrated in figure 6.8 (a), where

at the onset of a simulation, ∆x ≈ 0.6 λDi
. However, after DIH, the plasma con-

tinues to experience an increase in temperature due to grid heating on a timescale
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of hundreds to thousands of plasma periods. The difference in timescales between

DIH and grid heating is illustrated in figure 6.8 (b). The total energy is conserved

for the first several plasma periods, where the increase in kinetic energy occurs due

to a decrease in the electrostatic field energy. On a longer timescale, spanning 100s

of plasma periods, the lowest potential configuration is maintained but the kinetic

energy, and therefore total energy, increase due to grid heating.
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a)

b)

Figure 6.8: (a) Evolution of the ion temperature and grid spacing ∆x/λDi
for an

ion density of 2.5 × 1024 m−3, unity macroparticle weight and average number of
macroparticles per cell Nc = 0.00023. (b) Evolution of the total, electrostatic and
kinetic energies over time.

Recent research has explored strategies to decrease the computational cost and

focus on macroscopic physical phenomena. These strategies involve reducing the

149



grid heating growth rate, while under resolving the Debye length through advanced

energy conserving integration schemes, high-order macroparticle shape functions, and

filtering methods [46, 115, 116, 117, 118, 119, 120]. These strategies, in particular

high order shape functions and filtering methods, rely on the plasma being weakly

coupled. While these approaches may reduce the growth rate of grid heating, it is

found that it further reduces DIH.

Figure 6.9 a) shows the evolution of the ion temperature in a simulation where

the grid resolution (∆x/aii ≈ 0.51 and ∆x/λDi
≈ 3.13) under resolves the ion Debye

length, across different shape functions ranging from order 2 to order 6, as described

in equations (2.17), (2.18) and (2.19). Consistent with existing literature, the results

demonstrate that the growth rate of grid heating significantly decreases with higher

order shape functions. However, in a system exhibiting strong ion-ion correlations,

it is crucial to resolve the average interparticle spacing, as delineated in this study.

This necessity results in an average of less than one particle per cell. Within such

a framework, employing high order shape functions can result in the delocalization

of the charge density, leading to an artificial reduction in the effective Coulomb cou-

pling parameter of macroparticles. This, in turn, produces an underestimation of the

electric field, which subsequently reduces the observed disorder-induced heating, as

illustrated in figure 6.9 (b). This finding underscores that due to the inherent nature

of strong Coulomb coupling, the charge density must remain numerically unchanged,

both locally and globally to accurately represent the physical state of the plasma.

This further limits the applicability of PIC simulations for plasmas where ion-ion

interactions are strongly correlated.
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a)

b)

Figure 6.9: (a) Evolution of the ion temperature obtained from PIC simulations with
different shape functions for the first 100 ion plasma periods, and (b) the first 3
plasma periods. The grid resolution is ∆x/aii ≈ 0.51 and ∆x/λDi ≈ 3.13 and the
ion density is 2.5× 1024 m−3. Increasing the order of the shape function reduces the
growth rate of the observed grid heating and DIH.

6.2.5 Reduced dimensions

Running PIC simulations in reduced spatial dimensions is a common approach for

systems with some kind of spatial symmetry. While this approach significantly reduces

the computational cost, physical quantities such as charge and particle densities,
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are based on volumetric properties. The usual approximation to connect a physical

volumetric density with a numerical density in reduced dimensions is to consider

a constant area (or length) perpendicular to the simulation domain, allowing the

calculation of a volume for each cell [48]. This approach, however, is equivalent to

projecting the positions of all particles within the physical volume onto an element

in the corresponding reduced dimension. While this method is acceptable in the

weakly coupled regime, where interactions between individual particles are ignored

and multiple macroparticles are located within each cell, it artificially reduces the

interparticle distance. If a plasma is strongly coupled, that interparticle distance

needs to be resolved in order to accurately capture the strong correlations. This,

combined with the requirement of unity macroparticle weight described in this work,

makes PIC simulations with reduced dimensions not applicable for strongly coupled

plasmas.

To illustrate, for an ionization fraction of 10% at atmospheric pressure the ion

density is 2.5 × 1024 m−3 and the corresponding average interparticle spacing in a

3D physical domain is aii = (3/4πni)
1/3 = 4.57 × 10−9 m. However, if a 1D domain

is used with unity macroparticle weight, the average interparticle distance in the

simulation scales as a1Dii = 1/ni = 4×10−25 m which is 16 orders of magnitude smaller

and completely unphysical. Hence, it is clear that scaling down a problem to lower

dimensions significantly affects the average interparticle spacing. This exacerbates

the issues associated with applying PIC to strongly coupled plasmas.
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CHAPTER VII

Artificial Correlation Heating in PIC simulations

7.1 Artificial correlation heating

In a PIC simulation, the typical use of macroparticles can alter the coupling

strength for electron and ion species. This is observed when the effective coupling

strength is artificially enhanced by a macroparticle weight w > 1, for example as

detailed in section 6.2.3 and shown in figure 6.4. Consequently, a weakly coupled

physical charged species can artificially transition to a strongly coupled macroparticle

species. This condition, in conjunction with an average of less than one macroparticle

per cell (a circumstance plausible at high plasma densities, where the Debye length is

significantly decreased) instigates a novel numerical heating mechanism. This heating

mechanism, similar to DIH but distinctively attributed to the macroparticle weight,

is henceforth referred to as Artificial Correlation Heating (ACH).

7.1.1 Macroparticle coupling strength

When macroparticles are used, the numerical density, charge, temperature and

average interparticle distance of macroparticles scale as nw
e → ne/w, qwe → e w,

Tw
e → Te w and awee → aee w

1/3 respectively, where ne, e, Te and aee are the physical

quantities for electron species and w is the macroparticle weight. To clarify, the phys-

ical temperature is an intensive quantity and it does not depend on the macroparticle
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weight, however due to the scaling of the macroparticle kinetic energy with the mass,

Tw
e is proportional to w [44]. Replacing these scaling laws in the equation for the

Coulomb coupling parameter for electrons (1.7) we have equation 1.11,

Γw
ee =

e2

4πϵ0aee

w2/3

kBTe

= Γee w
2/3, (7.1)

where Γee represents the physical Coulomb coupling parameter of electrons. The w2/3

factor indicates that when the macroparticle weight is significantly larger than unity,

it could considerably increase the effective coupling strength between macroparti-

cles. This in turn could artificially enhance the correlations between macroparticle

electrons. Consequently, a plasma that is physically weakly coupled could be misrep-

resented as strongly coupled in a PIC simulation.

To illustrate, consider a plasma with an electron density of 1.25 × 1023 m−3 and

an electron temperature of 3 eV. The electron Coulomb coupling parameter in this

scenario is approximately 0.0387 which corresponds to the weakly coupled regime. If

a PIC simulation is conducted with a timestep of 0.01 of the electron plasma period, a

grid resolution of 0.3 the electron Debye length, and a moderate macroparticle weight

w of 1000, electrons heat up significantly to a maximum temperature of 7.65 eV within

1.5 ω−1
pe due to artificial correlation heating, as shown in figure 7.1. This nonphysical

rise in the electron temperature is a consequence of a macroparticle coupling strength

of approximately 3.87 (derived from equation 1.11), signifying strong coupling and

thereby illustrating the potential impact of ACH. This is better observed in figure

7.2, where the evolution of the effective coupling strength between macroparticles

decreases to a value of approximately 1.5 after 1.5 electron plasma periods. It is

important to underscore that in a simulation with electron impact ionization colli-

sions this process is potentially unstable, since an artificial heating of electrons could

result in additional ionization that further increases the electron density and there-
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∆x/λDe ∆x/awee Nc

0.3 0.088 0.00016
0.5 0.147 0.00072
0.9 0.264 0.0042
1.5 0.440 0.0194
3.0 0.881 0.1554
5.0 1.467 0.719

Table 7.1: Grid spacing and average number of macroparticles per cell for the numer-
ical results shown in figure 7.1.

fore induces a further rise in the electron temperature due to ACH. This creates the

potential for a runaway heating process.

7.1.2 Parameter space

Artificial correlation heating is observed not only because of a large, artificially

enhanced, macroparticle coupling strength but also, a small number of macroparti-

cles per cell. Hence, the artificially increased correlations between macroparticles are

resolved by the grid. This is illustrated in figure 7.1, which shows that as the grid

resolution increases, the maximum temperature due to ACH increases accordingly

with a smaller average number of macroparticles per cell. The number of macropar-

ticles per cell for each of these cases is shown in table 7.1. However, given an electron

density and temperature, it is not possible to choose the grid resolution, macroparti-

cle weight and number of macroparticles per cell independently. This is, the number

of macroparticles per cell is an immediate consequence of the values chosen for the

numerical parameters (∆x/λDe , w) given the physical values of (ne, Te). Hence, in

scenarios where the combination of small number of macroparticles per cell and large

macroparticle weight can happen, combined with a large electron density, ACH could

significantly increase the electron temperature.
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Figure 7.1: Evolution of the electron temperature for the first few electron plasma
periods for different grid spacing. The electron density is 1.25 × 1023 m−3 and the
macroparticle weight is 1000.

Figure 7.2: Evolution of the macroparticle coupling strength between electrons in a
PIC simulation where ACH is observed. The macroparticle Γw

ee decreases to a value
of approximately 1.5 after 1.5ω−1

pe . A grid resolution of 0.3λDe was used.
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To gain a more nuanced understanding of artificial correlation heating, the fol-

lowing methodology was adopted. First, the grid resolution was set to 0.5λDe across

all simulations. A macroparticle weight was then fixed at a specific value. An ini-

tial electron temperature was selected, and different simulations were run varying the

electron density until the change in Te, ∆Te = Tmax
e −Te(0), due to ACH amounted to

5% of the initial electron temperature. Here, Tmax
e corresponds to the electron tem-

perature at 1.5ω−1
pe . The corresponding value of ne was recorded, and the process was

repeated for different initial electron temperatures. Each data point corresponding

to the set of parameters (ne, Te, w) represents an average across 50 simulations with

different initial random seeds. This process was repeated for different macroparticle

weights. Therefore, for each w, there exists a curve in the (ne, Te) parameter space

that demarcates the limit of the applicability of PIC to restrict ACH to no more than

5% of the initial electron temperature. The region in which PIC is accurate lies to the

left of the corresponding curve. Figure 7.3 shows the limiting curves for macroparti-

cle weights of 10, 100 and 1000. As it is shown, the larger the macroparticle weight,

the more limited is the density regime that can be simulated using PIC at a given

temperature. This effect becomes more pronounced at smaller temperatures.
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Figure 7.3: Artificial correlation heating limit curves for different macroparticle
weights. The allowed operating region for PIC simulations is located on the left
side of each curve.

For the results shown in figure 7.3, the input variables for the PIC simulations

were (ne, Te, w,Nx) where Nx is the number of nodes in each direction and sets the

size of the domain L = (Nx − 1)∆x. The grid spacing ∆x was chosen as ≈ fλDe

where λDe is the electron Debye length at the corresponding electron density and

temperature and f ≈ 0.5. The number of macroparticles in the domain is given by

Ne = ne L
3/w. The average number of macroparticles per cell is then Nc = Ne/N

3
x .

Replacing the previous expressions in Nc, and assuming that Nx ≫ 1,

Nc =
f 3

w
ne

(
ϵ0kBTe

e2ne

)3/2

. (7.2)

Solving equation (7.2) for Te,

Te =
N

2/3
c

f 2

(
e2

ϵ0kB

)
(new

2)1/3, (7.3)

158



ACH Region

Figure 7.4: Limiting curve for ACH region from the model described in equation (7.3)
and numerical results from 3D-PIC simulations.

gives an expression for the minimum electron temperature that can be simulated given

the parameters (Nc,∆x/λDe , ne, w). This minimum electron temperature directly

depends on the desired number of macroparticles per cell Nc and the factor new
2.

It is observed that the chosen condition of a 5% temperature increase due to ACH,

used as a criterion in the data shown in figure 7.3, is equivalent to a number of

macroparticles per cell Nc ≈ 0.0385 for all simulations. When this condition is applied

to equation (7.3) with f = 0.5, the numerical data align with the curve defined by

equation (7.3) in the (Te, new
2) parameter space, as illustrated in figure 7.4.

On the right side of the limiting curve depicted in figure 7.4, artificial correlation

heating significantly influences the electron temperature within a timescale dictated

by the electron plasma period. In addition, on a longer timescale, grid heating arises

even when the Debye length is resolved due to the use of a limited number of macropar-

ticles per cell—a direct consequence of the specific density, temperature regimes, and

macroparticle weights employed. This region is not advisable for simulations, as even

partial adherence to these conditions within the simulation domain could dramatically
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alter local electron dynamics. These findings considerably constrain the applicability

of PIC simulations in scenarios of moderate electron temperatures and high ionization

fractions or electron densities−an effect amplified by the high macroparticle weights

inherent to the new
2 scaling shown in equation (7.3). In addition, it is important to

remark that ACH is not a consequence of non-energy conserving PIC schemes. ACH

occurs as a consequence of the artificial increase in the Coulomb potential energy

due to a large macroparticle weight. Hence, changing from a momentum-conserving

to energy-conserving PIC scheme will not change the observed ACH at a given grid

resolution. This is contrary to other sources of numerical heating, where for example,

changing the PIC scheme can affect the growth rate of grid heating.

It is vital to emphasize that in simulations where the conditions conducive to arti-

ficial correlation heating could potentially be met, ACH initiates a positive feedback

loop that enhances its effect. Specifically, once ACH occurs in simulations where

ionization of a neutral gas is included, the resulting numerical increase in electron

temperature can trigger nonphysical ionization events, which subsequently elevate

the electron density. This in turn provokes further ACH, pushing the simulation con-

ditions towards the right side of the diagram depicted in figure 7.4. The only way to

evade ACH is by maintaining multiple macroparticles per cell. However, given certain

conditions such as (ne, Te), a fraction of the Debye length to resolve, and a macropar-

ticle weight, these parameters immediately determine the number of macroparticles

per cell. Consequently, the ACH curve depicted in figure 7.4 represents the limit of

applicability of PIC simulations for electrons. This holds true even when the physical

coupling strength corresponds to the weakly coupled regime. The results shown here

demonstrate that PIC simulations of typical plasmas (e.g. capacitively coupled plas-

mas conditions) end up requiring lower macroparticle weights than one might expect

in order to maintain “many” computational particles per element if the element is

sized to be roughly the Debye length.
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In this chapter, we introduce a new constraint necessary to avoid ACH. This re-

quires that the macroparticle coupling strength be smaller than one Γw < 1, where

Γw ≡ Γw2/3, Γ = Z2e2/(4πϵoakBT ) is the physical coupling strength and w is the

macroparticle weight. If this condition is violated, the finite macroparticle weight

artificially enhances the coupling strength and causes the plasma to heat until the

macroparticle coupling strength is near unity, depending on the grid resolution. A

comprehensive model of ACH is developed that incorporates electron density, tem-

perature, macroparticle weight, and grid resolution. It is then tested using PIC

simulations, delineating the boundaries of the method’s applicability and offering a

predictive framework for ACH. Moreover, this chapter explores a runaway heating

process induced by ACH in the presence of ionization, which can lead to numerical

instability. A critical conclusion of this study is that the onset of ACH imposes more

stringent constraints on the macroparticle weight and average number of macropar-

ticles per cell than those typically employed in standard PIC simulations, thereby

establishing a new limitation to the method’s applicability.

7.2 PIC simulations

In the remaining of this chapter the simulation setup is such that in the absence

of ACH, density and temperature remain constant in time. So any deviation from the

initial density and temperature can be prescribed to a numerical error. The number

of macroparticles used in each simulation was given by Nw
e = neV/w where ne is the

electron density, V the volume of the simulation domain and w the macroparticle

weight. The volume of the simulation domain was set by V = L3 where L = (Nx −

1)∆x, Nx is the number of nodes in each direction and ∆x the cell size. The simulation

domain was cubic with periodic boundary conditions for fields and particles. The

timestep used for all the simulations was ∆t = 10−2ω−1
pe , where ωpe = (e2ne/ϵ0me)

1/2

is the electron plasma frequency. The positions of the macroparticles were initialized
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with a uniform random distribution and the velocities with a Maxwellian distribution

at an initial temperature of 3 eV. No ion or neutral species were included since

the objective of this part is to study artificial correlation heating of weakly coupled

species, such as electrons, in a timescale given by ω−1
pe . Thus, ions and neutrals remain

stationary in the timescale of interest and are modeled as background uniform fluid.

With this numerical setup, any increase of the electron temperature is attributable

to a numerical error, particularly ACH or PIC heating.

In section 7.4.4, an ionization module is included to study the possibility of a

positive feedback loop between ACH and electron-impact ionization. This is done by

including a Monte Carlo collision routine [44] described in chapter II.

7.2.1 Artificial correlation heating

To provide a concrete example, consider a plasma with an electron density of

2.5×1019 m−3 and an electron temperature of 3 eV. In this case, the electron Coulomb

coupling parameter is approximately Γee = 2 × 10−3, indicative of a weakly cou-

pled regime. Using a timestep of 10−2ω−1
pe , grid resolution ∆x/λDe = 0.5, and unity

macroparticle weight (w = 1), no numerical heating is observed, as expected since

Γw
e ≪ 1; see Fig. 7.5. However, as the macroparticle weight is increased enough that

Γw
ee > 1, significant ACH is observed despite ∆x/λDe < 1. For the particular case of

w = 105, the electron temperature increases to a peak of 9 eV within 1.5ω−1
pe . This

rise in temperature is the result of a large macroparticle weight artificially increasing

the coupling strength to a value of Γw
ee = 4.87, as deduced from Eq. (1.11).

The magnitude of this numerical heating is not solely attributable to the enhanced

macroparticle coupling strength, but also the limited number of macroparticles per

cell Nc. This is illustrated in Fig. 7.6. At a small macroparticle weight, the av-

erage number of macroparticles per cell is large enough that the distance between

macroparticles is not resolved by the grid, awee ≪ ∆x ≈ λDe. Hence, the charge
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density on the grid does not significantly change as particles move. However, if the

macroparticle weight is increased while maintaining the cell size to resolve the Debye

length, ∆x = 0.5λDe, this leads to an increased spatial resolution by the grid such that

awee ≳ ∆x. This increased grid resolution resolves the artificially enhanced repulsive

electric field between macroparticles. This artificially enhanced electric field causes

macroparticles to separate until the spatial configuration is such that the Coulomb

potential energy is minimized, as shown in Fig. 7.6 (b). This process is similar to DIH

[2], with the difference that the change in potential energy is artificially enhanced due

to the large macroparticle weight and that the grid resolution influences the amount

of heating that can be observed. Since the total energy is conserved in a simulation,

the decrease in the potential energy leads to a significant increase in temperature,

resulting in artificial heating.

The specific number of macroparticles per cell in the simulations shown in Fig.

7.5 is detailed in Table 7.2. It is crucial to note that the choice of grid resolution,

macroparticle weight, and the number of macroparticles per cell are not independent

variables but are related via the electron density and temperature (ne, Te). Specif-

ically, the number of macroparticles in a cell Nc = nw∆x3, where nw = n/w is the

macroparticle density, can be expressed in dimensionless form as

∆x

λDe

=

(
4πNc

3

)1/3√
3Γw

ee. (7.4)

Simulations where a large macroparticle weight is used, such that Γw
ee ≳ 1, and the

grid resolution resolves the Debye length, will inevitably lead to Nc ≪ 1. As a

consequence, the strong correlations will be resolved by the grid and ACH will be

significant.
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Figure 7.5: Evolution of the electron temperature during the first 3ω−1
pe of each sim-

ulation for an electron density of 2.5 × 1019 m−3, an initial electron temperature
Te = 3 eV and an initial grid resolution of ∆x/λDe = 0.5 for different macroparticle
weights.

w Nc Γw
ee ∆x/awee

1 5.34× 10 2.26× 10−3 6.07
103 5.34× 10−2 2.26× 10−1 6.07× 10−1

104 5.34× 10−3 1.05 2.82× 10−1

105 5.34× 10−4 4.87 1.31× 10−1

Table 7.2: Parameters utilized in the PIC simulations shown in Fig. 7.5. The initial
grid resolution was set as ∆x/λDe = 0.5.

164



Figure 7.6: Illustration of the distribution of macroparticles in PIC simulations for (a)
w ≳ 1, Γw

ee < 1 and awee ≪ ∆x and (b) w ≫ 1, Γw
ee > 1 and awee ≳ ∆x assuming a grid

spacing of approximately the Debye length. The color intensity of each cell represents
the local charge density. For w ≳ 1 the charge density is uniformly distributed within
the grid for a uniform spatial configuration of macroparticles. However, for w ≫ 1 the
charge is localized in the few cells where macroparticles are located. Therefore, there
is an artificially enhanced repulsive electric field that is resolved by the grid. This
causes macroparticles to separate from each other in order to minimize the overall
potential energy.
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7.3 ACH model

Artificial correlation heating arises from macroparticles moving from an initially

randomly distributed configuration to the lowest potential energy configuration, in

the context of an artificially increased potential energy and a grid resolution that

resolves the interparticle spacing, as shown in Fig. 7.6. The artificial increase in

the potential energy arises as a consequence of a macroparticle weight larger than

unity, as it was described in section 7.1. Here a theory model for ACH is described,

based on the macroparticle effect on the potential energy and conservation of energy

arguments. First, the potential energy is calculated from statistical mechanics. Then

the change in potential energy from an initial uncorrelated state to an ordered state

is calculated to predict the change in kinetic energy of macroparticles due to ACH.

This model is then extended in section 7.4.2 to any grid resolution ∆x/awee.

First, recall that the potential energy of electrons in an OCP system, from statis-

tical mechanics, is given by [108]

PE =
neq

2
eNe

2ϵ0

∞∫
0

dr r g(r), (7.5)

where Ne is the number of electrons and g(r) is the electron-electron pair correlation

function. The change in potential energy from the initial to final spatial configuration

is then

∆PE =
neq

2
eNe

2ϵ0

∞∫
0

dr r
[
gf (r)− g0(r)

]
(7.6)

where gf (r) = g(r) is the radial distribution function at the lowest potential configura-

tion and g0(r) ≈ 1 at the initial uncorrelated state. The integral I∗ =
∫∞
0

dr̃ r̃ [g(r̃)− 1],

where r̃ = r/aee , depends exclusively on the Coulomb coupling parameter as de-

scribed in chapter III and is shown in Fig. 3.21, where the smaller the coupling

parameter, the smaller the change in potential energy. A fit to this integral is was
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obtained using the function

I∗(Γ) =
a

(b+ Γ)c
+ d (7.7)

with the parameter values a = 0.6032, b = 0.0372, c = 0.1549 and d = −0.9917.

Here, the solution for g(r) used to solve the integral I∗ was obtained by solv-

ing the Ornstein-Zernike equation with the hypernetted chain approximation as a

closure [108], as described in chapter III. The hypernetted chain approximation has

been shown to be an accurate closure to model the radial distribution function for a

one component plasma across different coupling regimes [104, 108, 121].

Due to conservation of energy, the change in potential energy is balanced by a

change in kinetic energy

∆KE =
3

2
NekB∆Te = −∆PE, (7.8)

where KE is the total kinetic energy. Combining Eqs. (7.6) and (7.8) and accounting

for the scaling of Te, ne, and aee with the macroparticle weight w, the equation for

the electron temperature increase due to ACH in a PIC simulation is

neq
2
ea

2
ee

2ϵ0
I∗(Γmin,w

ee ) w2/3 +
3

2
kB

(
Tmax
e − T 0

e

)
= 0. (7.9)

Here, Tmax
e is the maximum electron temperature due to ACH and Γmin,w

ee is the

macroparticle coupling parameter that corresponds to this temperature. Eq. (7.9)

can be solved iteratively to find a solution for Tmax
e given the parameters ne, w and

T 0
e . It is important to underscore that the temperature Tmax

e predicted with this

model neglects the effect of the grid resolution, thus, it assumes that the average

distance between macroparticles is resolved by the grid, thus Nc ≪ 1. Modifications

to account for the grid resolution are provided in Sec. 7.4.2.
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Figure 7.7: Maximum electron temperature obtained from the set of simulations with
parameters indicated in Table 7.3. The maximum electron temperature increases
with the electron density and macroparticle weight due to the corresponding increase
in the initial Γw

ee value.

7.4 Discussion

7.4.1 Limit of fine grid resolution

Figure 7.7 illustrates the maximum electron temperature obtained from PIC simu-

lations across different electron densities and macroparticle weights. Each simulation

was conducted with a grid spacing of approximately ∆x/awee ≈ 0.1, resulting in an

average of Nc = 2.35×10−4 macroparticles per cell. In this limit, the grid resolves the

average distance between macroparticles. The specific parameters employed in these

simulations are detailed in Table 7.3. It is clear that as the density and macropar-

ticle weight increases, the influence of ACH on the electron temperature becomes

more significant. This agrees with the fact that increasing both ne and w increases

the macroparticle coupling parameter Γw
ee. The theoretical model demonstrates good

agreement with the PIC simulation results, showing its validity.
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ne (m
−3) w Γw

ee ∆x/λDe

1021
1 7.74× 10−3 1.52× 10−2

102 1.67× 10−1 7.07× 10−2

104 3.60 3.28× 10−1

1022
1 1.67× 10−2 2.24× 10−2

102 3.60× 10−1 1.04× 10−1

104 7.74 4.82× 10−1

1023
1 3.60× 10−2 3.28× 10−2

102 7.74× 10−1 1.52× 10−1

104 1.67× 10 7.07× 10−1

Table 7.3: Parameters used in the PIC simulations shown in Fig. 7.7. The initial
grid resolution was set as ∆x/awee = 0.1 which corresponds to an average number of
macroparticles per cell of Nc = 2.35× 10−4.

7.4.2 Effect of grid resolution

The results in section 7.1 indicated that the grid resolution has an impact on the

temperature increase due to ACH. To further investigate this effect, a series of simu-

lations were executed varying the grid resolution alongside different electron densities

and macroparticle weights. In this set of simulations, for each combination of param-

eters, 20 independent simulations with different initial random seeds were conducted

and the maximum temperatures were averaged. Table 7.4 show the parameters used.

The outcomes, presented in Fig. 7.8 (a), reveal that an increase in cell size correlates

with a reduction in ACH, which is attributed to an increase in the average number

of macroparticles per cell Nc = (3/4π)(∆x/awee)
3, as illustrated in Fig. 7.6. This in-

crease in the cell size leads to a failure to resolve the artificially enhanced correlations,

decreasing ACH.

This phenomenon is better understood by analyzing the radial distribution func-

tion obtained from PIC for a specific case of ne = 1022 m−3 and w = 1000, as depicted

in Fig. 7.9. An increase in cell size leads to an increase in the g(r) at short distances.

This is a consequence of the underestimation of the Coulomb potential within a cell,

inherent to the PIC method. At a threshold where ∆x/awee ≳ 7, the g(r) converges

to that of an uncorrelated state and therefore ACH is effectively turned off. The nu-
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merical grid used in PIC simulations makes the potential around a charged particle

asymmetric. Hence, the HNC approximation no longer serves as an accurate tool to

determine the g(r), necessitating an alternative approach to model grid resolution

effects.

Instead of modeling the grid resolution effect from the g(r), a fit to the simulated

temperature increase is provided. The dimensionless electron temperature T̃e, defined

as

T̃e ≡
Te − T 0

e

Tmax
e − T 0

e

, (7.10)

is shown in Fig. 7.8 (b). All simulations align along a single curve when the dimen-

sionless temperature is shown as a function of grid resolution. A fitting function

T̃e =
1

1 + A (∆x/awee)
B

(7.11)

was applied to the simulation data, yielding coefficients A = 0.606 and B = 1.767.

This fit agrees well with the simulated value. To integrate this finding into the model

described in Sec. 7.3, the electron temperature influenced by ACH as a function of

grid resolution can be expressed as

Te

(
∆x

awee

)
=

Tmax
e (ne, T

0
e , w)− T 0

e

1 + 0.606(∆x/awee)
1.767

+ T 0
e . (7.12)

Here, Tmax
e is derived by solving Eq. (7.9) with the input parameters ne, T

0
e , and w.

As shown in Fig. 7.8 (a), the electron temperatures predicted by Eq. (7.12) closely

match those observed in the PIC simulations, making the model given by Eqs. (7.9)

and (7.12) a useful tool to predict ACH at any conditions and grid resolution.

It is important to underscore that avoiding ACH when Γw
ee ≳ 1 requires that

the grid resolution be ∆x/awee ≳ 10. This is equivalent to a number of particles

per cell of Nc ≳ 240, a value significantly larger than what is typically required in
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b)

a)

Figure 7.8: a) Maximum electron temperature obtained from the set of PIC simula-
tions run with the parameters shown in Table 7.4. Labels indicate the product new

2.
b) Dimensionless electron temperature T̃e as a function of the grid spacing.
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ne (m
−3)

(2.5×)
w Γee Γw

ee ∆x/awee
Nc

(2.37×)
∆x/λDe

1020 105 4.87× 10−3 10.50
10−1 10−4 0.561
1 10−1 5.61
10 102 56.1

1023 103 4.87× 10−2 4.87
10−1 10−4 0.382
1 10−1 3.82
10 102 38.2

1024 102 1.05× 10−1 2.26
10−1 10−4 0.261
1 10−1 2.61
10 102 26.1

Table 7.4: Parameters used to study the effect of the grid resolution on ACH shown
in Fig. 7.8.

standard PIC simulations. According to Eq. (7.4), this requirement leads to under-

resolving the Debye length when Γw
ee ≥ 1. Thus, avoiding ACH by reducing the grid

resolution is not a viable option since not resolving the Debye length will generally lead

to traditional PIC heating on timescales much longer than the plasma period. [44].

Therefore, ACH imposes an additional constraint on PIC simulations, necessitating

careful consideration when modeling plasmas with large macroparticle weights.

7.4.3 Effect of shape function order

As shown in chapter VI, the order of shape functions used in a PIC simulation

can affect how well correlations are resolved [122]. As the order of shape function

is increased, correlations are smoothed out, effectively decreasing the artificially en-

hanced electric field. As a result, ACH would be expected to decrease with order

of the shape function. To test how this influences ACH, the set of simulations with

ne = 2.5 × 1023 m−3 from Table 7.4 was repeated but varying the order of shape

functions from 2 to 6. [77] Figure 7.10 shows the obtained maximum electron temper-

ature for each simulation as a function of the grid resolution. It is observed that as

the order of the shape function is increased, ACH does decrease. However, this effect

does not make a significant enough change to justify the use of higher order shape
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Figure 7.9: Radial distribution function obtained from PIC simulations run at differ-
ent grid resolutions for an electron density of ne = 2.5×1023 m−3 and a macroparticle
weight of 1000.

functions to control ACH. On the contrary, as stated in the grid resolution effect anal-

ysis, increasing the cell size such that a minimum number of macroparticles per cell

of ≳ 240 is reached can avoid observing ACH without an increase in computational

cost. However, this last approach leads to a decrease of the grid resolution in terms

of the Debye length, which can trigger PIC heating on a longer timescale.

7.4.4 Numerical instability produced by ACH and ionization

Artificial correlation heating is potentially unstable in PIC simulations when ion-

ization of a neutral gas is included. This can happen when the bulk of the electron

energy distribution function is below the peak ionization cross section energy and thus

increasing the temperature will increase the ionization rate. For high temperature

plasmas, O(100eV), the ionization cross section decreases with increasing energy so

there should be no instability. However, for low temperature plasmas, O(1eV), the

temperature rise due to ACH will significantly increase the ionization rate through

173



Figure 7.10: Maximum electron temperature obtained from PIC simulations for an
electron density of ne = 2.5×1023 m−3, a macroparticle weight w = 1000, and varying
the grid resolution and the shape function order.

the steep electron energy dependence of the electron-neutral impact ionization cross

section in the few eV energy range; see for example Ref. [78]. The increase in the

ionization rate following ACH corresponds to an artificial increase in the electron

density, which then leads to more ACH, further increasing the electron tempera-

ture and potentially inducing a runaway heating process. To study the possibility of

this runaway process, a set of simulations were run at an initial electron density of

ne = 2.5×1019 m−3, temperature Te = 3 eV and initial grid resolution ∆x/λDe = 0.5,

varying the macroparticle weight from 1 to 105 as indicated in Table 7.5. Each simula-

tion was repeated 20 times varying the random seed number and the results displayed

are the average of all the simulations.

Figure 7.11 (a) shows the evolution of the electron temperature for each simu-

lation over approximately 8 ps. It is clear that if the macroparticle weight is large

enough that Γw
ee > 1, ACH significantly increases the electron temperature and that

this considerably increases the ionization rate, as shown in Fig. 7.11 (c). Here, the
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a)

d)

e)

b)

c)

Figure 7.11: Evolution of: a) the electron temperature, b) electron density, c) ioniza-
tion rate, d) grid resolution compared to the average distance between macroparticles,
and e) grid resolution compared to the electron Debye length, for the PIC simulations
described in Table 7.5. Simulations with a macroparticle weight large enough to sat-
isfy the Γw

ee > 1 criterion are observed to be subject to ACH, which induces a runaway
process that increases the electron density faster than an exponential curve. When
the macroparticle weight is increased from 103 to 105 the ionization rate increases
several orders of magnitude due to ACH and the runaway heating process.
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ne(m
−3)

(2.5×)

Γee

(2.3×)
∆x/λDe w Γw

ee ∆x/awee
Nc

(4.9×)

1019 10−3 0.50

1.0 2.3× 10−3 6.1 101

103 2.2× 10−1 0.61 10−2

104 1.1 0.28 10−3

105 4.9 0.13 10−4

Table 7.5: Parameters used in the PIC simulations to study the effect of ACH com-
bined with ionization as shown in Fig. 7.11. Here, the simulation domain and cell
size ∆x remain constant during each simulation.

ionization rate is calculated from the Xe electron-impact ionization cross section [78]

and a Maxwellian distribution at the corresponding electron temperature. Comparing

the curves in Fig. 7.11 (c) with macroparticle weights from 103 to 105 it is noticeable

how the ionization rate can significantly increase by one or more orders of magnitude.

This is reflected as an increase in the electron density with time at a faster than an

exponential rate, as shown in Fig. 7.11 (b).

Since the simulation domain volume as well as the cell size ∆x remains constant,

increases in density and temperature affect the grid resolution. Figures 7.11 (d) and

(e) show how the grid resolution changes in terms of the interparticle distance and

the electron Debye length respectively. It is clear from Fig. 7.11 (d), that fixing

the initial grid resolution ∆x/λDe = 0.5 but increasing the macroparticle weight

improves the grid resolution in comparison with the average interparticle distance.

As was demonstrated in Sec. 7.4.2, a grid that resolves awee is necessary for ACH to

occur. It is also observed that for the case w = 105, the significant change in the

electron density increases ∆x/awee and ∆x/λDe over time, potentially limiting ACH

after the density has built up sufficiently. It is noteworthy that this implies that

if an adaptive mesh refinement method were used to maintain ∆x/λDe = 0.5, ACH

would be larger than what was observed here; further increasing the temperature and,

thus, electron density to values larger than what it is shown in Fig. 7.11 (a) and (b).
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A conclusion is that ACH combined with ionization can lead to a runaway heating

mechanism.

7.4.5 Artificial correlation heating in reduced dimensions

As described in section 6.2.5, running PIC simulations in reduced spatial dimen-

sions is a common approach for systems with some kind of spatial symmetry. When

using reduced spatial dimensions, the positions of all particles within the physical

volume are projected onto an element in the corresponding reduced dimension [48].

As discussed, this method reduces the distance between numerical particles. Hence,

if the physical Debye length is resolved and a lower dimensionality of a problem is

simulated, the average number of macroparticles per cell is significantly increased.

This considerably reduces ACH making it relevant only in 3D PIC simulations.

7.4.6 Limit of applicability of the PIC method and stability criteria

From the results obtained in this work, it is clear that ACH limits how high the

electron density and macroparticle weight can be at a given electron temperature and

grid resolution, and that it can be avoided if the Γw < 1 condition is met. However,

it also shows that if the Γw < 1 condition is violated, the magnitude of the resulting

ACH depends on the grid resolution and number of particles per cell. It is possible

that a small amount of ACH is tolerable. To understand this limit of applicability

of PIC simulations, the model given by Eqs. (7.9) and (7.12) was utilized to find

the limiting curve defined by a 5% of electron heating due to ACH for a range of

initial electron temperatures. This is, at each possible Te and at a fixed ∆x/λDe,

the model is solved for increasing values of new
2 until a temperature increase of 5%

is predicted. This defines a limiting curve for each grid resolution ∆x/λDe at which

only lower values of new
2 can be simulated in order to avoid ACH. Figure 7.12 shows

the limiting curves obtained for grid resolutions ∆x/λDe from 0.1 to 5. As the grid
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PIC Inoperable

PIC Operable

Figure 7.12: Limiting curves for the PIC method in the electron temperature vs new
2

parameter space. Each curve was obtained with a different grid resolution ∆x/λDe

ranging from 0.1 to 5. The ACH region lies on the right side of each curve.

spacing increases, ACH becomes less important and the limiting curve shifts to higher

new
2, increasing the allowed parameter space. However, ideally the electron Debye

length should be resolved in order to avoid PIC heating, this implies that there is a

range of new
2 values at each temperature that cannot be simulated using the PIC

method.

Sometimes it is not imperative to resolve the Debye length and the consequent PIC

heating can be controlled by using energy conserving integration schemes, as well as

higher order shape functions and filtering methods [46, 115, 116, 117, 118, 119, 120].

In such cases, instead of avoiding ACH by reducing the macroparticle weight until

Γw
ee ≤ 1, it can be controlled by increasing the cell size as described in section 7.4.2.

This can also be observed from Fig. 7.12, where as ∆x/λDe is increased, the ACH

limiting curve shifts to higher new
2 values.

Figure 7.13 provides a simple procedure for ensuring that ACH remains below a

tolerable level in PIC simulations. Once the input parameters (ne, Te, w) are chosen,
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Input parameters:
n, T , w

Γw = Γw2/3 ≳ 1
Use standard

criteria

is ∆x/λD

important?

Increase ∆x until
Nc ≳ 240 or
desired value

At given ∆x/aw,
calculate ∆T due to ACH

if ∆T is important:
decrease w

yes

no

no

yes

Figure 7.13: Diagram illustrating the general procedure that should be used to choose
PIC input parameters (n, T,∆x/λD, w) in order to avoid ACH.

the macroparticle coupling parameter should be calculated using Eq. (1.11). If Γw
ee ≤

1, then the standard PIC criteria can be used. However, if Γw
ee ≥ 1, the remaining

question to ask is if it is necessary to resolve the electron Debye length [46, 115, 116,

117, 118, 119, 120]. If the cell size ∆x can be larger than the Debye length, then to

avoid or control ACH ∆x should be increased until Nc ≈ 240. However, if the Debye

length must be resolved, the temperature increase due to ACH can be calculated

using Eqs. (7.12) and (7.9). If the expected temperature increase is significant for a

particular application, then one must reduce the macroparticle weight w until ACH

is reduced to a tolerable level.
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CHAPTER VIII

Conclusion

The work presented in this dissertation demonstrates that ions are strongly cou-

pled in atmospheric pressure plasmas influencing the ion and neutral gas temperatures

as well as transport coefficients such as diffusion. Finally, PIC simulations are studied

in the context of strong correlations.

In chapter III molecular dynamics simulations reveal that after an instant ion-

ization pulse the ion and neutral temperatures in atmospheric pressure plasmas are

influenced by an associated disorder induced heating process [2]. Disorder-induced

heating is not important in weakly coupled plasmas, but can be a dominant effect

in strongly coupled plasmas. It causes ions to rapidly heat to temperatures that can

reach several times the background neutral gas temperature. After DIH, ions ther-

mally equilibrate with neutrals causing them to cool and the neutrals to heat by an

amount and at a rate that depends on the ionization fraction. The cooling causes

ions to return to a more strongly coupled state. Due to DIH and ion-neutral temper-

ature relaxation, the final neutral gas temperature depends on the ionization degree

achieved at plasma formation. We show that at atmospheric pressure, DIH is signifi-

cant for ionization fractions larger than xi ≳ 10−2 and thus, it could be important for

experiments that involve nanosecond pulsed discharges, laser-produced plasmas, or

other sources that achieve high ionization fractions. Furthermore, the instant ioniza-
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tion approximation is relaxed to a gradual arbitrary ionization rate showing that DIH

does not depend on the ionization dynamics, instead it depends on the changes in the

ion density since it is a consequence of conservation of energy. Hence, DIH happens

gradually as the neutral gas is ionized [5]. Additionally, DIH does not depend on the

gas composition in the sense that it only depends on the total ion density. In a grad-

ual ionization process, if the ionization fraction is large enough, DIH can significantly

increase the ion temperature, then ions heat the neutral gas through collisions. A

model for DIH in both instant and gradual ionization cases is developed and validated

against molecular dynamics simulations.

The combination of DIH followed by ion-neutral temperature relaxation provides

a new mechanism for fast gas heating that can increase the gas temperature by several

thousand degrees on a nanosecond timescale. These results are of particular interest

in the context of nanosecond pulsed discharges at atmospheric pressure and above. In

these discharges, fast gas heating mechanisms have been traditionally studied from a

plasma chemistry standpoint, including mechanisms such as dissociation and quench-

ing of excited states [6, 21, 31, 72, 91]. In chapter IV, the model developed for DIH

is integrated into a global plasma chemistry model of a nanosecond pulsed nitrogen

discharge at one and ten atmospheres. Simulations show that while DIH is not the

dominant heating mechanism at atmospheric pressure it can contribute for up to 20%

of the final temperature if full ionization is reached. Additionally, at ionization frac-

tions above 10% electrons and ions are at equilibrium. Hence, the energy released due

to DIH indirectly influences the electron temperature, increasing the rate of inelastic

processes such as dissociation and ionization. This effect becomes more important as

the pressure increases since DIH scales with the total ion density. At ten atmospheres

and full ionization, DIH increases the final temperature by 60%. It is important to

underscore that the results studied in this work are conducted for nitrogen discharges.

However, DIH could have a stronger impact in discharges with gases that have less
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electron impact inelastic processes or where those processes require less energy. Fi-

nally, while the maximum pressure studied here is ten atmospheres, at larger pressures

DIH could significantly affect the plasma chemistry, as long as the initial neutral gas

configurations is uncorrelated.

Increasing interest has been shown in partially ionized plasmas at atmospheric

pressure and above for applications ranging from CO2 conversion [11, 67] to plasma

medicine [123] and plasma assisted combustion [12, 13, 69, 70, 71]. In most of these

applications, diffusion processes are of main importance in the plasma dynamics and

transport of reactive species. Furthermore, one of the most used simulation techniques

is multifluid models where diffusion coefficients are required as input variables. In

chapter V, we show that strong Coulomb coupling effects can significantly influence

diffusion processes at these conditions [114]. Considering elastic collisions, we find

that the ion diffusion is characterized by three regimes as a function of the ionization

degree at atmospheric pressure. First, ion-neutral collisions are dominant at small

ionization fractions (xi < 10−6), setting the ion diffusion coefficient via weakly cou-

pled ion-neutral interactions. A transition between ion-neutral to ion-ion collision

dominated regimes occurs at a ionization fraction of 10−6 ≲ xi ≲ 10−2. For larger

ionization degrees, ion-ion collisions dominate and the the strong correlations influ-

ence the ion diffusion coefficient. These strong ion-ion correlations are accounted for

using the mean force kinetic theory and including a modified Enskog correction fac-

tor for the excluded volume due to the repulsive force and large coupling strength.

Furthermore, DIH is accounted for and the corresponding temperature increase at

large ionization fractions (xi > 10−2) affects the ion diffusion coefficient as well as the

neutral diffusion coefficient. This effect becomes more significant at larger pressures.

Finally, a molecular dynamics Monte Carlo Collision (MD+MCC) simulation setup

was implemented in LAMMPS to simulate a partially ionized Ar plasma at atmo-

spheric pressure for ionization fractions from 10−9 to 1 showing a good agreement
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with the theory model. This provides a tested theoretical model for diffusion that

may be implemented to account for strong ion effects on diffusion in fluid simulations

of atmospheric pressure plasmas.

Particle-In-Cell (PIC) simulations have been a long-standing, essential tool in

plasma modeling due to their ability to make kinetic simulations accessible at device-

relevant scales. Currently, there is a concerted effort to extend the application of

PIC simulations to model plasmas at atmospheric pressure. In chapter VI, we show

that standard PIC simulations are only applicable to weakly coupled plasmas. Fur-

thermore, when used to model strongly coupled plasmas, such as ions at atmospheric

pressure, PIC requires additional constraints to capture phenomena like disorder in-

duced heating. Firstly, a fraction of 0.1 of the average interparticle spacing needs

to be resolved in order to observe DIH, which on average results in less than one

macroparticle per cell. Secondly, a unity macroparticle weight must be used. If the

macroparticle weight is larger than the unity, it significantly influences the Coulomb

potential energy due to a numerical localization of the electric charge, enhancing the

electric field and the effective coupling strength, thus influencing the ion dynamics

and temperature. These constraints considerably increase the computational cost of

PIC for strongly coupled plasmas, rendering it impractical for device scale modeling.

In addition, if PIC is operated with these additional constraints, grid heating is in-

evitable due to the presence of less than one macroparticle per cell and high coupling

strength. Attempts to reduce the growth rate of grid heating with filtering methods

or high order shape functions delocalize the charge density, artificially decreasing the

coupling strength of the system and influencing the ion dynamics and temperature.

Moreover, it is found that PIC simulations with reduced spatial dimensions are not

suitable for strongly coupled plasmas. The scaling of the physical density in 1D or

2D simulations artificially decreases the average interparticle spacing which needs to

be resolved to capture the strong correlations. A primary conclusion drawn from the
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presented results is that standard PIC simulations, are not suitable for strongly cou-

pled plasmas. This places constraints on their applicability to atmospheric pressure

plasmas to a sufficiently low density regime.

Chapter VII describes a novel numerical heating mechanism observed in PIC sim-

ulations, Artificial Correlation Heating. A comprehensive model for ACH is devel-

oped that incorporates variables such as electron density, temperature, macroparticle

weight, and grid resolution. This model, validated against PIC simulations, maps

out a new limit of the PIC method’s applicability and provides a predictive tool for

anticipating the influence of ACH on the electron temperature. The results can also

be applied to ACH of ions in an analogous way. Its accuracy in predicting the onset

and magnitude of ACH provides an instrument for a more reliable application of the

PIC method in various plasma applications.

One of the key insights is understanding how ACH occurs. ACH is similar to

the physical effect of DIH that arises in strongly coupled plasmas [2], but here is an

artificial numerical effect that is introduced by a large macroparticle weight. Like

DIH, it is caused by the Coulomb repulsion between particles, which causes them to

move to the lowest potential configuration. During this spatial reordering there is

a conversion of potential to kinetic energy that arises at strong coupling, with the

difference that here the strong coupling is induced artificially by a large macroparticle

weight.

The findings highlight that careful selection of parameters like grid resolution

and macroparticle weight is crucial to avoid ACH. Moreover, the study brings to

light the identification of a runaway heating process induced by ACH, particularly in

simulations that include ionization. This produces a numerical instability capable of

increasing the plasma density by several orders of magnitude on a short timescale,

exposing the importance of identifying and avoiding ACH. The main takeaway of this

study is that it describes an upper limit of applicability of the PIC method in terms
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of the macroparticle weight and grid resolution. A general procedure is provided to

guide on how to properly choose PIC input parameters in order to avoid or control

ACH.

Future work will focus on extending the analysis presented in Chapters III and IV

to higher pressures. Notably, as pressures exceed 10 atm, disorder-induced heating

(DIH) could emerge as a significant and possibly dominant mechanism, impacting not

only the overall temperature but also the plasma chemistry. The potential influence

in the plasma chemistry arises from the anticipated high electron-ion collisionality at

elevated pressures and ionization degrees. Additionally, discharges in water represent

a current topic of interest within the community. In these environments, the initial

neutral particles are present at densities a thousand times greater than at atmospheric

pressure. While the ionization dynamics under such conditions remain poorly under-

stood, a pivotal unresolved question is whether DIH could play a crucial role, given

the potential limitations imposed by the initial correlated state of neutral particles.
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APPENDIX A

Equilibrium MD Simulations

An analysis was realized varying the radius rϕ of the charge induced dipole poten-

tial. For this analysis the simulation setup consisted of an NVT (canonical) simulation

using the Nosé–Hoover thermostat, where the temperature was set to 293 K, over 1500

plasma periods. This was followed by an NVE (microcanonical) simulation for 1500

plasma periods. The timestep used varied with rϕ since smaller rϕ led to larger at-

tractive forces and smaller timesteps were required. The timesteps used varied from

5 × 10−4ω−1
p to 1 × 10−4ω−1

p where ω−1
p is the ion plasma period. The total number

of particles was 10000 for all the simulations. Since the numerical charge induced

dipole potential has both a repulsive and an attractive part, it presented a potential

well, as shown in the figure A.1. Different radius and, therefore, minimum values of

the charge induced dipole potential were explored. Once the equilibrium was reached

in the NVE simulation, the distribution of minimum distances between ion-neutral

and neutral-neutral pairs of particles was computed in order to study the presence of

bound states. These bound states consisted of ion-neutral molecules with a spatial

scale characterized by rϕ and rLJ ≈ 21/6 σ which corresponds to the minimum of the

charge induced dipole and the Lennard Jones potentials respectively.

It was observed that for relatively small values of rϕ the formation of bound
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Figure A.1: Numerical charge induced dipole potential for different values of rϕ com-
pared to the charge induced dipole potential.

states was more prominent. As it is shown in the distributions of minimum distances

between ion-neutral and neutral-neutral pairs of particles after 1500 plasma periods

in figure A.3, for rϕ = 0.046ain and a ionization fraction of 0.5, large peaks were

observed corresponding to the distances rϕ and rLJ .

As the radius of the charge induced dipole potential was increased, the population

of ion-neutral and neutral-neutral bound states decreased until it was negligible for

rϕ ≈ 0.133ain as shown in figure A.2. The observed behaviour suggests that in order

to avoid the formation of bound states an rϕ ≈ 0.133a must be used.
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Figure A.2: Fraction of ion-neutral and neutral-neutral bound states for different rϕ
values.

189



rφ
a)

rL J = 21/6σb)

Figure A.3: a) Ion-neutral and b) neutral-neutral minimum distance distribution for
rϕ = 0.046ain at an ionization fraction of 0.5.
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