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ABSTRACT

Sheaths and presheaths represent the response of a plasma to boundaries and

are an instance of plasma self-organization. They are commonly utilized in plasma

technologies and reduced models of plasmas across a range of gas pressures. This

thesis leverages the particle-in-cell method to explain discrepancies between models

and measurements of ion temperature at low pressures, test untested models of high

pressure sheaths, and explore a novel electron plasma wave instability driven by an

ambipolar electric field.

Simulations reveal that ion-acoustic instabilities excited in presheaths can cause

significant ion heating. Ion-acoustic instabilities are excited by the ion flow toward

a sheath when the neutral pressure is small enough and the electron temperature is

large enough. A series of 1D simulations were conducted in which electrons and ions

were uniformly sourced with an ion temperature of 0.026 eV and different electron

temperatures (0.1 - 50 eV). Ion heating was observed when the electron-to-ion temper-

ature ratio exceeded the minimum value predicted by linear response theory to excite

ion-acoustic instabilities at the sheath edge (Te/Ti ≈ 28). When this threshold was

exceeded, the temperature equilibriation rate between ions and electrons increased

near the sheath so that the local temperature ratio did not exceed the threshold for

instability. This resulted in significant ion heating near the sheath edge, which also

extended back into the bulk plasma because of wave reflection from the sheath. The

instability heating was found to decrease for higher pressures, where ion-neutral col-

xiii



lisions damp the waves and ion heating is instead dominated by inelastic collisions in

the presheath.

Simulations using the direct simulation Monte Carlo method were used to study

how neutral pressure influences plasma properties at the sheath edge. The high rate of

ion-neutral collisions at pressures above several mTorr were found to cause a decrease

in the ion velocity at the sheath edge (collisional Bohm criterion), a decrease in the

edge-to-center density ratio, and an increase in the sheath width and sheath potential

drop. A comparison with existing analytic models generally indicates favorable agree-

ment, but with some distinctions. One is that models for the edge-to-center density

ratio need to be made consistent with the collisional Bohm criterion. With this and

similar corrections, a comprehensive fluid-based model of the plasma boundary was

constructed that compares well with the simulations.

Ambipolar electric fields are commonplace in plasmas and affect transport by

driving currents and in some cases instabilities. Simulations demonstrate that an in-

stability, named the electron-field instability, can be driven by an ambipolar strength

electric field. The instability excites waves of 30 Debye-lengths and has a growth-

rate that is proportional to the electric field strength. Unlike other instabilities, the

electron-field instability only requires that the electrons interact with the field and

does not result from the relative drift between electron populations (beam instabil-

ity) or electrons and ions (ion-acoustic instability). In fact, the instability occurs

near the electron plasma frequency which is much higher than most drift instabilities.

Low-temperature and space-based plasmas are found to be likely systems where the

instability may be excited. We find that our simulations and linear theory agree until

a non-linear state is reached in the simulations.

These results demonstrate that low pressure sheaths are susceptible to instabilities

that can significantly affect plasmas properties, while fluid model accurately capture

collisional effects at higher pressures.

xiv



CHAPTER I

Introduction

1.1 Background

Plasmas, like neutral gases, naturally expand to fill the space that surrounds

them. For this reason terrestrial plasmas are often confined by material boundaries

so that they can be readily studied or utilized in applications. However, unlike neutral

gasses, the electron and ions that make up the plasma self-organize near the material

boundaries to form two regions: the positively charged sheath and the quasineutral

presheath. The positive space charge of the sheath confines the often hotter and faster

electrons, while the presheath accelerates the much slower and colder ions toward the

sheath, supplying it with positive charges.

Some of the earliest experiments and observations of the plasma boundary were

performed in low temperature plasmas, where the electrons were generally much hot-

ter than the room temperature ions [1, 2, 3]. Low-temperature plasmas are formed

by ionizing neutral gas near room temperature (≈ 300 K or 0.026 eV), leading to

relatively low temperature ions compared to other plasmas, like a fusion plasma. Un-

like the ions, the electrons may have a temperature of several eV after ionization

has taken place, making low-temperature plasmas characteristically non-equilibrium

systems. In applications, like etching or ion-bombardment, this is advantageous as

electrons can activate chemical reactions, while the ions can be used to bombard
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surfaces with a somewhat controllable energy distribution [4].

Much experimental and theoretical work was done over the past century to un-

cover the structure and function of the sheath and presheath regions. Some of the

earliest work focused on understanding the plasma boundary in low pressure vacuum

systems which provided a repeatable and steady-state system. Irving Langmuir was

one of the first and most notable scientist to study the plasma boundary [1], and was

in fact the one who named the sheath. He also discovered high frequency waves in the

plasma, that are called electron plasma waves or Langmuir waves. Furthermore, he

and others developed the early mathematical infrastructure for describing the sheath

and presheath. Namely, the Tonks-Langmuir model [5, 6, 7] of the presheath that in-

cluded ion kinetic effects predicted two important phenomena: ions accelerate toward

the sheath and the ion temperature increases near the sheath. The Tonks-Langmuir

model is still a touchstone for modern analytic plasma models for its practicality,

while including kinetic effects.

However, the Tonks-Langmuir model, and all subsequent models, do not account

for the presence of instabilities. Kinetic instabilities result from interactions between

particles and fluctuations in the electric (and/or magnetic) field, where particle ki-

netic energy is converted into fluctuation (wave) energy [8]. Such instabilities can

be understood through the lens of plasma kinetic theory, and were developed later

than the ideas of sheath and presheath [9]. More recently, instabilities have been

understood to affect the dynamics of the plasma where they occur as described by

quasi-linear and non-linear effects [10]. This includes instability enhanced collisions

[11], where the growing waves of the instability effectively increase the Coulomb col-

lision rate between particles. Such collisions are expected to result in larger than

normal friction between species or larger energy relaxation rates. Enhanced fric-

tion has been observed to affect ion properties in multi species plasma boundaries

[12, 13, 14]. Specifically, when two ion species are present the ion-ion two stream
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instabilities enhance the friction between the two species. Ultimately this was found

to determine the relevant form of Bohm’s criterion for multi component plasmas.

For single species plasmas the effects of instabilities are still largely unknown and

untested. This leads to the questions: what instabilities are present in the plasma

boundary and what are the associated effects? These are two of the questions treated

by this thesis.

As plasmas became more and more prevalent in engineering applications more

motivation was placed on understanding the plasma boundary at higher pressures,

where collisions are moderately or very important. For example, the etching of semi-

conductors, implantation and coating of machine parts, or treatment of wounds. Such

applications span a broad range of neutral gas pressures (1 mTorr to 760 Torr) and

motivate an understanding of the dynamics of the plasma boundary at different pres-

sures.

Furthermore the standard picture of the sheath and presheath developed by Lang-

muir and others was extended to include collisional effects at intermediate and higher

pressures. Notably, these have included predictions for a collisional Bohm criterion,

where ions accelerate less through the presheath due to collisions [15, 16, 17, 18]. This

represents a fairly significant deviation from the models of collisionless presheath.

However, this and other related predictions have yet to be tested experimentally. Ex-

perimental tests of theories of collisional plasmas are naturally difficult as the staple

plasma diagnostics were generally designed to work at relatively low pressures. Thus,

testing models of the collisional sheath (and presheath) is another aim of this thesis.

Instead of using experimental techniques, this thesis will leverage particle-in-cell

(PIC) simulation techniques to study the effects of instabilities (at low pressure)

and collisions (at higher pressures) on the plasma boundary region. Specifically, this

thesis will use the PIC code Aleph developed at Sandia National Laboratory. PIC

simulations can complement experiments since they can simulate plasmas at different

3



pressures, while including linear and non-linear affects that would be present in an

experiment (effectively all the effects captured by the Vlasov equation). However,

simulations often suffer from being computationally expensive when including all

of the relevant physics. Chapter I introduces the Tonks-Langmuir model, Bohm

criterion, collisional models, instability-enhanced collisions, and the PIC method in

more detail. Chapter II details how ion-acoustic instabilities cause excess ion heating

beyond the Tonks-Langmuir model near the sheath. Chapter III describes a collisional

model of the sheath and tests it with simulations, showing that there is a collisional

Bohm criterion. Finally, chapter IV illustrates how ambipolar electric fields can

drive instabilities near the electron plasma frequency at conditions relevant to the

presheath.

1.2 Model of the weakly collisional plasma boundary

In the following sections the standard picture of the plasma boundary is illustrated

through Bohm’s criterion (sheath) and the Tonks-Langmuir model (presheath). To-

gether these two models describe the basic features of the weakly collisional plasma

boundary: ion acceleration via a potential drop, ion heating, and a reduction in the

density across the presheath. Here weakly collisional means that the mean free path

of collisions is much larger than the length of the plasma boundary, making ionization

the dominant collisional effect.

An important location for both Bohm’s criterion and the Tonks-Langmuir model

is the sheath edge. Practically, the sheath edge is thought of as the point between

the quasineutral presheath and the positively charged sheath, even though there is

technically a thin intermediate region that separates the two [19]. The importance

of the sheath edge has lead to many discussions of what is the best sheath edge

definition. The two most common definitions are “where quasineutrality breaks down”

and“where the ions reach the sound speed.”
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The first is the more practical, but also relies on the user choosing what constitutes

a significant breakdown in quasineutrality. Often the deviation from quasineutrality is

measured by the charge density (qini−ene). Then the sheath edge is where the charge

density exceeds a chosen fraction of the electron charge density, maybe (ni−ne)/ne >

Pρ ∼ 1 − 10% for singly charged ions. In many cases this is sufficient, specifically if

the quantities of interest are not observed to change significantly as Pρ is varied.

The second is less practical since it requires measuring ion velocities. It is based

on the work of David Bohm who showed that the ions must reach the sound speed

by the sheath edge for a stable sheath to form [20]. This is called Bohm’s criterion

and is often expressed as Vi ≥ cs =
√
Te/mi, where Te is the electron temperature

in units of energy, mi is the ion mass, and cs is the sound speed. The sheath edge

is often defined as the location where Bohm’s criterion is first satisfied, i.e. where

Vi = cs.

Ultimately, either definition of the sheath edge will provide essentially the same

location at low pressures. However, at higher pressures the ions experience friction

with neutrals and it becomes unclear whether Bohm’s criterion is the appropriate

location of the sheath edge. For this reason we adopt the first definition of the sheath

edge throughout this thesis. Collisional models of Bohm’s criterion exist [15, 16,

17, 18] and are the subject of chapter III. The following is a standard derivation of

Bohm’s criterion for a collisionless plasma sheath and provides a starting point for

understanding the sheath at higher pressures and when instabilities are present.

1.2.1 Bohm’s criterion and collisionless sheaths

Ultimately, derivations of Bohm’s criterion solve Poisson’s equation near the sheath

edge, which requires information on the electron and ion densities. The electron and

ion densities can be related to the potential ϕ by using several approximations. Flux
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conservation through the sheath relates the ion density to the ion velocity:

Vsense = V (x)n(x). (1.1)

Flux conservation is appropriate in the sheath, since the sheath is very thin and so

very few ionization events can occur. The ion velocity can be related to the potential

when energy is conserved. For cold (Ti = 0) and collisionless ions entering the sheath

with a velocity of Vse conservation of ion energy can be written as

1

2
miV

2
se + eϕse =

1

2
miV (x)2 + eϕ(x), (1.2)

where ϕse is the potential at the sheath edge.

Together Eq. (1.2) and (1.1) provide an expression for the ion density in the sheath

in terms of the potential:

n(x) = n0

(
1 +

2e(ϕse − ϕ(x))

V 2
semi

)−1/2

. (1.3)

An expression for the electron density in term of potential is provided by the Boltz-

mann density relation ne = nse exp[eϕ(x)/Te]. This relation is appropriate when

electrons have a small average velocity and are effectively isothermal. Then Poisson’s

equation can be written, in dimensionless variables η = eϕ/Te and X = x/λDe, as

d2η

dx2
=

(
eη−ηse −

(
1 +

2Te(ηse − η)

miV 2
se

)−1/2
)
. (1.4)

Multiplying Eq. (1.4) by dη/dX and integrating leaves the expression

1

2

(
dη

dX

)2

= eη − 1 +
miV

2
se

Te

(
−1 +

√
1− 2Teη

miV 2
se

)
, (1.5)

where ηse = 0 is used to eliminate the constant of integration. In addition (dη/dX)se =
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0 was used as a boundary condition and is a good approximation since the electric

field at the presheath-sheath boundary is expected to be very small compared to that

inside the sheath. Clearly, the left hand side is always positive and will lead to the

criterion on Vse,

0 ≤ eη − 1 +
miV

2
se

Te

(
−1 +

√
1− 2Teη

miV 2
se

)
. (1.6)

A criterion on the sheath edge parameters can be found by expanding Eq. (1.6) about

ηse = 0 to second order:

0 ≤ 1 + η +
η2

2
− 1 +

V 2
se

c2s

(
−1 + 1− η

c2s
V 2
se

− η2
c4s
2V 4

se

)
. (1.7)

Canceling terms gives the collisionless Bohm criterion:

Vse ≥ cs. (1.8)

This criterion on the ion velocity into the sheath is quite powerful as it indicates

that the primary means for tuning the ion energy directed out of the plasma is the

electron temperature. It can be used as a boundary condition in fluid simulation or

in global models for entire devices. It is no surprise that extensions of Eq. (1.8) to

collisional systems are of significant interest, since plasmas are made across a wide

range of pressures.

1.2.2 Tonks-Langmuir model of the presheath

The Tonks-Langmuir model [5] is a steady-state model of the presheath that in-

cludes ion kinetic effects. It captures the effects of cold ions being born at different

positions in a monotonic potential and so forming a complex velocity distribution.

The model is quite simple, but incorporates important kinetic effects while still re-

maining tractable. However, the model is only applicable at low pressures since the
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Figure 1.1: Analytic (red dashed) and numerical (blue solid) potential profiles from
the Tonks-Langmuir model. The presheath was taken to be 1000 λDe for the solutions.
Positive ions at position z contribute to the density at x as ions accelerate to the right.

ions are assumed collisionless (besides ionization). In addition, the model assumes

the ions are born at rest and so restricts its applicability to situations where ions are

sourced at temperature far below that of electrons. Here we review the derivation

and features, which was first solved by series expansion in [5]. We will present the

analytic solutions that were later found by Harrison and Thompson [6].

Figure 1.1 shows the potential calculated from the model (red dashed) alongside

a full numerical solution for the potential in the presheath and sheath (blue solid).

The numerical solution effectively solves Poisson’s equation through relaxation as

described in [21] and can capture the sheath potential as well. This illustrates that

the Tonks-Langmuir model can only capture the presheath before breaking down (i.e
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it becomes multivalued at a point). However, the model still captures important

physics without relying on numerical techniques, making it an attractive starting

point for understanding the plasma boundary.

Furthermore, Fig. 1.1 illustrates the monotonic potential profile characteristic of

the presheath and can be used to construct the model. Here the ions are born at

rest, so the only ions that can reach the position x must be born at or to the left of

x. Then the contribution to the density at x from a region of width dz of plasma

centered at z can be written as:

dni = fi(vi)dvi =
giz(z)

vi(x, z)
dz, (1.9)

where dni is the ion density in dz, fi is the ion VDF, giz is the ionization rate per

volume, and vi(x, z) is the speed an ion born at z has when it arrives at x.

To proceed, we assume that the energy of each ion is conserved as it transits the

presheath potential drop. This means that no collisions should occur for the model to

be applicable and limits it to systems where the mean free path of ions is larger than

the presheath (i.e. low pressure). Then vi(x, z) =
√

(2e/mi)(ϕ(x)− ϕ(z)) where ϕ is

the potential. Integrating Eq. (1.9) from the beginning of the presheath (x = 0) to x

gives the ion density profile:

ni(x) =

√
mi

2e

x∫

0

giz√
ϕ(x)− ϕ(z)

dz. (1.10)

This equation can be converted into an integral equation for ϕ by specifying ni and

giz in terms of ϕ. To do this we both enforce quasineutrality (ni ≈ ne) throughout

the presheath and that the electrons are isothermal. Isothermal electrons follow the

Boltzmann density relation ne(x) = n0 exp[eϕ(x)/Te], where n0 is density at x = 0 and

represent the bulk plasma density. Replacing the ion densities with the Boltzmann

density gives a single equation for the potential
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exp[eϕ(x)/Te] =

√
mi

2e

x∫

0

giz√
ϕ(x)− ϕ(z)

dz, (1.11)

which can be solved assuming we know the spatial form of giz. Throughout this work

we will focus on ionization profiles that are uniform, meaning giz does not depend on

the spatial coordinate. This is an appropriate assumption when modeling many low

temperature devices where a small population of high energy electrons is responsible

for ionizing the neutral gas. Such electrons often have large mean free paths compared

to the plasma and so make several passes through the volume before ionizing a neutral

atom, resulting in a uniform ionization profile.

However, the Tonks-Langmuir model can accommodate more complicated ioniza-

tion profiles. This is shown in [6] where the form giz ∝ g0 exp(γϕ) is used, where

γ and g0 are constants. For example γ = 0 represents a uniform ionization profile,

while γ = 1 represents one proportional to the electron density. Larger values can be

used and represent multi-step ionization processes.

When a uniform ionization profile is assumed Eq. (1.11) can be transformed us-

ing −eϕ(x)/Te = y2 and −eϕ(z)/Te = y2 sin θ to a form which can be solved by a

Schlömich transformation to give:

πgiz
dx

dη

√
η
mi

2Te

= n0

[
1− 2

√
ηe−ηD(

√
η)
]
, (1.12)

where η = eϕ/Te, and D(x) =
∫ x

0
exp(t2)dt is the Dawson function. Note that the

modern definition of the Dawson function (or integral) can vary. Equation (1.12) can

be integrated to give an implicit equation for the potential profiles:

x =

√
2Te/mi

giz/n0

e−ηD(
√
η),

x

λDe

=
4
√
2

π

L

λDe

e−ηD(
√
η), (1.13)
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which is plotted in Fig. 1.1 as the red dashed line. To get the final equation we

used the fact that the flux of particles out of and into the domain should be the

same (i.e g0 = n0cs/(2L)). Notably this solution has a clear point where it fails as it

becomes multivalued on the right. This corresponds to the position where the factor

of dx/dη = 0 in equation 1.12, at x/L ≈ 0.973 or at x/λDe ≈ 973 in Fig. 1.1. Clearly,

this point represents a significant breakdown in the quasineutrality. The potential

takes a value of eϕ = 0.854Te at this point, while the electron and ion densities are

n = 0.426n0. Other ion properties can now be calculated using the implicit equation

for the potential (Eq. (1.13)).

Namely, the ion properties are all related to the ion velocity distribution function

(IVDF), which can be rewritten from Eq. (1.9) in terms of the potential as [22]:

fi[vi/cs, η(x)]dvi/cs =

√
2

π

[√−η − 2eηD(
√−η)

]
, vi/cs ∈ (0,−η(x)). (1.14)

The IVDF is shown in Fig. 1.2 at different positions in the presheath. The model

predicts there is a maximum velocity for the ions at each position and the IVDFs are

cutoff past this velocity. Also, the model predicts no particles with negative velocities

since the ions are born at rest and can only move with positive velocities toward the

sheath edge following the potential profile. An important feature of the IVDFs is the

low velocity tail that is present, skewing the IVDFs to lower velocities. Ultimately,

this leads to an increase in the ion temperature (width of the IVDF) near the sheath

edge. Here the IVDFs have been normalized by the maximum value at each position

for clarity.

Furthermore, average properties can be deduced from moments of the IVDFs.

Taking the first velocity moment gives the mean ion velocity

Vi/cs =
2
√
2

π
D(

√
η), (1.15)
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Figure 1.2: Ion velocity distributions predicted by the Tonks-Langmuir model at
several different positions in a 1000 λDe length presheath.
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Figure 1.3: Predictions of average ion velocity and ion temperature from the Tonks-
Langmuir model (Eq. (1.15) and (1.16)). Here the presheath has a length of 1000
λDe. The vertical dashed line represents the sheath edge, here defined as the point
where Vi = cs.

and ion temperature

Ti

Te

=
1

2
(eη − 1− 8

π
D(

√
η)). (1.16)

The average ion velocity and temperature are plotted in Fig. 1.3. As expected the

average ion velocity increases since each ion is being accelerated from rest in the same

direction, irrelevant of starting position. The ion temperature is more interesting,

since it increases and then begins to decrease near end of the solution. Both of these

features can be seen in Fig. (1.2) as well as the peak of the IVDF moves to high

velocities and the width of the IVDF increases as the sheath edge is approached.

Here the ion temperature is a measure of the width or spread of the IVDFs.

The ion temperature increases since ions from anywhere upstream contribute to
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the IVDF downstream leading to a wider range of ion velocities toward the sheath.

Consider the IVDF at a position close to x = 0, effectively all the particles that

contribute to this point were born nearby and so have accelerated very little, making

the spread in velocities small (blue curve in Fig. (1.2)). Conversely, the IVDF at a

position far to the right is made up of particles born nearby with effectively 0 velocity

and particles born far upstream that have much higher velocities, leading to a larger

spread in velocities. This effect is more pronounced as you move to the right and so

the ion temperature increases to the right (purple curve in Fig. (1.2)). Furthermore,

the model begins to capture another kinetic affect that that is known as collisionless

thermalization [23] where a relatively strong electric field, usually associated with the

sheath, reduces the spread in velocities between particles and so effectively lowers their

temperature. The decrease in temperature is largest near point where the solution

breaks down, though this may be an over prediction since the field becomes infinite

at the break down point. The fact that this relatively simple model captures such

kinetic effects is part of what makes it so important, when compared to fluid models,

which cannot capture these effects. Ultimately, this work aims to compare this model

to kinetic simulations that should capture these and other effects. With this in mind

we will now compute specific values from the model that we can compare with our

simulations.

Equations (1.15) and (1.16) can be evaluated at the sheath edge where Vi = cs.

There are two reasons for choosing this location as the sheath edge: (1) theoretical

works of the collisionless plasma boundary often define the sheath edge as the point

where the ions reach the sound speed making for straightforward comparisons and

(2) the error at the point where Vi = cs will be less than at the point where the

model has broken down completely making the model more accurate. We find that

the potential associated with this definition of the sheath edge is eϕ = 0.725Te. Then
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we find from Eq. (1.16) that the sheath edge ion temperature is

T TL
i (se) = 0.0161Te, (1.17)

and from the Boltzmann density relation that the sheath edge density is

nTL
i (se) = 0.4841n0. (1.18)

Equation (1.17) expresses the electron-to-ion temperature ratio we would expect at

the sheath edge in kinetic simulations when the ions are sourced at a much lower

temperature than the electrons. However, there is an important difference between

the Tonks-Langmuir model and kinetic simulations: the model does not capture time-

dependent phenomenon or warm ion sources, while simulations can. For example,

instabilities may be possible in the presheath and may affect the ion properties there.

The theory of how instabilities couple to a plasma is discussed in section 1.3.2, while

simulations including instabilities relevant to the presheath are explored in chapters

II and IV. Furthermore, Eq. (1.18) expresses the edge-to-center density ratio, which

should also be observable in our simulations. However, when collisions are present in

the presheath the edge-to-center density ratio can change dramatically. Collisional

sheath models are described in section 1.3.1.

Finally, it is important to note how experiments compare with the predictions of

the low pressure, low temperature Tonks-Langmuir theory. A common experimental

setup that can capture the DC presheath and sheath physics described above is a

multi-dipole chamber, where plasma is generated via hot filaments and confined by a

weak magnetic field at the boundaries of the chamber. The magnetic field is supplied

by permanent magnets that line the chamber walls and effectively confine the hot, but

diffuse, ionizing electrons. A probe that is much larger than the electron Debye length

(∼ 1 cm diameter) can be inserted into the plasma to represent an unmagnetized
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Figure 1.4: The ion temperature (blue squares), average ion velocity (black triangles),
and non-thermal fraction of ions (red circles) near the sheath edge (0 mm) from LIF.
The pressure is 0.08 mTorr with an electron temperature of 2.4 eV. Reprinted from
[24] with permission from IOP publishing.

boundary on which a sheath and presheath can form. Then diagnostics like Langmuir

probes, emissive probes, or lasers can be used to make measurements. Often the

electron temperature reaches a few eV and densities of 1015 m−3 are characteristic of

the bulk plasma [13, 24, 25, 26].

Laser-induced-fluorescence (LIF) is a common diagnostic technique in such sys-

tems, where a pump laser excites a certain atomic transition of a selected ion species

and an emission signal is collected that can be related to the number of particles near

a certain velocity via Doppler shift [25]. This effectively allows for the measurement

of the ion VDF within a relatively small volume. The shortcomings of the method are

related to what transitions are accessible and the signal-to-noise ratio, but are beyond

the scope of this work. The most important limitation is that a good signal is hard to

get in a dense, collisional systems as collisions can quench the desired emission signal.

Experiments have confirmed the validity of Bohm’s criterion in single ion species

plasmas, and have even been used to describe the correct criterion in multiple species
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plasmas [13]. More important to this thesis are measurements of the ion temperature

near the sheath edge. A measurement of the ion (Xe+) temperature near the sheath

edge was completed in [24] and has been reproduced below.

Figure 1.4 illustrates two important predictions of the models described above.

Namely, that Bohm’s criterion is satisfied and that the ion temperature increases near

the sheath edge. The black triangles reach 1 (on the left axis) before the sheath edge,

fulfilling Bohm’s criterion. In addition, the blue squares show the ion temperature

measured from the width of the LIF ion VDFs. In the experiments Te ≈ 2.4eV which,

using the Tonks-Langmuir model, predicts a maximum ion temperature of 0.039 eV.

Comparing this to Fig. 1.4, the max measured ion temperature is approximately 0.12

eV which is about 3 times higher than predicted. Even when a warm ion source

is included in the theory, the theoretical prediction does not change significantly

[22]. This leaves the question: what causes the excess ion heating? This question is

answered in chapter II.

1.3 Extensions to the Tonks-Langmuir model

The models described in the previous section exclude the effects of collisions and

instabilities. Here a collisional extension to Bohm’ criterion is described along with

the basic theory of instability enhanced collisions.

1.3.1 Charged-neutral collisions

Collisional models of the presheath and sheath are often based on moment (or

fluid) models of the plasma. Moments of the plasma kinetic equation are taken to get

a system of coupled differential equations for quantities like the density, velocity, and

temperature of a specific species. These can include collisional effects in a straight-

forward manner. In this section, a collisional plasma model is derived, and from it a

collisional Bohm criterion.
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The model start from the plasma kinetic equation:

{∂t + v · ∂x +
qs
ms

E · ∂v}fs = C(fs) + S, (1.19)

where sources and sinks of particles besides collisions are included in S and collisions

are included through the collision operator C. Velocity moments of Eq. (1.19) provide

evolution equations for the moments of the VDF fs.

The moments of the VDF are the density

ns ≡
∞∫

−∞

fsd
3v, (1.20)

the average velocity

Vs ≡
1

ns

∞∫

−∞

vfsd
3v, (1.21)

the temperature (related to the pressure ps)

Ts ≡
1

ns

∞∫

−∞

ms

3
(v−Vs)

2fsd
3v =

ps
ns

, (1.22)

the stress tensor

πs ≡ ms

∞∫

−∞

((v−Vs)(v−Vs)−
1

3
(v−Vs)

2I)fsd3v, (1.23)

and the friction force density

Rs ≡ ms

∞∫

−∞

vC(fs)d
3v, (1.24)

where C(fs) is the collision operator which can include Coulomb and other types of

collisions. The first two moments (v0 and v1) of Eq. (1.19) are used to extend Bohm’s
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criterion and include the continuity equation

∂tns + ∂x · (nsVs) = S, (1.25)

where S =
∫∞
−∞ Sd3v, and momentum equation

msns{∂tVs +Vs · ∂xVs} = nsqsE− ∂xps − ∂x · Πs +Rs. (1.26)

The final ingredient necessary for the derivation is a criterion on the gradient of

the charge density ρ =
∑

s qsns at the sheath edge. This has been derived in [19] and

takes the form

dρ

dϕ
|ϕ=0 =

∑

s

qs
dns

dx
≤ 0. (1.27)

This definition is derived by expanding Poisson’s equation about the sheath edge

where ϕ = 0 and assumes qusineutrality implying ρ(ϕ = 0) = 0. Thus, the first non-

vanishing term in the expansion is dρ
dϕ
, which can be converted to a spatial gradient

using the chain rule. Furthermore, any spatial variation is assumed to be along the x

direction. Eq. (1.27) is a more rigorous way of defining the sheath edge as the point

where quasineutrality breaks down. Now, Eq. (1.25) and Eq. (1.26) can be solved

simultaneously for ns and Vs and substituted into Eq. (1.27) to give

∑

s

qs
qsnsE − nsdTs/dx− dπxx

s /dx−msVsS +Rs

E(msV 2
s − Ts)

≥ 0, (1.28)

where πxx is the xx-component of Eq. (1.23). Equation (1.28) is a generalized Bohm

criterion that includes kinetic effects as well as collisional effects (Rs). It is often the

case, for a range of neutral gas pressures, that the most important terms in Eq. (1.28)

are E, Te, and Ri, which is checked with simulations in chapter III. Eliminating the

other terms leaves
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Vi,se/cs ≤
√

1− Rin,se

eEsense

, (1.29)

where ni ≈ ne = nse and only electrons and a single, singly charged ion were included.

Here Vi,se is the average ion velocity at the sheath edge. In addition, only ion-neutral

collisions were included and are represented by Rin.

An analytic form of Rin can be derived for certain types of collisions (e.g. elastic)

when the cross section is fairly simple. A derivation of Rin for elastic ion-neutral

collisions is included in appendix B.3. In such a case, the friction force is a function

of the ion velocity at the sheath edge Vi,se

Rin,se = −minVi,se
cs

λin(cs)
. (1.30)

Upon substituting Eq. (1.30) into Eq. (1.29) one arrives at a modified Bohm criterion,

which is tested against simulations in chapter III. Modification to Bohm’s criterion

are often used to predict the sheath width and sheath potential drop [27]. These

quantities are also investigated in chapter III.

Furthermore, collisional fluid models are also an important part of models to

examine the presheath region. They generally consist of a continuity equation like

Eq. (1.25) and a momentum equation like Eq. (1.26). Some may include an energy

equation, but this is rare for analytic models. Often the momentum equation is

simplified by omitting some of the smaller terms like the stress tensor. Variations

in the models arise when different forms of S and Rs are chosen. For example S

may be a constant or proportional to the electron density, while Rs can be modeled

by assuming a constant mean free path, constant collision frequency, or something

more complicated [28]. Ultimately, to model the presheath quasineutrality is assumed

(ni ≈ ne) and Eqs. (1.25) and (1.26) are solved for the density or potential profile

(similar to the method of the Tonks-Langmuir model). For example, assuming a
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constant and uniform source rate and a constant collision frequency model for the

friction force we arrive at (see section B.1)

n(V ) =
−s(1 + V 2) +

√
s2(1 + V 4) + 2s(s+ λDe

λin
)V 2

(λDe/λin)V 2
, (1.31)

where s = SλDe/(csn0), V = Vi/cs is the average ion velocity, and λin is the ion-

neutral mean free path. The edge-to-center density ratio and presheath potential

drop can be modeled from Eq. (1.31).

1.3.2 Instability-enhanced collisions

Kinetic instabilities characteristically take particle kinetic energy and convert it

into field energy. Instabilities are of significant interest in plasmas where Coulomb

collisions are rare since wave-particle scattering can effectively enhance Coulomb colli-

sion rates between particle species. Wave-particle scattering by instabilities had been

studied in linear and non-linear settings, but often results in a theory that depends on

an external input. For example, the interaction of the instability with the background

plasma is the subject of quasi-linear theory, and predicts how the initially unstable

VDF is altered by the instability to evolve toward a more stable configuration [8, 10].

The particle VDF is split into a gradually varying component f0 representing the

background plasma and a more quickly varying component f1 that represents the

velocity space effects of the instability. Quasi-linear theory predicts that f0 evolves

according to a diffusion equation:

∂tf0 = ∂v(D(v, t)∂vf0)

D =
2

ϵ0

( q

m

)2 ∞∫

−∞

iE(k, t)
ω − v · kdk

3, (1.32)
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where E is the spectral density of the electric field, which measures the energy stored

in waves with wavenumber k. Notably, E depends on time and must be provided

from some other calculation or model. This restricts the utility of quasi-linear theory

to cases where E can be estimated. The sources of wave energy can be external (like

an antenna) or internal from the motion of the electron and ions in the plasma. The

latter is an important source of wave energy since the plasma particles are in constant

motion.

Recently, a kinetic equation was constructed for unstable plasmas, where the wave

energy generated from the motion of single particles is included self consistently in the

model [11, 29]. Their calculations show how the plasma kinetic equation is modified

by the presence of instabilities and that the Coulomb collision rates between particles

can be enhanced beyond the nominal values because of instabilities, leading to the

name instability-enhanced collisions. Enhanced collision rates lead to larger than

expected friction and energy exchange between species [12, 30], that alter the steady-

state of the plasma in important ways. Furthermore, the modifications to the kinetic

equations are consistent with the quasi-linear theory described by Eq. (1.32), but

where the spectral energy is calculated self consistently from the discrete particle

motion.

It is important to note that the theory of [11, 29] was designed to be applicable in

a linear regime before non-linear wave effects become important. For example, their

linear theory is well positioned to analyze convective instabilities since the growing

wave can pass through the plasma before reaching a non-linear state. Convective

instabilities are of interest to this thesis since they can be generated in the presheath

by the large ion drift (ion-acoustic instabilities in chapter II) or the ambipolar electric

field (chapter IV). Specifically, ion-acoustic instabilities can enhance the electron-

ion collision rate in low pressure presheaths, leading to larger electron-to-ion energy

transfer rates.
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The instability-enhanced energy exchange rate enters into the ion (and electron)

energy equations, which can be derived from the ms(v−Vs)
2/2 moment of the kinetic

equation [11, 29]. The kinetic equation derived in Refs [11, 29] can be written in the

same form as Eq. (1.19), but where C has a new component representing instability

enhance collisions. Ultimately, we can write the temperature evolution equation for

species s (in 1D) as

3

2
nsVs

dTs

dx
+ nsTs

dVs

dx
+

dqs
dx

+ πxx
s

dVs

dx
= Qc +Qn +QIE + S2, (1.33)

where S2 is the ms(v−Vs)
2/2 moment of S in Eq. (1.19), Qc is the energy exchange

rate from Coulomb collisions, Qn is the energy exchange rate from neutral collisions,

and QIE is the instability-enhanced energy exchange rate. QIE includes components

from like (s) and unlike species. In low temperature plasmas, Qc is generally negligible

when compared to S2 or Qn, and Qn can be negligible at low enough neutral pressures.

This leaves instabilities, QIE, as a possibly non-negligible contribution. Such a case

is described in chapter II.

1.4 Particle-in-cell simulations

1.4.1 Background

Even though much theoretical work was done to reduce the complexity of first

principles descriptions of plasmas (e.g. the Klimintovich equation [8]) to something

more manageable that still captures kinetic effects, like the plasma kinetic equation

(Eq. (1.19)), solving such an equation can still present immense difficulties. For ex-

ample, including physically relevant boundary conditions, like an emitting boundary,

or specific atomic reactions is cumbersome. However, many of the applications of

plasmas include such features, which often makes fully analytic methods intractable.

Kinetic simulation techniques were developed with this in mind and have grown to
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be ubiquitous tools. Simulation techniques include molecular dynamics, Vlasov and

related solvers, and particle-in-cell simulations. Each has different advantages. Al-

though Vlasov solvers have been used to study the sheath before [31, 32, 33], we

utilize the PIC technique as it can simulate large scale plasmas (1,000s λDe), unlike

molecular dynamics, and can be easily modified to include a host of charge-neutral

collisions, unlike Vlasov solvers. The following is a review of the basic numerical

methods used in 1D, uniform mesh, PIC simulations. Furthermore, the method used

to include charge-neutral collisions and the ability of PIC to capture instabilities is

described.

A PIC simulation of a plasma calculates the trajectory of macro-particles in re-

sponse to self-consistent, and applied, electric and magnetic fields. In this work we

consider only electrostatic simulations, though the general principles are unchanged

with a magnetic field. A macro-particle represents many (usually billions) of real

particles, allowing PIC simulations to be used to model macroscopic systems contain-

ing many Debye spheres worth of particles. The fields are solved for on a fixed grid

instead of pair-wise between the particles, reducing the computational expense, but

introducing some nuance to the method. The grid considered here is uniform, defined

by a cell size dx between grid points, and does not change during the simulation. The

general algorithm follows [34]:

1. Initialize particle positions, velocities, electric field, and the grid.

2. Calculate the charge density ρ on all grid points by interpolating each macro-

particle’s charge to neighboring, or more distant, grid points.

3. Solve Poisson’s equation on the grid for the electric field.

4. Interpolate the electric field from the grid to each particle’s location and push

the particle according to F = ma = qE.

5. Repeat steps 2-4 for Nt time steps of size dt.
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The specific algorithms chosen in steps 1-4 all affect the efficiency of the simulation

program and the physics that is observed.

In step 1, the initial positions and velocities are chosen for the macro-particles.

In general this can be accomplished by inverse cumulative density sampling which

takes uniformly distributed random number Ri ∈ (0, 1) and converts it to a random

number distributed by the chosen spatial or velocity distribution. The is the technique

described in [34], and is a very general mathematical technique not specific to particle

simulations. Often the spatial distribution is chosen to be uniform, but is sometimes

chosen to be a monochromatic wave (∼ sin kx+ ϕ) when studying Landau damping or

instabilities. The most common initial velocity distribution is the Maxwellian, though

multiple peaked VDFs can be used to study instabilities, and kappa distributions can

be used in simulations of space plasmas.

In step 2, the program takes the charge of each particle, qi, at position xi and par-

titions it among a chosen set of neighboring nodes. The most common interpolation

schemes in 1D are nearest grid point and linear. The former takes all of the macro-

particle charge qi and assigns it to the nearest grid point, while the latter divides qi

among the two closest grid points. Specifically, linear interpolation gives a grid point

with position Xj a charge qi|Xj−xi|/dx, provided Xj−xi < dx otherwise the assigned

charge is 0. In general, any interpolation scheme can be viewed as a way of smearing

out the charge of a point macro-particle, making it look like the macro-particle has

some shape. In fact, the charge density is transformed from a discrete distribution ρp

of point charges to a continuous density ρc by

ρc(x, t) =

∫
S(x− x′)ρp(x

′, t)dx′, (1.34)

where S is called the shape function and represents the interpolation scheme. For

example, the particle shape for nearest grid point is a top-hat function, while the

linear scheme is a triangle. Higher order interpolation schemes include grid points that
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are farther from the macro-particle and lead to more complicated shape functions. In

fact, high resolution simulations often implement higher order interpolation to reduce

noise in the electric field [35].

Step 3 requires that the Poisson’s equation be solved on the grid points using the

charge density ρc. In a 1D simulation using a uniform mesh, the implementation is

straightforward and can utilize a direct matrix solve. This is in contrast to other solu-

tion techniques that require multiple iterations to solve the linear system of equations

that follows from descritizing Poisson’s equation. After this is completed the electric

field is known at the grid points.

Step 4 is ultimately the reverse of step 2, where the field E at the grid points is

interpolated back to the particle positions. In the framework of the shape function

this is

Fi(x, t) =

∫
qiS(x− x′)E(x′, t)dx′, (1.35)

where Fi is the force on macro-particle i. Here we have assumed that the same

interpolation scheme was used as in step 2. In practice, this is always the case since

using different interpolation schemes for the charge and fields would result in macro-

particles experiencing a self-force. Once the forces are known, the particles are moved

according to F = ma. A common method is known as the Verlet algorithm in which

the position and velocity of each particle is advanced using

x(t+ dt) = x(t) + v(t)dt+
F [x(t)]

m

dt2

2
,

v(t+ dt) = v(t) +
dt

2m
(F [x(t+ dt)] + F [x(t)]). (1.36)

Other algorithms include the leapfrog method, which is less accurate, or a linear

multistep method like Adams-Bashforth, which is more accurate but far less compu-

tationally efficient.

Step 5 is the straightforward repetition of the first steps using a times step dt for
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Nt total steps. The latter is chosen so that the simulation will resolve any long time

scale physics of interest. In simulations of physical devices, Nt must often be large

enough that the simulation reaches a steady-state, where the average densities and

energies begin to oscillate about an average value. Thus, Nt is only restricted by the

physics one needs to resolve. Conversely, restrictions on the size of dt are usually

based on the accuracy of the underlying numerical techniques and resolving critical

physics.

As with all numerical integration techniques, the smaller dt is the smaller the

error. When the method of Eq. (1.36) is used to solve for the motion of a single

harmonic oscillator with frequency ω, there is no amplitude error for dtω < 2. This

same criterion is applicable to PIC simulations, where electrons often oscillate with a

frequency ωpe in response to a potential. Thus, a standard criterion in PIC simulations

is that dtωpe < 2. However, a further restriction on the size of dt is set by the need

to resolve the particle trajectories. Specifically, a particle should not skip over a grid

cell in one time step (i.e. the trajectory should be resolved by the grid), similar to

the CFL condition when solving fluid equations [36]. If the average macro-particle is

expected to have a speed vave then the time step should be smaller than dx/vave. For

a grid cell of size dx ≈ λDe/M , and average electron thermal velocity of vave ≈ NvTe

this gives dtωpe < 1/(MN). OftenM and N are at least 2 which gives us the CFL-like

criterion dtωpe < 0.25 which is more restrictive than that of Eq. (1.36), making it the

more practical criterion to use.

Restrictions on the size of a grid cell (dx) also exist, and are the result of mitigating

errors in the collective plasma motion, rather than errors in single particle trajectories

[37]. First, a numerical instability associated with the finite points of the grid (called

the finite grid instability) can cause significant heating of the macro-particles [34].

Effectively, the grid modifies the normal linear dielectric to include numerical modes

that have positive growth rate. When the grid is small enough to resolve the Debye
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length the nonphysical instability is Landau damped away, significantly reducing the

heating. Ultimately, after accounting for thermal particle VDFs, this leads to a

requirement that the grid spacing must resolve the electron Debye length dx < λDe.

A second component of numerical heating is statistical in nature. Namely, since

there are only 10s-1000s of particles in each simulation cell, the motion of a single

particle out of (or into) the cell causes significant fluctuations in the electric field

at the neighboring grid points. The fluctuations are nonphysically large in a typical

PIC simulation since there are far fewer macro-particles than physical particles. The

enhanced fields couple back to the other particles in the simulation, ultimately leading

to an energy gain of the particles. This form of numerical heating scales inversely

with the number of macro-particles per cell and is a slower process than the numerical

instability heating [38]. This form of heating can be reduced significantly, by resolving

the electron Debye length and having at least ∼ 10s of particles per cell [38].

The following sections describe how PIC simulations can be modified to include

collisions and how they can be run to resolve instabilities.

1.4.2 Direct simulation Monte-Carlo method

Collisions between charged and neutral particles are generally incorporated into

PIC simulations via a Monte-Carlo method, which relies on pseudo random numbers

to determine if and how the particles collide. An extremely efficient and simple

method can be employed if one is not interested in the motion of the neutral particles

or if the neutral gas density is not expected to change much. In such a case the

Monte-Carlo collision method (MCC) can be used [39]. Conversely, if the motion of

the neutral gas is of interest, it can be simulated using macro-particles just like the

electrons and ions in the PIC simulation. In this case, collisions between the charged

and neutral particles are included using the direct simulation Monte-Carlo method

(DSMC) [40]. The DSMC method was previously integrated into the simulation code
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used in this thesis, called Aleph, and is how collisions were implemented in all the

simulations in this work. The DSMC algorithm was initially designed for solving the

Boltzmann equation for neutral gasses in [40].

Consider elastic collisions between electrons and neutral helium atoms. The basic

DSMC algorithm cycles through every pair of electrons and helium macro-particles

in a given cell and uses an acceptance-rejection method to determine which pairs will

collide. However, the DSMCmethod limits the number of pairs that can collide so that

the collision rate, as determined by the Boltzmann collision operator, is not exceeded

[41]. This is done by summing the time for each accepted collision, calculated as

τ =
2

Nngvrσ(vr)
, (1.37)

where N is the number of pairs in a cell, ng is the neutral gas density, vr is the

relative velocity between the collision pair, and σ is the cross section. Once the sum

of collision times exceeds the time step (dt), no more collisions are counted, which

enforces that the mean collision rate from theory is not exceeded. This is repeated

across each grid cell and at each time step.

This is the basic DSMC method. However, sampling pairs one-at-a-time is com-

putationally inefficient scaling, like N2. A more efficient algorithm is used in Aleph,

called the no-time-counter method, where the number of collision pairs is determined

at the beginning of each time step from an estimate of the maximum collision fre-

quency (calculated from the maximum vr). Once a collision pair is accepted, the

final velocities for the colliding particles are determined from the cross section data.

Ideally, the differential cross section data is used to randomly sample the final veloc-

ities, while maintaining conservation of energy if applicable. However, this is rarely

implemented because often only the total energy dependent cross section is available.

This is also the case for the simulations in this work. In such cases, it is convenient

to assume isotropic velocity scattering for the particles, in which case the final energy
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of the pair is chosen from the total cross section, while the scattering angle is chosen

form a uniform distribution between 0 and π radians.

The DSMC method is quite general and can be used for any type of binary collision

where the Boltzmann equation would apply. In fact, the method can be used to

include complicated gas and plasma chemistry into PIC simulations.

1.4.3 Resolving instability-enhanced collisions

Kinetic instabilities are commonly studied in PIC simulations since simulations

provide a first-principles and detailed look how instabilities can affect plasma dy-

namic. In addition, simulations allow one to easily diagnose details of the instabilities

since the electric field can be output with fine spatial and temporal resolution. Fur-

thermore, simulations can capture the effects instabilities have on the plasma through

both non-linear and linear phenomena. Specific to this thesis are wave-particle inter-

actions that occur primarily during the linear growth stage of an instability, called

instability-enhanced collisions. Effectively, the fluctuations of the instability can en-

hance the effective Coulomb collision rate of particles in the plasma.

However, PIC simulations can only self consistently capture Coulomb collisions

at scales larger than the cell size [34]. This means there are effectively no Coulomb

collisions in the simulations since such long range collisions are rare in low temperature

plasmas. This may lead one to question whether instability enhanced collisions will

be present in a PIC simulation. The answer to this question was supplied recently

[42], where it was shown that instability enhanced collisions are properly represented

in PIC simulations as long as waves are spatially resolved.

One can calculate a Lenard-Balescu-like collision operator that includes Coulomb

and instability-enhanced collisions, for PIC simulations:

CPIC = ∂v ·
∞∫

−∞

(QC +QIE)

(
1

ms′
∂v′ − 1

ms

∂v

)
fs(v)fs′(v

′)d3v′, (1.38)
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where ms and ms′ represent the mass of the two colliding species,

QC =
2q2sq

2
s′

ms

∫
kk

k4
δ[k · (v− v′)]

∣∣∣Ŝ(k)
∣∣∣
4

|ϵPIC(k,k · v)|2
d3k (1.39)

is the Lenard Balescu collision kernel for standard Coulomb collisions in PIC and

QIE =
2q2sq

2
s′

πms

∫
kk

k4

∑

j

γje
2γjt

[
(ωj − k · v)2 + γ2

j

]2

∣∣∣Ŝ(k)
∣∣∣
4

|∂ωϵPIC|2ωj

d3k (1.40)

is the instability-enhanced collision kernel relevant to PIC. In Eq. (1.40) ωj and γj

represent the frequency and growth rate of the j-th unstable mode. Furthermore, the

linear dielectric relevant to PIC is

ϵPIC = 1 +
∑

s

q2s
ϵ0msk2

∣∣∣Ŝ(k)
∣∣∣
∫

k · ∂vfs
ω − k · vd

3v, (1.41)

where Ŝ is the Fourier transform of the interpolation scheme S. Ultimately, it is

the dependence of Eq. (1.41) on Ŝ that leads to PIC capturing instability enhanced

collisions. This form of the linear dielectric is analyzed in detail in [34].

The mathematical difference between the kernels for Coulomb collisions and instability-

enhanced collisions is that the former depends on ϵPIC ∼ 1 + Ŝ2, while the latter

depends on ∂ωϵPIC ∼ Ŝ2. Both numerators of Eq. (1.39) and (1.40) depend strongly

on Ŝ, which for nearest grid point and linear weighting schemes is ∼ sin kλDe/(kλDe).

Notably, sin kλDe/(kλDe) ≪ 1 for kλDe ≥ 1, meaning that the effect of small scale

phenomena are potentially reduced in either kernel. From Eq. (1.39) this translates

to a reduction of the Coulomb collision rate in PIC since such collisions happen below

the Debye length. However, there is no such effect for instability-enhanced collisions

as ∂ωϵPIC ∝ Ŝ2 cancels the effect of Ŝ from Eq. (1.40). Thus, if the cell size is on the

order of λDe Coulomb collisions are not resolved, but wave-particle collisions can be

resolved if the wavelength is resolved by the grid.
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This shows that interpolation has a significant effect on the phenomena that can

be observed in PIC simulations. Furthermore, the mathematical conclusions in [42]

might fit one’s expectation that the phenomena observed in PIC are those that are

spatially (or temporally) resolved. Instabilities often occur at scales of several λDe

while particle trajectories are also resolved on this scale. Thus, it is not entirely

surprising that wave-particle effects should be resolved by PIC. Conversely, Coulomb

collisions occur at far smaller scales, which are often not resolved in PIC simulations.

Finally, the fact that PIC should capture instability-enhanced effects supports

the findings of chapter II, where ion-acoustic instabilities are observed to heat the

ions in a low temperature, low pressure plasma. In addition, it provides an avenue for

understanding what effects the electron plasma wave instability can have on a plasma

in chapter IV.

1.4.4 Aleph

The PIC code used throughout this thesis is Aleph [43]. Aleph is an electrostatic

code that can handle unstructured meshes in 1D-3V, 2D-3V, and 3D-3V geometries.

The unstructured mesh allows it to handle very high variations in spatial resolu-

tion (Debye length) for large density variations, in addition to complex geometries

(bondaries). Most notably, Aleph can utilize 10,000s of individual cores on high

performance computing (HPC) resources. This thesis relied on the HPC abilities of

Aleph, even though the simulations used simple, uniform 1D meshes. Specifically,

the simulations described in chapter II and III used on average, 144 cores running

for several days. However, several high resolution simulations using more particles

per cell took nearly 1,000 cores for more than a week. Conversely, the simulations

described in chapter IV utilized single cores since the periodic boundary conditions

have only been implemented in a serial verion of the code.

In each simulation presented here the particles moved along a single spatial di-
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mension, while the velocities were tracked in three velocity dimensions for use in the

DSMC method. Although there was on one spatial dimension, quantities like density

were reported in m−3 by taking the two missing spatial dimensions to be 1 m in length

when necessary. When reporting VDFs, the y and z directions were integrated over

leaving f(x, vx).

Two types of boundary conditions were utilized during this thesis: absorbing

(chapters II and III) and periodic (chapter IV). Absorbing boundary condition allowed

presheaths and sheaths to form in the simulations, while periodic boundary conditions

removed the effects of spatial variations from the simulations.

In all simulations, the requirements discussed in section 1.4.1 were met by choos-

ing small enough time steps and grid cells so that numerical heating was negligible.

Furthermore, simulations were repeated with 2-10 times more particles, smaller times

steps, or smaller cells, to check that our observations did not change. This often

pushed simulations to take weeks, and was possible because of the HPC capabilities

of Aleph.

1.5 Publications

Much of the work presented in this thesis has recently been published in two

journals; specifically, chapter II covers the research published in Physics of Plasmas

[44] and chapter III covers the research published in Plasma Sources Science and

Technology [45]. The work described in chapter IV is in the manuscript stage and

will be submitted for review shortly.
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CHAPTER II

Ion Heating Due to Ion-acoustic Instabilities

2.1 Introduction

A property of low temperature plasmas is that the ion temperature is close to

room temperature, the temperature of the neutral gas (Tn, Ti ∼ 0.026 eV), while the

electron temperature can be much higher (Te ∼ 0.1− 100 eV). This disparity results

from a lack of thermal relaxation between the electrons and ions since the ion-electron

mean free path is typically much longer than the device. However, we find that this

is not always the case and that the ions can heat significantly without an external

heating mechanism.

Here, particle-in-cell (PIC) simulations show that ion heating can result from the

natural excitation of ion-acoustic instabilities near plasma boundaries. Specifically,

ion flow through the presheath can excite ion-acoustic instabilities. Scattering from

the resulting collective fluctuations acts to rapidly increase the rate of Coulomb col-

lisions [11], and as a consequence, the electron-ion thermal relaxation rate. This

results in significant ion heating so that the ion temperature takes a value between

the neutral and electron temperatures (Tn ≪ Ti ≪ Te). Its value at the sheath edge

is observed to be set by the threshold (afterword “th” superscript) electron-to-ion

temperature ratio required for instability Te/Ti ≈ (Te/Ti)
th. Although the heating is

mostly localized to the presheath, ion-acoustic waves reflect from the sheath and can
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lead to heating in the bulk plasma as well.

This finding is particularly influential in the context of applications that use a

plasma and sheath to create a high emittance ion source, such as in plasma etching

of semiconductors or ion beam generation [4, 46, 47, 48]. It may also be applicable

to some electric propulsion systems, where ions are accelerated to higher velocities

to generate thrust, usually in the presence of hot electrons [49, 50], and to energy

transport controlled by ion-acoustic instabilities in other contexts. [51, 52, 53, 54, 55,

56, 57]

The common expectation is that the ion temperature at the sheath edge is near

room temperature at low neutral gas pressures, but can increase at higher pressures

due to inelastic collisions (such as ionization and charge exchange) in the presheath

[58, 59]. Inelastic collisions cause ions to be sourced at different locations of the

presheath potential drop, causing the ion velocity distribution function (IVDF) to

broaden, i.e., heat, as the sheath edge is approached. As in the previous work of

Meige et al. [59], in our simulations we observe this to be the dominant ion heating

mechanism at sufficiently high neutral pressures. However, we also find that a funda-

mentally different instability-enhanced heating mechanism dominates at sufficiently

low neutral pressures. Ion acoustic instabilities are driven by inverse electron Landau

damping [10], and therefore require a kinetic description of electrons to capture. This

is presumably why the previous simulations [59], which used a Boltzmann density

relation to model electrons, did not see the effect, even at low pressure.

Experiments using laser-induced fluorescence (LIF) may be able to test the pro-

posed heating mechanism by measuring the IVDF in the presheath. Although a

number of such measurements have been made [24, 58, 60], they mostly focus on

plasma conditions where it is difficult to make a definitive test. For example, the

measurements of Claire et al. [58] were made in an argon plasma with an electron

temperature high enough to be expected to excite instability (Te = 2.5 eV), but at a
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high enough neutral gas pressure (pn = 0.36 mTorr) that the associated instability-

enhanced ion heating (a factor of 2-3 at this Te) is comparable to what is expected

from inelastic collisions with neutrals. Similar measurements were made by Lee et

al. [60] in a xenon plasma, but with a low enough electron temperature (Te = 0.61

eV) that the instability may not have been excited. The most pertinent measure-

ments are those by Yip et al. [24] made at a low neutral pressure (pn = 0.08 mTorr)

and high enough electron temperature (Te = 2.4 eV). Indeed, these seem to show

evidence of ion heating in the presheath. As will be shown in Sec. 2.3, the measured

ion temperature profile throughout the presheath agrees well with our simulations;

including a factor of approximately 4 heating of ions near the sheath edge (compared

to room temperature). Although the existing experiments are consistent with the

simulations, they were not designed to test the proposed instability-enhanced ion

heating. An ideal test would vary the electron temperature across its threshold value

in a system where the neutral pressure remained sufficiently small (pn ≲ 0.1 mTorr).

Such a test would demonstrate whether the instabilities and associated ion heating

transition at the predicted threshold of the unstable regime. This motivates future

experiments to explore lower neutral pressures and higher electron temperatures.

The existence of ion-acoustic instabilities in the presheath has been discussed in

a number of recent works. One of the first theories suggested that these instabilities

can rapidly thermalize electrons and may contribute to resolving Langmuir’s paradox

[61]. Shortly afterward, it was suggested that they also rapidly thermalize ions near

the sheath edge as inelastic collisions cause the IVDF to become distorted away from

Maxwellian in the presheath [29]. This latter prediction was tested experimentally by

Yip et al. [24] using LIF measurements. These measurements showed good agreement

between the degree of thermalization and the predicted instability boundary as neutral

pressure was varied. However, they did not directly probe the instability. The first

direct measurements of ion-acoustic instabilities in the presheath were provided by
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recent LIF measurements that leveraged advancements in single photon counting and

large collection optics [25]. These confirmed that ion-acoustic instabilities are present

in the presheath and also suggested that the excited waves reflect from the sheath,

but did not investigate ion heating.

Here, we show results from tests of the predicted instability heating using particle-

in-cell, direct simulation Monte Carlo (PIC-DSMC) simulations. Our 1D-3V simu-

lations applied absorbing boundary conditions on both the left and right boundary

causing sheaths to form. Ions and electrons were sourced uniformly and at equal rates

throughout the domain, with the ions sourced at room temperature (T s
i = 0.026 eV)

and the electrons sourced at temperatures ranging from T s
e = 0.1− 100 eV. To better

assess simulation results (especially noise levels), simulations of uniform plasmas in

a specular (reflecting) box with similar plasma parameters were also conducted for

comparison. The ion temperature was computed from time-averaged IVDFs and the

presence of instabilities was examined by comparing the fraction of energy stored

in fluctuations that were ion-acoustic in a nominally stable sheath configuration, an

unstable sheath configuration, and a uniform configuration. The energy stored in

fluctuations was computed from fluctuations in the charge density.

Results show that instabilities are excited in the presheath, but not in the uni-

form plasma. The spectral energy density indicates that a significant fraction of the

wave power is reflected from the presheath, in agreement with the suggestion made

by Hood et al. [25] based on experimental measurements. Ion heating was also ob-

served to be associated with ion-acoustic instabilities. No heating was observed at

conditions where instabilities were expected to be absent based on linear theory, but

heating near the sheath edge was so significant in the presence of instabilities that the

temperature ratio could not significantly exceed the threshold condition for instability

Te/Ti ≈ (Te/Ti)
th. This led to a “stiff” boundary condition where the electron-to-ion

temperature ratio was locked to the threshold value at the sheath edge. For large
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electron temperatures (Te ≳ 10 eV), this led to ion temperatures more than an order

of magnitude above room temperature near the sheath edge. This rapid ion heat-

ing was found to be associated with a significant increase in the electron-ion energy

relaxation rate associated with instability-enhanced collisions. This was confirmed

by computing the residual of the steady-state ion energy balance equation, which

corresponds to the energy moment of the collision operator. Spatial profiles of this

term show that the heating is greatest near the sheath edge, but also extends into

the bulk plasma. At sufficiently high neutral pressure and low electron temperature,

the instability was not present and ion heating was instead found to be controlled by

inelastic (ionization) collisions in the presheath.

We also find that the instability-enhanced heating results in a drastically different

distribution of ion energy parallel or perpendicular to the single spatial dimension

of the simulations. Since the waves are confined to a single spatial dimension, the

associated instability-enhanced relaxation appears to be as well. This leads to highly

anisotropic IVDFs with a much larger parallel temperature than perpendicular tem-

perature.

2.2 Simulation setup

Simulations were conducted using the electrostatic PIC-DSMC code Aleph [43].

They used a 1D domain in space, 3D domain in velocity phase-space, and a uniform

mesh. A presheath was simulated by applying absorbing boundary conditions at each

domain boundary and continuously sourcing electrons and ions uniformly throughout

the domain from Maxwellian distributions with respective temperatures T s
e and T s

i .

Although, this introduces particles into the sheath, such events are expected to be

rare and nearly all ions loaded directly into the sheath will not enter the presheath. A

uniform source approximates plasma generation in multidipole devices [24, 25, 58, 60],

where the primary electrons responsible for ionization are expected to have a close to
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uniform density.

Reference to the electron source temperature (T s
e ) will be made often in this work

as the independent variable we change to study situations where the ion-acoustic

instabilities are or are not present. However, as a result of losses to the wall the

measured electron temperature in a given simulation is slightly lower (at most 20%

lower) than the source temperature; see Tbl. 2.1. Although they are not simulated,

two dimensions perpendicular to the simulated domain are taken to have length 1m

when reporting quantities like densities and rate-densities. This is reflected in Table

2.1 and throughout the remainder of this work.

In each simulation, data were analyzed after the plasma had evolved sufficiently

long to reach a steady-state (approximately 600 µs which represents the time needed

for a thermal ion to transit the domain), where the number of ions lost to the walls

balanced those sourced in the domain. The primary quantity analyzed in steady-state

was the ion temperature. Here, “ion temperature” refers to the temperature moment

calculated from the full 3V velocity distribution function,

Ti =
mi

3ni

∫
(v −Vi)

2fi(v) d
3v , (2.1)

where mi is the ion mass, ni is the ion number density, fi(v) is the IVDF, and

Vi =
1
ni

∫
vfi(v) d

3v is the ion flow velocity. We will later also utilize 1V temperatures

from the reduced velocity distribution functions (e.g., fx
i (vx) =

∫
fi(v)dvydvz),

T x
i =

mi

ni

∫
(vx − V x

i )
2fx

i (vx) dvx , (2.2)

where V x
i = 1

ni

∫
vxf

x
i (vx) dvx. We define T

∥
i = T x

i to be the parallel temperature

and T⊥
i = T y

i to be the perpendicular temperature. All simulated quantities were

effectively equal in the y and z directions since there was no spatial variation in

either direction. The 3V temperature can be computed from the 1V temperatures
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T s
e (eV ) Te(eV ) n0(#/m3) Rs(#/m3/s)

0.1 0.08 1× 1013 3.1× 1016

0.2 0.16 2× 1013 8.76× 1016

0.5 0.41 5× 1013 3.47× 1017

0.8 0.65 8× 1013 7.01× 1017

1.5 1.25 1.5× 1014 1.8× 1018

3 2.58 3× 1014 5.09× 1018

6 5.40 6× 1014 1.44× 1019

12 11.50 1.2× 1015 4.08× 1019

24 25.10 2.4× 1015 1.15× 1020

48 42.80 4.8× 1015 3.26× 1020

Table 2.1: Simulation parameters. Here Te is the simulated electron temperature in
the middle of the domain. The simulation density was chosen to keep dx/λDe = 0.42
constant while the electron source temperature was increased. Rs is the rate-density at
which electrons and ions were sourced in the simulation. In section III B, simulations
A and B refer to the rows where T s

e = 6 eV and T s
e = 0.1 eV respectively.

Ti = (T x
i + T y

i + T z
i )/3 = (T

∥
i /3 + 2T⊥

i /3).

Of specific importance is the ion temperature measured at the sheath edge. Here,

we define the sheath edge as the position where the charge density first exceeds 5%

of the average ion density. This value was chosen since it was the smallest value we

could resolve with the data from each simulation. The sheath edge position is nearly

the same in each of the simulations in Table 2.1 at 0.496 m.

The 1D spatial grid was composed of 1600 cells of length dx = 3.125 × 10−4 m,

resulting in a total domain length of L = 0.5 m, which ensured that the Debye length

was resolved. The steady-state density was changed (via the source rate) along with

T s
e to maintain the same electron Debye length (λDe = 7.43×10−4 m). This was done

so that the same spatial grid could be used in each simulation. In an experimental

test of the instability heating mechanism such control of the plasma density would
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not be necessary. The steady-state densities of each simulation are summarized in

Table 2.1 The average number of computational particles per cell in the center of

each simulation was 30 for each species and decreased to 15 near the sheath edge

for computational electrons and ions. Fewer computational electrons and ions were

found in the sheath; however, this is not expected to affect our measurements in the

presheath since ions in the sheath quickly exit the simulations. For simulations with

T s
e < 24 eV, a time step of 1.1 × 10−10 s was chosen to meet a CFL-like condition,

so that an electron with velocity lower than 2vTe =
√

8kBTe/me does not cross an

entire spatial cell in one time step [36]. For T s
e > 24 eV, a time step of 2.5× 10−11 s

was chosen.

The plasma was assumed to be generated from pure helium, and to be singly ion-

ized. Plasma parameters were chosen to match those in the low-temperature plasma

experiments commonly used to study sheaths: T s
i = 0.026 eV, n ≈ 5 × 1015 m−3

[24, 25, 58]. The neutral pressure was varied in order to study different regimes of

ion-acoustic wave damping. Ion-neutral and electron-neutral elastic collisions were

modeled by way of the DSMC method [40]. Cross sections for both interactions were

from the Phelps database provided by LXCat [62, 63, 64, 65]. No explicit method, like

DSMC, was used to model Coulomb collisions in the simulations. However, Coulomb

collisions occurring over large enough distances to be resolved by the grid are expected

to be included implicitly in the simulations.

2.3 Results at low pressure

2.3.1 Ion heating

Figure 2.1 illustrates the most notable result, which is the observation of ion heat-

ing near the sheath edge (vertical line) at low pressure (pn = 0.01 mTorr) when the

source electron temperature was sufficiently high. The heating is mostly localized to
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near the sheath edge, but the ion temperature in the bulk plasma is also well above

room temperature. Ion heating is surprising because the only energy input is the

kinetic energy at which the electrons and ions are sourced. Ion heating to above

room temperature requires a mechanism for energy transfer from electrons to ions.

However, the collisional electron-ion energy relaxation rate based on Coulomb colli-

sions is expected to be negligible. Using an estimate based on the standard Coulomb

collision frequency [66], the mean free path for electron-ion energy equilibration is

thousands of meters at these conditions. Furthermore, since the simulations do not

include an explicit Coulomb collision model only long-range interactions resolved by

the grid will be included. Since there are only about 2 grid points per Debye length,

Coulomb collisions that are implicitly simulated are expected to be extremely rare

(in the absence of instability).

Some ion heating near the sheath edge is expected due to the interaction between

the flowing ion distribution and the stationary background neutrals [59]. However,

this effect is negligible at the low pressure of these simulations since the estimated

ion-neutral collision mean free path is approximately 10 m. It also does not contribute

to heating in the bulk plasma. Alternatively, the time averaged IVDF could broaden

(i.e. heat) if the IVDF were to oscillate in velocity space on a shorter time scale than

the average. We find that this is not a significant source of heating in our simulations

when we compare snapshots of the IVDF that resolve the ion plasma period.

The simulation data appear to indicate that the source of ion heating is enhanced

electron-ion energy exchange resulting from ion-acoustic instabilities near the sheath

edge, which extends into the plasma due to wave reflection from the sheath. A number

of observations provide evidence for this.

First, the parameters at which heating is observed seem to correspond well with

the conditions at which the linear dispersion relation for ion-acoustic instabilities

predicts instability in the presheath. The threshold for exciting the instability can be
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estimated from the ion-acoustic dispersion relation, which has real frequency

ωr = kV x
i − kcs√

1 + k2λ2
De

(2.3)

and growth rate [10]

γ =
−kcs

√
π/8

(1 + k2λ2
De)

2

[(
Te

Ti

)3/2

exp

{
− Te/Ti

2(1 + k2λ2
De)

}
+

√
me

mi

(
1− V x

i

cs

√
1 + k2λ2

De

)]
.

(2.4)

Here, k is the wavenumber, cs =
√

kBTe/mi is the ion sound speed, and λDe =
√
ϵokBTe/e2ne is the electron Debye length. The change in density between simula-

tions with different electron source temperatures does not affect this prediction since

the density only appears in the Debye length, which is held constant. The thresh-

old temperature ratio decreases with increasing flow velocity and reaches a value

of (Te/Ti)
th ≈ 28 when the flow speed reaches its maximum value in the presheath,

which is approximately the sound speed. This estimation corresponds to T th
e = 0.7 eV

if the ions have the source temperature, Ti = 0.026 eV. In a plasma with heavier ions

the threshold temperature ratio increases slightly: 30 for argon, 30.3 for xenon, and

30.8 for krypton.

Of the four conditions shown in Fig. 2.1, the two cases with source electron tem-

peratures above the predicted threshold (T s
e = 3 eV and T s

e = 12 eV) both clearly

exhibit significant heating. No heating is observed in the case with source electron

temperature well below the threshold (T s
e = 0.1 eV), though some cooling is observed

as a result of losses to the walls. The remaining simulation has a source temperature

close to the threshold (T s
e = 0.5 eV) and exhibits minor heating near the sheath edge.

The heating may be the result of instabilities since the source temperature is close to

the estimated threshold value.

Second, if the source temperature ratio is high enough to expect instability in the
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Figure 2.1: Spatial distribution of ion temperature from simulations with a neutral
pressure p = 0.01 mTorr and four values of the electron source temperature (T s

e )
indicated in the boxes. The solid vertical line represents the sheath edge, while the
horizontal dashed line represents the ion source temperature T s

i = 0.026 eV.

presheath, the observed temperature ratio at the sheath edge (subscript “se”) takes

a value approximately equal to the instability threshold: (Te/Ti)se ≈ (Te/Ti)
th; as

depicted by the horizontal dashed line in Fig. 2.2. Here, the orange line represents

the source temperature ratio T s
e /T

s
i , which would also be the expected temperature

ratio at the sheath edge in the absence of any ion heating (or cooling). In addition,

some ion heating is expected in the presheath due to the fact that ions are sourced at

different values of the plasma potential throughout the presheath; as in the classical

Tonks-Langmuir model [5] and in detail in chapter I. The green line represents the

sheath edge temperature ratio predicted by the Tonks-Langmuir (TL) model, where

(Te/Ti)
TL
se = 3(1/25 + 2T s

i /Te)
−1 ≈ 75 was used to convert the 1V TL prediction to

the 3V of our simulations. Since the ion source is cold in the TL model, its prediction

only applies to simulations where T s
e /T

s
i >> 1. It is important to note that the TL

model, even with a warm ion source, does not predict heating in the center of the
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Figure 2.2: Observed electron-to-ion temperature ratio at the sheath edge (blue cir-
cles) as the electron source temperature (T s

e ) is varied. The dashed line represents the
predicted threshold for instability from Eq. (2.4), and the orange line represents the
source temperature ratio (T s

e /T
s
i ). The green line represents the temperature ratio at

the sheath edge predicted by the Tonks-Langmuir model.

domain [22] and does not explain the observed kinetic energy balance of ions through

the domain; as will be explained in Sec. 2.3.3.

Instead of following the orange line, or locking to the green line, the observed tem-

perature ratio at the sheath edge (blue dots) locks to the threshold value, (Te/Ti)
th ≈

28, when the source electron temperature (T s
e ) exceeds the instability threshold

(T th
e ≈ 0.7 eV). This implies that the plasma cannot significantly enter an unsta-

ble parameter regime.

Third, when instability is predicted, the observed ion heating extends far enough

into the presheath that the plasma does not significantly enter the unstable parameter

regime. Fig. 2.3 shows the ion flow velocity and temperature ratio as a function of

position in each of the four simulations from Fig. 2.1. In each simulation the ions flow

toward the sheath edge with increasing velocity until they satisfy the Bohm criterion

with V x
i /cs = 1. The lines are expected to be purely vertical in the absence of ion (or
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Figure 2.3: Ion flow speed (V x
i /cs) and electron-to-ion temperature ratio (Te/Ti)

through the presheath from simulations with varying electron source temperatures
(T s

e ) indicated by the numbers in the figure. The dashed line indicates the sheath
edge, where the Bohm criterion is met, V x

i /cs = 1, and the shaded region indicates
parameters predicted to be ion-acoustic unstable according to Eq. (2.4).

electron) heating. As expected, a nearly vertical line is observed when the electron

source temperature is in the stable region (T s
e = 0.1 eV). However, when the electron

source temperature is high enough that isothermal ions would lead to instability near

the sheath edge (T s
e = 3 eV and T s

e = 12 eV), the ions are observed to heat in the

presheath well before reaching the instability boundary. Ions reach the instability

boundary at the sheath edge, where the temperature ratio takes the universal value

associated with the intersection of the Bohm criterion (V x
i = cs) and the instability

threshold. The fact that the ions heat further into the presheath than the location at

which instability is predicted suggests that the excited ion-acoustic waves may reflect

from the sheath and propagate back through the presheath and into the bulk plasma.

Further evidence for this will be shown in Sec. 2.3.2.

The observed ion heating leads to a significant temperature anisotropy in the

presheath. In particular, Figs. 2.4 and 2.5 show that the ion heating is entirely
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Figure 2.4: IVDFs in the v⊥-v∥ (vy-vx) plane from simulations with a high electron
source temperature (T s

e = 6 eV, top row) and a low electron source temperature
(T s

e = 0.5 eV, bottom row). Each is plotted at three different locations from left to
right: middle of the domain (0.25 m), presheath (0.37 m), and sheath edge (0.49 m).

constrained to the single dimension of the spatial domain. The IVDFs shown in

Fig. 2.4 illustrate that the ion temperature remains isotropic (or nearly so) throughout

the presheath in the case where instability is predicted to be absent (see the T s
e = 0.5

eV case). In contrast, the IVDF spreads significantly in the parallel dimension when

instability is predicted (T s
e = 6 eV). It is noteworthy that the ion-acoustic group

velocity lies below the peak of the IVDF, on the low-velocity tail, and is the region of

velocity phase-space at which wave-particle scattering is expected to be most frequent.

In each of the 6 panels of Fig. 2.4, the reduced perpendicular IVDFs are nearly the

same, demonstrating that the perpendicular IVDF is not affected. Additionally, the

perpendicular IVDF does not evolve significantly throughout the presheath. These

observations are consistent with wave-particle scattering, which would be expected to

be confined to the single dimension in which the wave exists in these 1D simulations.

The fact that the simulations are 1D-3V may preclude any affects to the perpendicular

IVDF by the waves, which would be expected to spread in 3 dimensions in reality.
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Figure 2.5: Parallel and perpendicular components of the ion temperature as a func-
tion of the electron source temperature (T s

e ). The dashed line indicates the ion source
temperature (T s

i = 0.026 eV).

Studying this will require simulations in 2D or 3D. Preliminary 2D simulations (two

absorbing boundaries and two reflecting) are shown in Appendix A and indicates that

the instability heating still occurs in 2D. Interestingly, the heating still occurs in the

parallel direction with the sheaths, while significant heating also occurs along the

perpendicular direction.

Aggregate data showing the parallel and perpendicular ion temperatures at the

sheath edge are shown in Fig. 2.5. This shows a consistent story with the IVDFs,

demonstrating that the ion heating is constrained to the parallel direction. The reason

the parallel temperature dips below the source temperature for low T s
e is because the

boundaries provide an energy sink for ions that does not exist in the perpendicular

directions. In the absence of the ion-ion Coulomb collisions required to thermalize

the distribution, an anisotopy forms with a higher perpendicular temperature. This

effect is not noticeable at higher T s
e where the instability heating becomes significant

and dominates the cooling effect.

Finally, we add that these simulation results compare well with the LIF measure-
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ments of Yip et al. [24], which are plotted in Fig. 1.4 in chapter I. Even though the

experiments used a xenon plasma, the threshold electron-to-ion temperature increases

only slightly to 30.3 compared to 28 for helium. This means that for a given electron

temperature (e.g., 3 eV) we should expect the ion temperature at the sheath edge

to decrease from 0.107 eV in a helium plasma to 0.099 eV in xenon. In particular,

compare the simulation using T s
e = 3 eV from Fig. 2.1 with the measured ion temper-

ature profile in Fig. 5 from Ref. [24], which was obtained in a plasma with an electron

temperature of Te ≈ 2.4 eV and a neutral pressure of 0.08 mTorr. The electron tem-

perature in this comparison is close enough that we expect similar results for the ion

temperature profile, and the neutral pressure in the experiment is low enough that

we expect the instability to not be affected by neutral damping. The ion temper-

ature profile in the simulation is consistent with that measured in the experiment.

In both, the ion temperature near the sheath edge is 0.1 eV, which is significantly

higher than the room temperature ion source. Similarly, in the experiment the ion

temperature reported farthest from the sheath was ≈ 0.05 eV, which is close to the

value of 0.053 eV observed at the center of the domain in our simulation.

2.3.2 Ion-acoustic instabilities

The presence of instabilities are expected to enhance the electrostatic fluctua-

tion level above the thermal level. To investigate this, we compare the fraction of

fluctuations that are ion-acoustic (those with k and ω near that of Eq. (2.3)) from a

simulation where the ion acoustic instabilities are expected (simulation A: T s
e = 6 eV)

to one where they are not (simulation B: T s
e = 0.1 eV); see Fig. 2.6. The results show a

higher fraction of ion-acoustic fluctuations in case A, which matches the expectation

that ion-acoustic instabilities enhance coherent ion-acoustic fluctuations. Further-

more, the sheath simulations are compared with a simulation of a uniform plasma

(simulation C), which exhibits only thermal fluctuations.
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Ion-acoustic fluctuations are expected even in simulations where no instabilities

or presheaths are present. We designed the uniform simulation to check that the

simulated fluctuation level matches the theoretical level for a uniform plasma. The

simulation utilized reflecting boundary conditions for all particles at the walls and

fixed the potential to 0 V there as well. The same average number of particles per

cell was used in the uniform simulation as in the presheath simulations, so that the

statistical noise would be the same. The density and electron temperature were

chosen to be 6× 1014 m−3 and 6 eV. However, numerical heating is noticeable in the

simulation since it is a closed system. The time averaged electron temperature is

higher (12 eV) than the initial temperature (6 eV) since the duration of simulation

C extends over at least several microseconds (thousands of ω−1
pe ) to acquire enough

data for the analysis. The acquisition time for the uniform simulation is shorter than

the presheath simulations, which results in a more granular image in Fig. 2.6 (g).

Fluctuations in each simulation were analyzed using 2D (space and time) Fourier

transforms of the ion density (density spectrum) between a point in the presheath

(0.447 m) and the presheath-sheath boundary (0.496 m). Fig. 2.6 shows the loga-

rithm of the ion density spectrum near the right boundary in simulation A (a), B

(d), and C (g). The color axis in each plot was set to range from the maximum

spectral value down to 100 times less than the maximum since the maximum varies

between simulations. We identified ion-acoustic modes in each simulation by com-

paring the density spectrum to the theoretical dispersion of ion-acoustic modes from

Eq. (2.3). The white lines denote the real frequency calculated from the average

densities, temperatures, and velocities at 0.447m (dashed) and 0.496m (solid). We

see that in each simulation some of the fluctuations are ion-acoustic since they fall

within the predicted dispersion relation curves, while part of the signal does not and

is representative of thermal noise, defined as in Dieckmann et. al. [67]

Ion-acoustic instabilities are expected to increase the ion-acoustic fluctuation level
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Figure 2.6: Fourier transform of ion density fluctuations (log10((δni/ni)(k, ω))) in
simulations A [T s

e = 6 eV: (a)], B [T s
e = 0.1 eV: (d)], and C [uniform: (g)]. White

dashed and solid lines indicate the real part of the ion-acoustic dispersion relation
(Eq. (2.3)) calculated using data at 0.447 m and 0.496 m, respectively. IA% denotes
the percent of the signal that is ion-acoustic, Ri% is the reflection coefficient of wave
energy carried by ions from the sheath, and Re% is that for electrons. Panels (b),
(e), and (h) show the spectral energy between 0.447 m and 0.496 m calculated using
Eq. (2.6) for k > 0 (dashed) and k < 0 (dotted) in simulations A,B, and C. The solid
line represents the theoretical prediction from Eq. (2.7). (c,f,i) show profiles of the
energy per particle carried by right- (crosses) and left- (circles) moving ion-acoustic
modes in simulations A, B, and C
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above the thermal noise level represented by the uniform simulation. However, the

thermal noise level depends on the electron temperature [68] and numerical heating

makes it difficult to match the electron temperature of simulation C to that of either

A or B. For this reason, we compare the fraction of the total energy stored in the

ion-acoustic fluctuations rather than the absolute fluctuation levels. The fraction of

energy that is ion-acoustic was calculated as

IA% =

∫
IA

ρ̂2/(2ϵ0k
2) dk dω∫

ρ̂2/(2ϵ0k2) dk dω
, (2.5)

where ρ̂ is the charge density spectrum, ϵ0 is the permitivity of free space, and the

integral in the numerator is carried out only over ion-acoustic modes. Referencing

Fig. 2.6 (a,d,g), the range of the “IA” integral includes values up to 0.3ωpi greater

and less than the frequency range predicted by the linear dispersion relation (solid

and dashed white lines). This was done to exclude the part of the signal that clearly

does not fall within the ion-acoustic lines (e.g. signal in the bottom right of (a) and

(d)). It includes only positive values of the frequency and does not include any part

of the signal with |kλDe| < 0.1 as this represents the smallest wavenumber that could

be resolved. The fraction of the total energy that is ion-acoustic is reported in each of

the spectrum plots and is noticeably higher in simulation A (IA% = 43%) compared

to B (24%) or C (16%). The higher ion-acoustic wave energy fraction in simulation

A compared to B is consistent with the prediction of Eq. (2.4) that ion-acoustic

instabilities are excited in A but not B.

Fluctuations in the uniform simulation (C), as well as the left moving modes

(k < 0) in both A and B, are consistent with thermal noise. This can be confirmed

by calculating the spectral energy as

E(k) = V

∫
ρ̂2

2ϵ0k2
dω , (2.6)
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where V is the volume of the Fourier transformed region near the right boundary

(V = 0.049 m3). We compare this to the theoretical value of the spectral energy for

a uniform and stable plasma [69]

E(k)theory =
T c
e

2

1

1 + k2λ2
De

. (2.7)

Here T c
e = wTe is the temperature of the computational electrons, where w is the

number of real electrons represented by a computational electron. Although the

effects of ion thermal motion can be included in this prediction, the effects are small

[69]. In the uniform plasma (simulation C), both left (k < 0) and right (k > 0)

moving modes agree well with the theoretical predication for thermal fluctuations;

see panel (h), as expected. In contrast, panels (b) and (e) show that the energy in

the right moving modes is higher than the thermal level in both simulations A and B.

Although the enhanced level of fluctuations beyond the predicted thermal level might

be considered evidence of instability, there are other reasons this may occur: The

estimate from Eq. (2.7) is for a uniform plasma and does not account for gradients in

plasma parameters such as density or ion flow, which are both characteristic features

of the presheath. Thus, the comparison between the observed and thermal spectra

does not provide a conclusive test for instability.

Observation of the instabilities may also be obscured by the fact that the thermal

noise level is enhanced in PIC simulations by the particle weight [67, 68], as seen

in Eq. (2.7). For example, if the instabilities saturate because of ion trapping, we

can estimate the saturation energy density as θsat ≈ Tene/36 [70]. This does not

change with the particle weight since the computational particle density is propor-

tional to w−1 and the computational particle temperature is proportional to w. When

evaluated for the plasma parameters of simulation A we find θsat ≈ 1 × 10−3 J/m3.

Furthermore, integrating Eq. (2.7) over all k gives an estimate for the PIC thermal
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energy density of θthermal ≈ T c
e /(λDe × 1m2) ≈ 10 J/m3, which is 104 times higher

than the predicted level for saturation. This demonstrates that in such a situation,

the instabilities may be difficult to detect by simply comparing observed and thermal

spectra.

Profiles of the energy per particle stored in ion-acoustic modes provide further

evidence that the ion-acoustic instabilities are excited in simulation A. The energies

per particle are calculate as

θL =
1

ni

∫

IA,k<0

E(k) dk , (2.8a)

θR =
1

ni

∫

IA,k>0

E(k) dk , (2.8b)

where ni is the local average ion density. Here E was calculated as in Eq. (2.6), but

using the charge density spectra in adjacent regions of volume V from the center to the

sheath edge. The energy in the right moving modes (crosses) increases, especially near

the sheath edge, in both simulations A and B; see panels (c) and (f). However, the

energy stored in right moving ion-acoustic modes increases more across the presheath

in simulation A than B (a percent increase of 122% vs 71%). This is consistent with

the presence of instabilities in A and not B. In simulation C the energy stored in both

modes is equal and does not vary, as seen in panel (i). In simulations A and B the

left moving energies decrease along the direction of ion flow in the presheath except

near the sheath edge. The decrease may be because, as one moves toward the sheath,

there is less plasma to the right that can emit left moving fluctuations. If this is the

case, then it is surprising that the energy in the left moving modes does not reach 0

near the sheath. In fact it increases near the sheath edge in both cases. Reflection

of the right moving modes by the sheath or presheath density gradient may explain

this.
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Figure 2.7: Terms on the left side of the ion energy balance from Eq. (2.11) evaluated
from the IVDF in: (a) simulation A (Te = 6 eV), and (b) simulation B (Te = 0.1
eV). The instability-enhanced collision term (Qc: blue line) and the source term
(3
2
νs
i niT

s
i : horizontal black line) are shown in panel (c) for simulation A and panel

(d) for simulation B. The vertical line represents the sheath edge position.
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We hypothesize that right moving ion-acoustic modes reflect from the sheath

and propagate into the bulk plasma. Consider an ion-acoustic wave excited in the

presheath that is moving rightward toward the sheath at the sound speed cs. Such

a wave is carried by electrostatic fluctuations (compression and rarefaction) in both

the ions and electrons. When the wave reaches the sheath edge, all of the ions are

transferred though the sheath to the boundary, carrying the ion fluctuation energy

with them. However, essentially all of the electrons are reflected. The reflected

electrons continue to oscillate at the ion-acoustic wave frequency as they propagate

back into the bulk plasma. Near the sheath, ions are drifting at nearly the ion-

acoustic speed to the right, so there are very few ions resonating with the phase

speed of the reflected wave propagating to the left. Thus, the transfer of wave energy

from electrons to ions for negative-k modes is minimal near the sheath. However,

nearer to the bulk plasma, more ions populate this region of phase space so more

fluctuation energy can be transferred from electrons to ions. In the bulk plasma, the

ion wave energy is observed in both the electrons and ions. This picture is consistent

with left and right moving wave energy profiles shown in Figs. 2.6(c) and (f). It is also

consistent with the observation of ion heating in the bulk plasma though instabilities

are only predicted near the sheath edge.

To test if the electron fluctuations are reflected from the sheath we calculate the

ratio of energy stored in left and right moving electron fluctuations between 0.447 m

and 0.496 m (approximating the presheath region):

Re,i% =

∫
IA,k<0

e2n̂2
e,i/(2ϵ0k

2) dk dω∫
IA,k>0

e2n̂2
e,i/(2ϵ0k

2) dk dω
. (2.9)

Here, n̂e,i is the electron or ion density spectrum. The values of Re are shown in

Fig. 2.6 (a,d,g), where each is effectively 100%. Such high percentages imply that all

the electron fluctuations moving into the sheath are reflected, as we expect. We test
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our assumption that ion fluctuations are absorbed at the sheath by computing the

same ratio, but using the ion density spectrum in Eq. (2.9); providing Ri. In both

presheath simulations the ion fluctuations are partially absorbed since the amount of

energy reflected is less than 100% (A: 53.0%, B: 80.0%). Data from both simulations

A and B seem consistent with the reflection hypothesis, though we observe less ab-

sorption of the ion fluctuations than expected. One reason may be that this definition

of reflection coefficient does not account for the continuous thermal excitation. As

shown in Fig. 2.6, the left moving modes in the ion fluctuations are consistent with

thermal noise near the sheath edge, whereas the right moving modes have a higher

level of fluctuations. In contrast, the electron wave power is nearly identical in both

the left and right moving modes. In the uniform simulation we observed that both

ion and electron fluctuations are fully reflected. This is the expected behavior since

all particles reflect from the walls in simulation C.

In summary, the observations presented in Fig. 2.6 are consistent with the hypoth-

esis that instabilities are present when the electron temperature exceeds the predicted

threshold for ion-acoustic instability excitation in the presheath, and that some frac-

tion of ion-acoustic fluctuations that impinge on the sheath are reflected back into the

plasma, most likely by the electrons. Other works also suggest that ion-acoustic waves

reflect from sheaths [71, 72, 73, 74]. Recently, Hood et al. [25] measured fluctuations

in an ion presheath at conditions where ion-acoustic instabilities were expected to be

excited near the sheath edge. The measurements showed evidence of ion-acoustic fluc-

tuations near the sheath edge, but also further into the plasma in the region predicted

by linear theory to be stable [25]. Furthermore, when the biased probe on which the

sheath formed was removed, and the measurement repeated, no fluctuations were

measured to within the diagnostic resolution. This shows that ion-acoustic fluctu-

ations are due to the presence of the sheath, and suggests that they were reflected

from the sheath back into the bulk plasma. Our simulations are consistent with this
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picture, but the high noise level in PIC simulations makes it difficult to conclusively

associate enhanced fluctuations with an instability based on the spectrum alone.

2.3.3 Enhanced electron-ion energy exchange rate

As mentioned earlier, ion heating in simulations with electron temperatures above

0.7 eV seem to be attributable to an increased electron-ion energy exchange rate

caused by ion-acoustic instabilities. To test whether this is the case, we evaluate terms

in the ion energy evolution equation and find that the term representing instability-

enhanced electron-ion scattering is significant in a simulation with T s
e above the

instability threshold (simulation A from Sec. 2.3.2). Furthermore, in a simulation

with an electron temperature below the threshold (simulation B from Sec. 2.3.2) the

instability-enhanced term is near zero implying that there is no instability-enhanced

heating.

The ion temperature equation is obtained from the second velocity moment of the

ion kinetic equation, which in one spatial dimension (x) is

∂tfi + vx∂xfi +
e

mi

E∂vxfi = Cc + Cn +Rs. (2.10)

Here, Cc and Cn are the Coulomb and neutral collision operators and Rs = νs
i f

s
i

represents the sourcing of ions at a fixed rate νs
i from the distribution f s

i , a station-

ary Maxwellian with temperature T s
i = 0.026 eV. Each term on the right side of

Eq. (2.10) represents a potential mechanism for heating. The source term (repre-

senting ionization collisions) can broaden the IVDF in the presheath by introducing

new particles at velocities much less than the average ion velocity. The Cn term

represents other ion-neutral collisions, like charge exchange, which can lead to ion

heating when a fast ion is effectively slowed down. However, at a pressure of 0.01

mTorr this term is negligible since the ion-neutral mean free path is approximately
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100 times longer than the simulation length. Equally as rare are Coulomb collisions

between electrons and ions, represented by Cc, since the electron-ion mean free path

is also much larger (thousands of meters) than the simulation length. However, if

ion-acoustic instabilities are present, they can significantly increase the collision rate

between electrons and ions [11]. The increased collision rate would allow for more

energy exchange between electrons and ions, heating the ions.

To determine the electron-ion energy exchange rate we calculate the mi

2
v2 moment

of Eq. (2.10), which can be cast in terms of the ion temperature. In one spatial

dimension and three velocity dimensions the ion temperature equation takes the form:

3

2
niV

x
i

dT x
i

dx
+ niT

x
i

dV x
i

dx
+

dqxi
dx

+ πxx
i

dV x
i

dx
= Qc +

3

2
νs
i niT

s
i . (2.11)

Here, ni is the average ion density,

qxi =
mi

2

∫
(vx − V x

i )|v −Vi|2fi d3v (2.12)

is the x-component of the heat flux,

πxx
i = mi

∫ (
(vx − V x

i )
2 − 1

3
|v −Vi|2

)
fi d

3v (2.13)

is the xx-component of the stress tensor, and

Qc =
mi

2

∫
|v −Vi|2Cc d

3v (2.14)

is the energy moment of the Coulomb collision operator. Since Cn is negligible at low

pressure its moment is not included here. The second term on the right hand side

represents the energy introduced by the ion source.

The contribution of the electron-ion energy relaxation rate to the ion temperature
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equation is determined by evaluating each of the terms on the left side of Eq. (2.11)

using the simulated IVDFs, and subtracting from this 3
2
νs
i niT

s
i to obtain Qc; see

Fig. 2.7. The individual terms from simulation B have nearly equal magnitude up

until the sheath edge where the flow gradient terms dominate. In simulation A

we see similar behavior near the center, but the term related to the stress tensor

reverses sign and contributes significantly near the sheath edge. Summing the term

on the left hand side of Eq. (2.11) and subtracting the source term results in the

residual Qc which represents the energy exchange rate between electrons and ions.

In simulation B the energy exchange rate is effectively a flat profile across the entire

domain and has a comparable magnitude to the source term (horizontal line). This

is what is expected in a simulation where ion heating results only from the sourcing

of particles throughout the presheath. However, the picture changes dramatically in

simulation A where the residual term significantly exceeds the source term throughout

the presheath, but most notably near the sheath edge. This supports the idea that the

heating observed in simulation A is the result of instability-enhanced energy exchange

between electrons and ions, since the residual is only significant in simulation A.

Although the instability-enhanced energy exchange rate decreases significantly

further from the sheath edge, it is still far larger than the source term (3
2
νs
i niT

s
i ≈

2 × 10−3 W
m3 ) near the center. This indicates that the heating we observed near the

center of simulation A is also caused by the instabilities and further supports the

reflection mechanism discussed in the Sec. 2.3.2.

2.4 Higher Pressure

Increasing the neutral pressure has two major consequences: increasing the tem-

perature ratio threshold necessary for exciting the instabilities and increasing the

heating that results from ion-neutral collisions in the presheath. Figure 2.8 shows

an estimate for the threshold temperature ratio as a function of pressure illustrat-
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Figure 2.8: The theoretical temperature ratio threshold as a function of pressure
calculated using Eq. (2.15).

ing the former point. To study the ion heating due to ion-neutral collisions, with

and without the instabilities present, we included simulations at pressures of 0.01

mTorr, 1 mTorr and 10 mTorr with individual simulations taking the same electron

temperature values as in Table 2.1. We find that the heating from ion-neutral colli-

sions is isotropic, which distinguishes it from instability-enhanced heating, which is

anisotropic (in 1D-3V simulations).

The effects of ion-neutral collisions can be modeled using the Bhatnagar–Gross–Krook [75]

(BGK) collision operator. It uses a velocity-independent collision frequency which can

be estimated from the Phelps database cross sections of He+ and He (σi−n) [62, 63].

Ultimately the BGK model predicts a modification to the growth rate of the form

γBGK = γ − νi−n/2, (2.15)

where γ is the growth rate from Eq. (2.4) and νi−n is the ion neutral collision frequency

estimated as νi−n ≈ σi−ncsnHe. In Fig. 2.8 we see that the collisionless prediction
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Figure 2.9: Electron-to-ion temperature ratio at the sheath edge vs. T s
e for pressures

of 0.01 mTorr (solid), 1 mTorr (dashed), and 10 mTorr (dotted). The source tem-
perature ratio is shown in solid orange and the solid horizontal line represents the
collisionless (0.01 mTorr) prediction for the threshold (Te/Ti)

th = 28 and the dashed
line represents the threshold at 1 mTorr (Te/Ti)

th = 41.

of (Te/Ti)
th = 28 is returned at low pressures and at 1 mTorr the temperature ratio

threshold is about (Te/Ti)
th = 41, which is a relatively minor change corresponding

to an electron temperature threshold of about 1.1 eV. Finally, above approximately

3 mTorr the threshold temperature ratio becomes so large (roughly 1000) that no

ion-acoustic instabilities are expected over the entire range of simulated parameters.

Figure 2.9 shows the sheath edge temperature ratio for 3 different pressures. The

main observation is that higher neutral pressure lowers the observed electron-to-ion

temperature ratio for all source electron temperatures considered. Although the pre-

dicted instability threshold is only slightly higher at 1 mTorr than at 0.01 mTorr,

1 mTorr is apparently a high enough pressure to cause some ion heating due to in-

teraction with neutrals. As a consequence, the observed temperature ratio does not

reach the predicted threshold value over the range of simulated values. At a pressure

of 10 mTorr, heating due to ion-neutral collisions is even more significant. This is
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Figure 2.10: Ion temperature profiles for different pressures at electron temperatures
of (a) 0.1 eV and (b) 6 eV representing simulations where ion-acoustic instabilities
are not present and present only at low enough pressures, respectively. The dashed
horizontal line represents the ion source temperature (room temperature).
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consistent with the expectation that no ion-acoustic instabilities should be present in

the 10 mTorr simulation.

Simulations at low electron source temperatures (T s
e = 0.1 eV) show that ion-

neutral collisions result in minor ion heating throughout the presheath, when the

pressure is large enough. Specifically, ion temperature profiles from simulations with

neutral pressures of 0.01, 1, and 10 mTorr are plotted in Fig. 2.10 (a). For all

pressures, the temperature profile is flat through most of the domain. At 0.01 mTorr

and 1 mTorr a slight decrease of the ion temperature is observed near the sheath,

whereas a slight increase is observed at 10 mTorr. In the simulations with electron

temperatures of 6 eV we expect the effects of the ion-acoustic instabilities to be present

at low pressure (0.01 mTorr and 1 mTorr), and the effects of ion-neutral collisions

to become important at higher pressure (1 mTorr and 10 mTorr). In each of the

simulations shown in Fig. 2.10 (b), the temperature in the bulk is approximately the

same, and heating is observed near the sheath. The heating is largest at the highest

neutral pressure. It is unexpected that the ion heating near the center of the domain

persists at higher pressures where the instabilities should be damped.

It is important to point out that the heating from ion-neutral collisions increases

with electron temperature as well as neutral pressure. This is seen in Fig. 2.10 where

the ion temperature is very close to the source temperature in (a), but much higher in

(b). The reason for this is that the sound speed is approximately
√
60 times higher in

(b) than (a) since the electron temperature increases by a factor of 60. Plasmas with

a higher sound speed experience more ion-neutral heating since the IVDF spans a

wider range of velocities (0 −→ cs ∝
√
Te) while traversing the presheath. Ion-neutral

collisions drag the IVDF out over these lower velocities, resulting in a wider IVDF

in plasmas with higher electron temperatures. This makes it difficult to differentiate

between instability-enhanced heating and heating from ion-neutral collisions since

they increase simultaneously.
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in each simulation was 0.1 eV, which is low enough that no instabilities are expected.
Each row shows the IVDF at two different locations from left to right: 0.25 m, 0.49 m.
The top row represents a collisionless system with pn = 0.01 mTorr and the bottom
row a collisional system with pn = 10 mTorr

66



10−2 10−1 100 101 102

Pressure [mTorr]

0.2

0.4

0.6

0.8

[∆
T
/
T

] ⊥
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Furthermore, the two mechanisms are not separated by a pressure regime where

neither is significant. Instead, when the electron temperature is sufficient for insta-

bilities, the dominant heating mechanism immediately transitions from instability-

enhanced to collisional with increasing pressure. This is demonstrated by calcu-

lating an estimate of the neutral pressure at which the instability-enhanced en-

ergy exchange rate (Qc) becomes equivalent to the ion-neutral energy exchange rate

(Qn = mi

2

∫
|v −Vi|2Cn d

3v). We can estimate Qc from Fig. 2.7 (c) (which assumes

T s
e = 6 eV) and so take Qc ≈ 1 W/m3. Here, Qn was estimated assuming that the

ion-neutral collision operator has the same form as the ion source term, but with

a different collision frequency and distribution (Cn = νi−nnie
−(v−Vi)

2/v2Ti/(π3/2v3T i)).

This distribution represents the steady-state that the IVDF should relax to in the

presence of ion-neutral collisions. In this model, the ion-neutral energy exchange rate

is

Qn [W/m3] ≈ 3

2
νi−nniTi ≈

3

2
σi−ncsnHeniTi, (2.16)

where the ion-neutral collision frequency was approximated as νi−n ≈ σi−ncsnHe. The
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neutral density can be estimated for a given temperature (here room temperature)

and neutral pressure p (measured in mTorr). The estimate for the ion-neutral energy

exchange rate is

Qn [W/m3] ≈ 0.3p [mTorr], (2.17)

where the electron temperature was taken to be 6 eV and the ion-neutral cross section

was estimated as σi−n ≈ 2×10−19m2 from the Phelps database [62, 63]. Equating this

to the instability enhanced energy exchange rate results in an estimated transition

pressure around 3 mTorr. This implies that at pressures well below this value the

instability-enhanced heating is most important, but at intermediate pressures (≈ 1

mTorr) both mechanisms will contribute to ion heating. This estimate appears to be

consistent with the observations, and is further corroborated by considering the ion

temperature anisotropy.

Specifically, elastic ion-neutral collisions lead to a much more isotropic IVDF

than the instability-enhanced heating and the transition from anisotropic to isotropic

agrees well with the estimated transition of 3 mTorr. This is depicted in Fig. 2.11,

where the perpendicular (open markers) and parallel (solid markers) ion tempera-

ture at the sheath edge is plotted as a function of electron temperature for several

pressures. Clearly ion-neutral collisions transfer some of the parallel energy the ions

gain in the presheath into the perpendicular direction. The simulations also indicate

that this transfer in energy is most significant at the highest neutral pressure (10

mTorr), where the heating is nearly isotropic. It is nonexistent at the lowest pressure

(0.01 mTorr), and has an intermediate value at 1 mTorr. This seems consistent with

the predicted transition from ion-acoustic instability to ion-neutral collisional heating

occurring near 1 mTorr neutral pressure.

At electron temperatures where we don’t expect ion-acoustic instabilities we find

that our observations agree well with previous PIC simulations [59]. In the simulations

of Meige et al., the electron density was modeled using the Boltzmann relation instead
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of the PIC method and so excluded the excitation of ion acoustic instabilities which

require inverse Landau damping to occur [10]. Specifically, we compare their results

to our simulations with electron temperatures of 0.1 eV.

Meige et al. report a slightly anisotropic IVDF at low pressure (0.1 mTorr) where

the ion temperature varies little across the presheath. This is consistent with our

simulations, demonstrated in the top row of Fig. 2.12, where the 2D IVDF at 0.01

mTorr has a perpendicular temperature that is nearly twice as large as the parallel

temperature. The temperatures in the center (“c”) and sheath edge (“se”) positions

are also nearly equal (T
∥
c = 0.014 eV, T

∥
se = 0.013 eV, T⊥

c = 0.026 eV, T⊥
se = 0.026 eV).

The lower ion temperature in the parallel direction is associated with ion energy loss

to the walls in this dimension. However, at a higher pressures (e.g. 10 mTorr) Meige

et al. report significant broadening of the parallel IVDF, leading to a more isotropic

distribution. Again, we see the same behavior as demonstrated in the bottom row of

Fig. 2.12, where the IVDF in the v⊥ vs v∥ plane is nearly circular, with slightly higher

temperatures near the sheath edge (T
∥
c = 0.024 eV, T

∥
se = 0.032 eV, T⊥

c = 0.026 eV,

T⊥
se = 0.032 eV).

In addition to detailing the broadening of the IVDF in the presheath, Meige

et al. discovered that the ions heat in the perpendicular direction as they tran-

sit the presheath and that this effect has a non trivial dependence on the pres-

sure. Specifically, the perpendicular heating due to ion-neutral scattering increases

until about 10 mTorr and then decreases at higher pressure. Fig. 2.13 shows the

change in perpendicular temperature of the ions across the presheath ([∆T/T ]⊥ =
(
T⊥
i (se)− T⊥

i (c)
)
/T⊥

i (c)). Our simulations show similar behavior to those of Meige

et al., though with a slightly higher perpendicular heating at all pressures. Specif-

ically, at 10 mTorr our simulations predict a percent increase of 0.9 while Meige et

al. predict 0.75. This further supports the fact that our simulations agree well with

previous simulations when we chose the electron temperature to be low enough that
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the ion-acoustic instabilities are not excited.

2.5 Conclusions

We observe significant ion heating in the presheaths in 1D PIC-DSMC simulations

when the electron-to-ion temperature ratio is high enough to excite ion-acoustic in-

stabilities near the sheath edge. We observe enhanced ion-acoustic fluctuation levels

alongside ion heating when the instabilities are expected. Further analysis of our

simulations support the hypothesis that excited waves greatly increase the rate of

electron-ion energy equilibration such that the electron-to-ion temperature ratio at

the sheath edge is near the threshold value at which instability onsets. Wave reflection

is observed and is a plausible mechanism allowing for the heating to occur away from

the sheath. The heating we observe exceeds the heating expected from inelastic col-

lisions that occur in the presheath at low pressure. The amount of heating observed

increases with the source electron temperature. At sufficiently high neutral gas pres-

sure, the instability-enhanced heating mechanism is replaced by collisional heating

(here at pressures above 1 mTorr). However, ion heating is still observed far from the

sheath edge, which is unexpected at high pressures. Currently available experimental

data are consistent with what we observe in our simulations, but measurements of

the ion temperature over a range of electron temperatures will be needed to provide

a definitive test. In addition, the instability-enhanced heating observed is limited to

the parallel direction of our 1D-3V simulations; however this may be an artifact of

the 1D simulations since the electric field is confined to the one spatial dimension. 2D

or 3D simulations will be necessary to confirm if this is the case and what effect it has

on the heating. The results presented in this work provide another example of how

electrostatic instabilities driven by ion flow influence transport in the presheath [30].
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CHAPTER III

Collisional Bohm Criterion and Sheath Properties

3.1 Introduction

Understanding how sheaths work is important because they mediate the inter-

action of plasmas with the materials that surround them. They also set boundary

conditions that determine bulk properties of a plasma. Because of their importance,

sheaths have been studied for a long time [21]. This has led to models for key as-

pects of sheaths, including the density [28, 76, 77] and speed of ions at the sheath

edge [15, 16, 17, 18, 78], the sheath width [28, 79, 80], and the electrostatic potential

change across the sheath and presheath [80]. Although models have been developed

to treat a wide range of conditions, the experimental validation necessary to distin-

guish which are correct has largely been confined to low neutral gas pressures (less

than a few mTorr). It is important to extend this to higher pressures where plas-

mas operate in many applications, but diagnostics become more challenging at these

conditions. Here, we take an intermediate step toward validation by testing models

using particle-in-cell simulations. These simulations provide meaningful tests because

they solve a more complete model than the approaches that have been applied to an-

alyze sheath properties. The simulations are not limited by diagnostic access and

essentially any property can be directly computed. Simulations were performed over

pressures ranging from 10−2 − 104 mTorr. Results show that ion-neutral collisions
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substantially alter sheath properties at pressures exceeding a few mTorr. The data is

used to quantify the following dimensionless sheath properties: edge-to-center density

ratio (hl = nse/nc), collisional Bohm criterion (al ≡ Vi,se/cs), sheath width (ws/λDe),

electric field at the sheath edge (Ese/(Te/eλDe)), sheath potential drop (e∆ϕs/Te) and

presheath potential drop (e∆ϕps/Te).

Previous models have predicted that ion-neutral collisions act to decrease the

speed of ions at the sheath edge [15, 16, 17, 18, 78], decrease the edge-to-center density

ratio [28, 76, 77], and increase the sheath width [28, 79, 80] and potential drop across

the sheath and presheath [80]. A variety of models have been proposed based on

either fluid or kinetic approaches. Although they tend to give quantitatively different

predictions, they also tend to agree on the general trends as neutral gas pressure

increases. Some of the models differ particularly in how they treat the ionization

source, with the most popular choice being a source rate proportional to the electron

density [81]. To focus on the influence of the ion-neutral collision rate, our simulations

used a constant and uniform volumetric source and included only elastic ion-neutral

collisions.

To compare with the simulations, we develop a model based on fluid conservation

equations for ions, the Boltzmann density distribution for electrons, and Poisson’s

equation to connect the fluid quantities and electric field. The model is solved nu-

merically for the plasma density, ion velocity, and electric field profiles which allow

us to calculate the aforementioned plasma properties at the sheath edge. In addition,

simple analytic formulae for the sheath properties are developed from approximations

of the fluid model and input from the simulations. The fluid model is inspired by, and

in some respects the same as, previous work [77, 82]. Some further development was

required to incorporate the constant ionization source term, especially in obtaining

analytic approximations of the sheath properties. Another aspect of development was

to solve for all these properties from a single self-consistent model. This leads to some
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distinctions from previous work.

For example, previous models have effectively combined the collisional Bohm cri-

terion (al) and edge-to-center density ratio (hl) into a single factor (h∗
l ). This is a

feature of the previous models because they have either (1) used the sound speed as

a boundary condition in deriving hl [77], which neglects the collisional Bohm crite-

rion (al), or (2) defined hl as the ratio of the ion flux at the sheath edge compared

to nccs,c [76]. Here, cs,c is the sound speed at the center of the domain. The latter

approach was motivated by global models that require the flux to the boundary as

an input parameter [83]. In either case, it is useful to define hl as the edge-to-center

density ratio and modify the analysis to account for distinct hl and al factors. For

instance, the distinction is essential to correctly compute the plasma potential.

Finally, we note that a variety of definitions for the sheath edge have been put

forth, and that sheath properties can depend sensitively on the definition. The original

definition suggested by Langmuir is that the sheath edge separates a quasineutral

plasma from a non-neutral sheath [1]. Other definitions have been used, such as

taking the location that ions reach the sound speed [77], or the location where a

critical value of the electric field is obtained [15]. We emphasize that it is important

to adopt Langmuir’s original definition, as this is the closest location to the boundary

where the electron and ion densities are equal, which allows one to compute the flux of

plasma reaching the boundary based on knowledge of the bulk plasma properties and

a model for the hl and al factors. We find that Langmuir’s definition is consistent with

a critical value of the electric field, though one that is much smaller than previously

proposed. Other definitions, such as the point where ions reach the sound speed,

become increasingly problematic at high pressure as ions can make it all the way to

the boundary at a sub-sonic speed, even though there remains a highly non-neutral

sheath region near the boundary surface.

Comparison of the simulations, numerical solution of the fluid model, and analytic
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expressions for the sheath properties are found to generally agree well. Assumptions

made in the fluid model, particularly the Boltzmann density relation for electrons,

begin to break down at the highest pressure case that was simulated (104 mTorr). But

overall the result is a comprehensive model for sheath properties over a broad range

of neutral gas pressures, that has at least been tested by a high-fidelity computational

model. The work may inspire future experimental tests to complete the validation

needed for adoption of the model.

3.2 Model and simulations

3.2.1 PIC simulation setup

PIC simulations of electron-helium plasmas were carried out using the electrostatic

simulation code Aleph [43]. Each simulation had one spatial dimension of length

L = 1.0 cm and 3 velocity dimensions and included electrons, singly charged helium

ions, and neutral helium particles. Both electrons and ions were sourced uniformly in

space and time from stationary Maxwellian distributions with electron temperature

T s
e = 1 eV and ion temperature T s

i = 0.026 eV respectively. The source rate was

S = 1.62× 1022 particles/m3s in all but the highest pressure simulation where it was

reduced to S = 4.05 × 1021 particles/m3s. For a given pressure the neutral density

was computed as nn[m
−3] = 3.250× 1019pn[mTorr]. The constant source rate makes

it simple to compute the ion flux throughout the domain (Γi = Sx, where S is the

source rate and x is the distance measured from the center of the discharge), and in

some ways simplifies the fluid model (see appendix B.1). It has been studied using

PIC before [84], and also represents a common type of low temperature, low pressure

plasma experiment where ionization is generated by a dilute population of high-energy

injected electrons; such as the filament discharges with a multi-dipole chamber that

are common in sheath studies [85] and in certain hollow cathode devices [86].
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The mesh was uniform in each simulation and was composed of 500 cells for

simulations with neutral pressures at or below 102 mTorr and 5,000 cells for higher

pressures. The mesh was refined to resolve the ion-neutral mean free path (λin,c ∝

p−1
n ) by a factor of 2 at the highest pressures. In addition, the ratio of cell size to

the Debye length at the center of each simulation was dx/λDe ≈ 0.5, except in the

simulation at 103 mTorr where it was set to 0.1.

The time step was chosen to resolve the electron plasma frequency and a CFL-like

condition, so that an electron with velocity lower than 0.5
√
eTe/me does not cross

an entire spatial cell in one time step [36]. However, since the mesh was refined at

higher pressures the time step was decreased from 4 × 10−11 s for simulations with

neutral pressures below 103 mTorr, to 1 × 10−11 s for those at or above 103 mTorr.

The time to steady state ranged from 4 × 10−5 s to 4 × 10−4 s as the pressure was

increased from 10−2 mTorr to 104 mTorr.

The computational weight of the electrons and ions was the same, though this

value was changed between simulations since the density increased at higher pressure

(see table 3.1). This required significantly more particles in the higher pressure sim-

ulations. The weight was chosen so that the average number of particles per cell for

each species was approximately 30 near the center in each simulation. The number

of particles per cell near the wall ranged from about 15 at pressures below 103 mTorr

to as small as 1 at 104 mTorr.

The direct simulation Monte Carlo (DSMC) method was used to simulate ion-

neutral and electron-neutral collisions [40], while no method was used to include

binary Coulomb collisions. Only two interactions were included: elastic ion-neutral

collisions and elastic electron-neutral collisions. For both interactions the scattering

angles are distributed isotropically and momentum and energy are conserved. The

method for calculating post-collision velocities is described in [40] on page 131.

Cross sections for both interactions were taken from the Phelps database provided
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by LXCat [62, 63, 64, 65]. Furthermore, only the total cross section was available

for helium ion-neutral collisions, though it was split into isotropic and back-scatter

components. We chose to use only the isotropic component of the total cross section

for ion-neutral collisions as it is advantageous for developing a simple fluid model.

This is due to the fact that the isotropic cross section scales inversely with the relative

velocity (u−1). Ultimately, this means that using the same cross section in our fluid

model will reduce it to a constant mean free path model.

Throughout this chapter all reported temperatures refer to the 1D temperature.

The 1D temperature is computed from the reduced velocity distribution functions

(e.g., fs,x(vx) =
∫
fs(v)dvydvz), using

Ts =
ms

ns

∫
(vx − Vs)

2fs,x(vx)dvx, (3.1)

where Vs =
1
ns

∫
vxfs,x(vx)dvx, x represents the one spatial dimension of our simula-

tions, ms is the mass of a particle of species s, and ns is the density.

In each PIC simulation the sheath edge is defined as the location where the charge

density first exceeds Pρ = 0.019 of the average electron density (i.e., ni − ne =

Pρne). This value was chosen because it represents the location in the lowest pressure

simulation where Vi = cs,c =
√

eTe,c/mi. Here Te,c is the electron temperature at the

center. Physically, it corresponds to a small but non-zero charge density that defines

the separation between quasineutral plasma and non-neutral sheath. Results are also

provided for a range of values Pρ = 0.0077− 0.048, illustrating the sensitivity of the

results to the particular numerical value that is chosen.

3.2.2 Fluid model

Here we develop a fluid model that captures the basic physics of the PIC simu-

lations and can be analyzed to give expressions for the quantities of interest like al
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pn λDe,c/λin,c Te,c Te,se Vi,se nse nc σs(Te,c)

10−2 1.53×10−6 0.895 0.701 4.72×103 1.60×1016 2.92×1016 1.29×10−19

10−1 1.53×10−5 0.903 0.718 4.61×103 1.64×1016 2.92×1016 1.27×10−19

100 1.52×10−4 0.909 0.732 4.65×103 1.62×1016 2.95×1016 1.26×10−19

101 1.46×10−3 0.868 0.786 4.49×103 1.67×1016 3.21×1016 1.21×10−19

102 1.30×10−2 0.945 0.894 4.30×103 1.74×1016 4.01×1016 1.14×10−19

103 6.95×10−2 0.859 0.701 2.64×103 2.90×1016 1.41×1017 1.29×10−19

104 2.93×10−1 0.326 0.230 4.07×102 4.74×1016 7.91×1017 2.25×10−19

Table 3.1: PIC simulation parameters: neutral pressure (pn [mTorr]), ratio of sheath
edge Debye length to ion neutral mean-free-path (λDe,c/λin,c), center electron tem-
perature (Te,c [eV]), sheath edge electron temperature (Te,se [eV]), sheath edge ion
velocity (Vi,se [m/s]), sheath edge density (nse [#/m3]), center density (nc [#/m3]),
and ion-neutral elastic cross section evaluated at cs,c (σs [m2]) Here the sheath edge
was defined using Pρ = 0.019.

and hl. Previous authors have used the same model equations [82]. The fluid model

includes the continuity equation with a constant source rate (S [particles/(m3s)]),

which matches how the plasma is sourced in the PIC simulations:

d

dx
(niVi) = S (3.2)

In addition, we include an ion momentum equation that accounts for only the elec-

trostatic and friction force on the ions:

miniVi
dVi

dx
= eniE −Rin −miViS. (3.3)

The friction force can be written

Rin = miniViνin

= miniVi(cs,c/λin,c), (3.4)
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where we have used a constant collision frequency model: νin = nnσVi = cs,c/λin,c.

This corresponds to choosing a cross section of the form σ = σs(cs,c/Vi), as in the

Phelps database provided by LXCat used in our PIC simulations [62]. This is the

same form as used in previous models [78, 82]. Here, σs is the cross section evaluated

at the sound speed (cs,c). This form of the friction force can be derived by taking

the momentum moment of the Boltzmann collision operator and applying the σ =

σs(cs,c/Vi) form of the cross section; see appendix B.2. The ion-neutral collision mean

free path is then λin,c = 1/(nnσs).

Finally, we close the system of equations with Poisson’s equation

ϵ0
d2ϕ

dx2
= −e(ni − nce

−eϕ/Te,c), (3.5)

where we have used the Boltzmann density relation for the electrons and nc is the

center density.

The Boltzmann density relation assumes that the electrons are isothermal. It is

known that electron temperature gradients exist in the presheath and sheath mainly

due to the non-local kinetic effect of loss of high energy electrons (those above the

sheath potential energy) to the wall [29, 87]. Recent work has explored modified

fluid models that attempt to account for this effect [87, 88, 89]. The accuracy of the

isothermal assumption is assessed in section 3.3 and section 3.4.6 provides a discussion

of how this aspect of the model might be improved.

The model equations can be cast in a dimensionless form where the position is

measured in electron Debye lengths (λDe,c =
√
Te,cϵ0/nce2) at the center of the plasma,

the electric field is measured in (Te,c/e)/λDe,c, the density is measured in terms of the
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center density (nc), and the velocity is measured in terms of the sound speed:

d

dx
(niVi) = s, (3.6)

niVi
dVi

dx
= niE − niVi(λDe,c/λin,c)− Vis, and (3.7)

d2ϕ

dx2
= (eϕ − ni). (3.8)

Furthermore, the dimensionless form of the model is fully described by only two di-

mensionless quantities: the source strength (s = SλDe,c/(nccs,c)) and the collisionality

(λDe,c/λin,c). The latter is proportional to the pressure

λDe,c/λin,c = (λDe,cσs)pn/Tn, (3.9)

which is the independent variable of our study. For each pressure, we calculate

λDe,c/λin,c using Te,c and nc from the corresponding PIC simulation. Then the fluid

model is solved numerically for each value of λDe,c/λin,c. The values of λDe,c/λin,c for

each pressure are shown in table 3.1 alongside the values of σs used to calculate λin,c.

Appendix B.1 discusses the details of the numerical solution of equations (3.6-

3.8). In addition, the sheath edge was defined using the same criterion as in the PIC

simulations, but where P fluid
ρ = 0.057. This value was chosen so that Vi = cs,c in the

lowest pressure numerical fluid solution.

3.3 Results

The main results of the PIC simulations are shown in Fig. 3.1 where profiles of

the average ion velocity, relative density, charge density fraction, plasma potential,

electron temperature, and ion temperature are plotted. The profiles from simulations

with pn = 10−2 and 10−1 mTorr have been omitted as they generally overlap with

the profiles for pn = 100 mTorr. The sheath edge is highlighted by the circles on
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Figure 3.1: Spatial profiles of the (a) ion velocity (Vi), (b) relative ion density (ni/nc),
(c) fractional charge density ((ni−ne)/ne), (d) plasma potential (ϕ/Te,c), (e) electron
temperature (Te), and (f) ion temperature (Ti). Circles denote the location of the
sheath edge. The dashed line in panel (a) represents the sound speed cs,c. The dashed
line in panel (c) represents the value of Pρ and so shows the sheath edge positions.
The dashed line in panel (f) represents the ion source temperature 0.026 eV.
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Figure 3.2: Terms from Eq. (3.10) evaluated for the ions (a) and electrons (b) at each
pressure: (circles) inertial, (squares) electric field, (crosses) temperature gradient,
(diamonds) density gradient, (pluses) stress gradient, (stars) source, and (triangles)
friction with neutrals.

each profile and the values of Vi, ni, and Te at this location are reported in table 3.1.

Clearly, the ion velocities and relative densities are reduced at higher pressures, while

the potential increases.

Panel (a) shows that the ion velocity decreases everywhere in the domain as the

pressure increases. Most notably, the ion velocity at the sheath edge is reduced below

the sound speed when the pressure is above a few mTorr, illustrating that there is

a collisional Bohm criterion (i.e. al < 1). The largest reduction is observed at the

highest pressure (al ≈ 0.1 at 104 mTorr), where the ion flow speed does not reach the

sound speed at any point in the domain. This demonstrates a shortcoming of using

Vi = cs,c to define the sheath edge.

Besides being slowed, the relative ion density (ni/nc) is reduced with pressure

as shown in panel (b). Specifically, the edge-to-center density ratio decreases with

increasing pressure. Note that in terms of the absolute number density (measured in

#/m3), both the central density nc and sheath edge density increase with pressure

(table 3.1).
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The charge density fraction (ni − ne)/ne is a local measure of quasineutrality and

is plotted in panel (c). Note that panel (c) shows only a small part of the domain near

the right boundary. The sheath can be identified in each simulation as the location

where the charge density fraction is significant. In fact, we use the charge density

fraction to determine the sheath edge. Specifically, the time averaged charge density

fraction is smoothed using a moving average that is 5 cells wide. Then the sheath

edge is defined as the point where Pρ = (ni − ne)/ne = 0.019. The sheath edge

location depends weakly on Pρ and the filter parameters.

The local plasma potential profiles are shown in panel (d) and, as in (a) and (b),

the profiles increase monotonically with pressure. Along with the general increase

of the plasma potential, a rounding of the profile is observed so that the potential

drop across the presheath (i.e the quasineutral part of the plasma) and the sheath

individually increase with pressure.

Panel (e) shows the electron temperature profiles, which do not change monotoni-

cally with the pressure. The most important feature is that each is relatively constant,

which is an assumption of our fluid model. However, the steady-state electron tem-

peratures depend on the neutral pressure. This is most notable at 104 mTorr, where

the electron temperature is approximately 0.3 eV, which is significantly lower than

the source temperature of 1 eV.

Panel (f) shows the ion temperature profiles, which are clearly not constant and

display heating above the ion source temperature (0.026 eV) near the sheath in all

but the highest pressure simulations. Chapter II discussed the heating and its causes

at low pressure, while at higher pressure [59] provided PIC simulations describing

collisional heating. Our fluid model assumes the ion temperature to be constant.

While this is clearly not the case, the fluid model is still a good approximation because

the small value of the ion temperature causes the temperature gradient term of the

momentum balance equation to remain small in comparison to the other terms in
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Eq. (3.3); see Fig. 3.2.

To test this, we can calculate each term of the momentum equation for both ions

and electrons and determine which are most significant. The general 1D momentum

equation for species s is:

msnsVs
dVs

dx
= qsnsE − Ts

dns

dx
− ns

dTs

dx

−dπs

dx
−msVsS −Rs. (3.10)

Here, πs is the xx-component of the stress tensor and Rs =
∑

s′ Rss′ is the friction on

species s due to collisions with all other species (s′). Each of these terms, excluding

Rs, was evaluated directly from the time averaged velocity distribution functions

from the PIC simulations. Rs was calculated from the residual of all other terms in

Eq. (3.10). The magnitude of each term at the sheath edge is shown in Fig. 3.2 (a)

and (b), for ions and electrons respectively. Furthermore, Fig. 3.2 shows which terms

are important in Eq. (3.10) at different pressures. For ions, the friction, electric field,

and inertia terms dominate; justifying the reduced fluid model from Eq. (3.3). Even

though the source term (mnViS) is a second-order term it is included in the model

because it makes the model more accurate and is simple to implement.

For electrons, the electric field and pressure terms are the largest for most of the

pressure range. This supports the use of the Boltzmann density relation. However,

the electron temperature gradient and to some extent the electron stress gradient

are non-negligible even at the lowest pressures and become comparable to the largest

terms at the highest neutral gas pressure (104 mTorr). Recent work has discussed

modeling the electron temperature gradient term [29, 87, 88, 89], and some discussion

of how this may influence the plasma properties at the sheath edge is provided in

section 3.4.6

In addition, we can test how well the constant collision frequency model of the
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ion-neutral friction force (Eq. (3.4)) represents the total ion friction force in the PIC

simulations (Ri) which is measured from the residual of Eq. (3.10). In general the two

may not be equal since (Ri) includes the friction from ion-electron and ion-neutral

collisions Ri = Rie+Rin. However, it is expected that Rie should be negligible in our

simulations since the ion-electron momentum transfer mean free path is approximately

10 m, which is many times larger than the domain length. The mean free path was

estimated from the Coulomb collision frequency [66]. Furthermore, Coulomb collisions

were not explicitly included in the simulations (though there may be a degree of

electrostatic interactions via the macroparticle electric fields). Figure 3.3 shows |Ri|

(circles) and the evaluation Eq. (3.4) using the PIC values of Vi,se and ni,se (squares).

The two agree well above 10 mTorr indicating that the friction felt by the PIC ions is

accurately described by Eq. (3.4). At lower pressures there is significant disagreement

which could be the result of (1) ion-acoustic instabilities excited near the sheath edge

that can enhance ion-electron collisions and so Rie as described in chapter II or (2)

reaching a noise floor of the PIC data. Most likely, the value of Ri is limited by noise

at low pressures since the terms of Eq. (3.10), specifically the time averaged value

of E, have large statistical fluctuations which set a minimum value for |Ri|. This is

supported by the fact that the sign of Ri fluctuates between negative (empty circles)

and positive (filled circles) values at pressures below 102 mTorr. This behavior is not

surprising since PIC is known to have high statistical noise.

The value of the friction force in the fluid model is also shown (red crosses) and

was calculated from Eq. (3.4) using Vi,se and ni,se from the numerical solutions of

the fluid model, but where nc and Te,c were taken from the PIC data, since the fluid

model is solved in dimensionless variables. The differences between the fluid model

and PIC predictions at the highest pressure stems from differences in the density and

velocity at the sheath edge that are discussed in the following sections.

Finally, we note that the model for Rin,se can be evaluated using nc, Te,c, and
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Figure 3.3: Ion fiction force at the sheath edge calculated from PIC data as the
residual of terms in Eq. (3.10) (circles). Estimate of the statistical error in Ri,se (grey)
based on the standard deviation of the other term in Eq. (3.10). Empty (filled) circles
denote negative (positive) values of Ri,se. Evaluation of Eq. (3.4) using sheath edge
PIC data (squares). Evaluation of Eq. (3.4) using numerical solutions of the fluid
model (equations (3.2-3.5)) and nc and Te,c from PIC (red crosses). Evaluation of
Eq. (3.4) using the reduced expressions of the PIC data (equations (3.14) and (3.13))
(dashed).

λin,c(pn) values from the simulations along with models for al (Eq. (3.13)) and hl

(Eq. (3.14)) described in the following sections. This results in the dashed line in

Fig. 3.3 and the following expression:

Rin,se = minchlal(c
2
s,c/λin,c). (3.11)

This expression agrees well with the PIC results, which is expected since both use

the same cross section model.
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3.4 Discussion

3.4.1 Collisional Bohm criterion

Figure 3.4 shows the simulated ion velocity at the sheath edge (al) taken from the

profiles in Fig. 3.1 (a). The grey region about this line corresponds to values of al

measured from the PIC profiles for Pρ ranging from 0.0077 to 0.048. This illustrates

that the collisional Bohm criterion is not very sensitive to the value of Pρ. The values

of al are more sensitive at lower pressures than higher pressures.

We compare the PIC simulation results to an existing model of al, which was de-

rived using an approximation of equations (3.2-3.5) [78]. The equations were applied

to the sheath region, where ionization events are expected to be rare, so S ≈ 0. The

authors then calculated the Sagdeev potential [90] and evaluated its second derivative

at the sheath edge to arrive at a collisional Bohm criterion:

al = −(λDe,c/λin,c)

2E ′
se

+

√
1 +

(
(λDe,c/λin,c)

2E ′
se

)2

(3.12)

= −10(λDe,c/λin,c) +
√

1 + 100(λDe,c/λin,c)2. (3.13)

Here, E ′
se = EseλDe,c/(Te,c/e) is the normalized electric field at the sheath edge and

(λDe,c/λin,c) is related to the pressure by Eq. (3.9). In moving from Eq. (3.12) to

(3.13), E ′
se was taken to have a value of 0.05. This comes from the result that the

electric field at the sheath edge computed from the PIC simulations is nearly constant

and takes this value over the entire range of pressures; see section 3.4.3 and Fig. 3.6.

The close agreement between Eq. (3.13) and the PIC simulations shows that the

method of Liu et al [78] provides an accurate approximation. If E ′
se is set to ≈ 0.1,

which better represents the predictions of the fluid model, then Eq. (3.12) agrees

better with the numerical solutions of the fluid model. In other work, Eq. (3.13) has

been extended to include finite ion temperatures [91] and can alternatively be derived
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Figure 3.4: Collisional Bohm criterion, al, measured from PIC simulations (circles),
when Pρ ranges from 0.0077 to 0.048 (grey), from numerical solutions of the fluid
model (crosses), and from Eq. (3.13) (dashed line).

from the generalized Bohm criterion [29], as is shown in appendix B.2.

The fluid model and PIC results for al differ slightly at higher pressures. This

likely results from each using a different value of Pρ. Using the same value of Pρ in

the fluid model and PIC does not fix this and instead causes them to differ at low

pressures. Practically, both the PIC and fluid data are well represented by Eq. (3.12),

though with different choices of the constant E ′
se.

Other models for the collisional Bohm criterion have also been studied [15, 16,

17, 18]. However, they are based on different fluid models than equations (3.6)-

(3.8), particularly with regard to the ionization source model, and so are not directly

comparable with our simulations. Several make use of the same ion momentum

equation, but assume the plasma is generated proportionally to the density [15, 16,

17]. Alternatively, [18] calculates al numerically using the Sagdeev potential, but

uses a constant mean-free-path instead of a constant collision frequency model for the
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friction force. In addition, [92] uses a different form of the friction force that smoothly

transitions between constant mean-free-path and constant collision frequency models.

The model of [17] makes similar assumptions as the model we compare with from [78],

but is not expressed as an analytic function for al, so we do not compare with it here;

a comparison between these models is provided in [17].

Finally, we note that previous PIC simulations have observed the collisional Bohm

criterion [12]. These 1D-3V PIC simulations included two ion species and generated

plasma self-consistently from electron-neutral impact ionization collisions, which is a

different ionization source that is better modeled as proportional to the local density.

The simulation results for al, for each species, were found to agree well with the model

of [15].

3.4.2 Edge-to-center density ratio

Figure 3.5 shows the edge-to-center density ratio (hl) calculated from PIC data

(circles), numerical solutions of the fluid model (red crosses), and an analytic approx-

imation (dashed line). The values of hl are more sensitive at lower pressures than

higher pressures, but are relatively robust to changes in Pρ. Generally good agree-

ment is observed between each of these three models, though the PIC data predicts

a smaller value for hl at the highest pressure and a larger value at pressures below 10

mTorr than the fluid model does.

The model for hl was derived assuming quasineutrality [ni = ne = exp(−eϕ/Te,c)]

in the fluid model and solving the resulting differential equation; as shown in ap-

pendix B.3. Making this assumption greatly simplifies the fluid model and is the

same starting point other authors have used to compute hl [28, 77]. In order to

best model the observed hl factor from PIC we modified the coefficients of the fluid

model derived in appendix B.3 so that the low and high pressure limits matched

those observed in the PIC simulations. We find that the resulting hl factor is well
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Figure 3.5: Values of hl calculated from PIC simulations (circles), along with values
when Pρ ranges from 0.0077 to 0.048. Values of hl from numerical solutions of the
fluid model (crosses), and from Eq. (3.14) (dashed line). The factor h∗

l , which uses
Vi = cs,c to define the sheath edge location (squares).

approximated by

hl =
0.55 + 0.5(λDe,c/λin,c)

1 + 30(λDe,c/λin,c)
. (3.14)

There is a notable difference in the fluid and PIC values for hl at low pressure with

PIC reaching 0.55, whereas the fluid model predicts a value of 0.50. This difference

may be due to non-local kinetic effects that the fluid model does not capture. For

instance, the electron velocity distribution function (EVDF) may deviate significantly

from a truncated Maxwellian, which has been observed in other PIC simulations

[87, 93]. This is an effect that cannot be captured by the fluid model which implements

the Boltzmann relation.

Figure 3.5 also shows a comparison with h∗
l obtained from the PIC data. Here, h∗

l

is defined as the edge-to-center ion density ratio if Vi = cs,c defines the sheath edge.
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We compare with h∗
l because the most common models of hl use this sonic condition

to define the sheath edge [28, 77], which is not consistent with the collisional Bohm

criterion. Alternatively, h∗
l has also been interpreted as the ratio of the ion flux at

the sheath edge to the value nccs,c [83], but this does not correspond to the edge-to-

center density ratio in view of the collisional Bohm criterion. Instead, it corresponds

to h∗
l = alhl. We stress that it is useful to define hl as a density ratio, rather than

a flux ratio, and the sheath edge as the location where quasineutrality breaks down.

For example, this distinction is important in order to compute the sheath potential

drop since the electron and ion densities can be equated at the sheath edge, leading

to the result that the plasma potential depends on al, but not hl; see section 3.4.4.

This point is lost when hl is defined as a flux ratio, or when the sheath edge is defined

based on the sonic point. As expected, Fig. 3.5 shows that hl and h∗
l agree at low

pressures where al = 1, but at higher pressures h∗
l is lower. For example at 103 mTorr

the PIC data gives hl = 0.21 and h∗
l = 0.12. It is important to note that at 104 mTorr

h∗
l represents the value of n(x)/nc at the wall since there is no place in the plasma

where Vi = cs,c.

Previous work has also used PIC simulations to test models of the edge-to-center

density ratio. Lafleur et al [83] found good agreement between 1D-3V simulations and

the standard formula for h∗
l [77] over a broad range of pressures, particularly in a sim-

ulation setup that modeled inductively coupled plasmas. These simulations sourced

the plasma from ionizing electron-neutral collisions instead of the uniform source that

we applied, which aligns more closely with a source rate that is proportional to the

local density. They also focused on the flux ratio, rather than the density ratio, and

so measured h∗
l rather than hl and al individually. An additional important result of

that work was showing that ionization and electron heating mechanisms are modified

in capacitively coupled plasmas at high pressure, which leads to a breakdown of the

models for hl.
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Finally, measurements of the edge-to-center density ratio have been made in a

cylindrical, inductively coupled, argon plasma device using a the floating harmonic

method [94]. They found good agreement between the theoretical models reviewed

in [46] over pressures ranging from about 1 to 30 mTorr. Though their results

used a cylindrical device and argon, we can compare with our results by estimat-

ing λDe,c/λin,c ≈ 0.01 for their measurements at 30 mTorr. To do this we estimated

the cross section for argon ion-neutral cross section from LXCat as σ ≈ 5× 10−19m2

since this corresponds to the cross section evaluated near the experimental ion and

neutral temperatures (300 K). This sits somewhere between our 103 and 104 mTorr

simulations where hl ≈ 0.1 − 0.2. Their experimental value, taken from figure 2 of

[94], was 0.14 which agrees well with what we observe.

3.4.3 Electric field at the sheath edge

Figure 3.6 shows values of the electric field at the sheath edge from the PIC

simulations (circles) and numerical fluid model (crosses). The value of Ese from both

PIC and the fluid model are quite constant over six orders of magnitude in pressure.

As a result, we choose to model Ese as a constant value based on the PIC result when

constructing our model of al:

Ese = 0.05(Te,c/e)/λDe,c. (3.15)

It is interesting that, although the PIC and fluid models predict fairly constant values

for Ese, the PIC data predicts the electric field to be about half as strong at all

pressures. This is likely a result of Pρ having different values in PIC and the fluid

model. However, the utility of modeling Ese is that it lets us evaluate Eq. (3.13) for

al. Comparing the grey regions in Fig. 3.4 and 3.6 we see that, at higher pressures,

changes in Ese have a weak effect on al. The fact that Ese is quite constant with
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Figure 3.6: Values of Ese calculated from PIC simulations (circles), and when Pρ

ranges from 0.0077 to 0.048 (grey region). Values of Ese from numerical solutions of
the fluid model (crosses). The proposed model for Ese (dashed).

pressure also indicates that defining the sheath edge as the point where quasineutrality

breaks down is consistent with defining the sheath edge using a critical value of the

electric field, though the correct value must be chosen.

Finally, we point out that there has been significant work done to calculate Ese by

others. However, most of this work was done using a fluid model that takes the plasma

source rate to be proportional to ne [15, 95, 96]. Perhaps as a result, the values of Ese

that these models predict are significantly larger than the values shown in Fig. 3.6.

Most notably, the model used in [15] takes Ese = (Te,c/e)/λDe,se =
√
hl(Te,c/e)/λDe,c,

which is significantly greater than our simulations predict. Alternatively, numerical

solutions of a kinetic model with a uniform source and only charge-exchange collisions

have also been studied, but this applied a different definition of the sheath edge [97].
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Figure 3.7: Values of ∆ϕs calculated from PIC simulations (circles), and when Pρ

ranges from 0.0077 to 0.048 (grey region). Prediction of Eq. (3.17) (dashed), Eq. (3.16)
(dash-dotted), and the collisionless limit of Eq. (3.16) which corresponds to using
al = 1 (dotted).

3.4.4 Sheath and presheath potentials

A practical result of distinguishing the collisional Bohm criterion from the edge-to-

center density ratio is that the potential drops across the presheath and sheath can be

estimated using models of al and hl. The sheath potential is usually determined from

balancing the electron and ion fluxes at the sheath edge. At higher pressures the ion

flux is reduced from its low pressure value by al (Γi,se = hlncalcs,c), while the electron

flux is still the random thermal flux (Γe,se = 1
4
hlnc

√
8Te,se/πme exp(−e∆ϕs/Te,se)).

The fact that the electron flux is largely unaffected by electron-neutral collisions is

supported by Fig. 3.2 (b). A result of collisions affecting only the ion flux is that the

plasma potential must increase to reduce the electron flux to that of the collisionally
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modified ion flux. Balancing the electron and ion fluxes gives:

e∆ϕs

Te,se

=− 1

2
ln

(
a2l 2π

me

mi

Te,c

Te,se

)

≈− 1

2
ln

(
a2l 2π

me

mi

)
(3.16)

≈− 1

2
ln

(
1.8a2l 2π

me

mi

)
(3.17)

Here the factor Te,c/Te,se inside the logarithm represents a small change in the model

and is approximated as 1 in Eq. (3.16). The factor of 1.8 is multiplied inside the

logarithm to reflect the PIC data in Eq. (3.17). Equation (3.16) (dash-dotted) and

(3.17) (dashed) are plotted in Fig. 3.7 , where we have inserted Eq. (3.13) for al. The

collisionless prediction, obtained from taking al = 1 in Eq. (3.16), is shown as the

horizontal dotted line in Fig. 3.7. A line from the fluid model is not included since

the wall was defined as the point where the potential drop across the sheath equaled

Eq. (3.16).

The prediction of Eq. (3.16) increases with pressure as expected, however, it gen-

erally over predicts what is measured in the PIC simulations. We suspect this is a

kinetic effect that is captured in the PIC simulations, but not the fluid model. In

kinetic models of the sheath it is expected that the EVDF will be truncated since

only electrons with enough energy will escape the plasma. However, if this truncation

is not sharp, but instead the EVDF above the truncation is only partially depleted,

then the EVDF is better represented by a two-temperature distribution where the

tail population is significantly cooler [87, 93, 98]. Since only the tail electrons con-

tribute to the electron flux leaving the plasma, and so the potential, it is the tail

temperature that should be used in Eq. (3.16). Ultimately the effect of a depleted

tail is a reduction in the potential so that flux of electrons balances that of the ions.

The potential drop across the presheath can be approximated by assuming the
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presheath is quasineutral and that the density follows a Boltzmann density relation:

e∆ϕps

Te,c

= − ln(hl). (3.18)

This formula is represented by the dashed line in Fig. 3.8, where hl is computed using

Eq. (3.14). The PIC and fluid data generally show good agreement, though Eq. (3.18)

slightly under predicts the PIC measurements at low pressure and overestimates at

high pressure.

Finally, we note that the effect of pressure on the plasma potential has been

studied in several other settings: numerical fluid models [92], analytic fluid models

[28], and experimentally [99]. In each case the potential drop across the presheath

was observed to increase as pressure increases; however, direct comparison is difficult

since [92] does not include a formula for comparison, [28] uses a non-uniform source,

and [99] studied the potential in an argon discharge.

3.4.5 Sheath width

Figure 3.9 shows the calculations of the sheath width. Here, λDe,c is calculated

at the center of the plasma. The PIC simulations and fluid model both predict that

the sheath becomes thicker as pressure increases. A simple estimate for the change in

sheath thickness with pressure can be obtained by simply accounting for the reduction

in the ion flux at the sheath edge in the Child-Langmuir law. The Child-Langmuir

law is [76]:

ws

λDe,c

=

√
2/(Γi,se/nccs,c)

3

(
2e∆ϕs

Te,c

)3/4

, (3.19)

where ∆ϕs is the potential drop across the sheath and Γi,se is the ion flux at the

sheath edge. In the usual application of the Child-Langmuir law Γi,se = nccs,c. To
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Figure 3.8: Presheath potential drop ∆ϕps calculated from PIC simulations (circles)
and when Pρ ranges from 0.0077 to 0.048 (grey). The values of ∆ϕp from numerical
solutions of the fluid model (crosses) and the prediction of Eq. (3.18) (dashed) are
also shown.
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Figure 3.9: Sheath width from the PIC simulations (circles), and when taking Pρ

to range from 0.0077 to 0.048 (grey). Here λDe,c is the Debye length at the center
of the domain. Sheath width predicted from numerical solutions of the fluid model
(crosses), from Eq. (3.20) (dash-dotted), and from Eq. (3.20) including a shift of 5
(dashed).
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account for a reduction in the flux we can simply apply Γi,se = hlalnccs,c, to get

ws

λDe,c

=

√
2/hlal
3

(
2e∆ϕs

Te,c

)3/4

. (3.20)

An evaluation of this expression using equations (3.13), (3.14), and (3.16) is shown as

the green dash-dotted line. High pressure leads to an increase in the sheath width in

two ways: by increasing the potential drop across the sheath (Eq. (3.16)) and reducing

the ion flux into the sheath. However, it is well known that the Child-Langmuir law

is not very accurate at predicting the sheath width, even in the low pressure regime

where it is typically applied [27, 100]. This is due to neglecting electrons entirely in

the sheath [101]. We find that the inaccuracy is nearly a constant shift across the

pressure range, so that adding 5 to Eq. (3.20) results in a model that fits the PIC

data well (blue dashed line). The model we propose is also quite similar to that found

in [101], where ws = 5λDe,se = 5/
√
h∗
l λDe,c. Our model is effectively the same as this,

but we found that adding, instead of multiplying by 5, better represents the PIC

data.

It is worth noting that a self-consistent model of the sheath width can be derived

by integrating Eq. (3.2) up to the sheath edge (x : 0 → L − ws), giving ws =

L − nocs,calhl/S. This relationship accurately predicts the simulated value of ws

when the PIC data is inserted for hl and al. However, we find that it is sensitive to

the accuracy of the models for hl and al. For this reason, Eq. (3.20) provides a more

practical model.

Other models of the sheath width include [82], which uses the same fluid model

as this work. Because it treats only the collisional regime, the result scales inversely

with the collisionality λDe,c/λin,c, and so predicts a very wide sheath at low pressures.

This is a common feature of other models for the collisional regime like the well-

known Warren [102] and Mott-Gurney [103] models which assume constant collision
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mean free path and constant collision frequency, respectively. Both of these models

are summarized in [104] where the authors propose a model for the sheath width

that captures both the collisionless and collisional limits. In [79] the author discusses

the connection of the Warren and Mott-Gurney laws to the Child-Langmuir law and

to others that included electron space charge. Finally, an expression for the sheath

width is derived for constant mean free path and constant collision frequency models

is derived in [80], but with a non-uniform source.

There is at least one measurement of the sheath width at pressures near 103 mTorr

[105]. Their measurements were made in a DC argon discharge using laser induced

fluorescence and laser optogalvanic spectroscopy and they defined the sheath edge

as the point where E = 0 V/m. They found that the sheath width decreased with

pressure when measured in units of mm. This is not necessarily inconsistent with

what we observe in Fig. 3.9 since our sheath width is measured in terms of λDe,c. The

electron temperature was not reported in [105] so we cannot compare directly with

our model.

3.4.6 Isothermal electron assumption

Figure 3.1 (e) clearly shows that electrons in the PIC simulations are not really

isothermal. The temperature gradient is due to the preferential loss of high energy

electrons through the sheath, which causes a depletion of the tails of the electron

energy distribution function at an energy correspoding to the local plasma poten-

tial [29]. In recent works, attempts have been made to model this effect by replacing

the isothermal assumption with an adiabatic assumption [d(n1−γ
e Te)/dx = 0]. This

modifies Bohm’s criterion by a factor of the polytropic index (γ) and the result de-

pends on the electron temperature at the sheath edge (Vi,se ≥
√

γTe,se/mi), rather

than in the bulk [87, 88, 89]. Following the method in [87], we found γ ≈ 1.1 − 1.3

depending on the pressure, which is lower than what others have found [87]. Account-
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ing for this effect leads to small changes in the results because Te,c ≈ γTe,se. Defining

Pρ based on the location that Vi,se =
√

γTe,se/mi in the lowest pressure simulation

leads to Pρ = 0.023 (rather than Pρ = 0.019). This pushes the sheath edge location

only slightly farther into the sheath. The ion speed at this location is Vi,se ≈ 1.05cs,c.

The modified sheath edge location alters the predictions for al and hl by about 10%

at low pressures and leads to better agreement between the PIC and fluid models at

higher pressures. In fact, the PIC and fluid models of Ese agreed better at all pres-

sures. However, using the adiabatic assumption complicates the model because there

is currently no model for γ. This must be calculated from the simulated profiles of

ne and Te as in [87]. Nevertheless, further development of the adiabatic assumption

could lead to a better model of the sheath, particularly in the high pressure limit.

3.5 Conclusions

Expressions describing sheath properties, including the edge-to-center density ra-

tio (hl = nse/nc) and collisional Bohm criterion (al ≡ Vi,se/cs), of a helium plasma

over a range of gas pressure from 10−2 to 104 mTorr were developed. These were based

on 1D-3V PIC simulations and a reduced fluid model, where the sheath edge was de-

fined as the point where charge neutrality breaks down. Additionally, expressions for

the sheath width (ws/λDe), electric field at the sheath edge (Ese/(Te/eλDe)), sheath

potential drop (e∆ϕs/Te) and presheath potential drop (e∆ϕps/Te) were developed.

In general hl and al decrease with pressure, while ws/λDe, e∆ϕs/Te, and e∆ϕps/Te

increase with pressure. Notably, we find that Ese/(Te/eλDe) remains quite constant

across the entire pressure range, indicating that a breakdown in quasineutrality cor-

responds to a specific value of electric field.

At low and intermediate pressures (10−2− 102 mTorr) the fluid model is an excel-

lent approximation for all but the potential, which differs from the PIC simulations

likely from kinetic (non-local transport) effects associated with electron loss to the
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boundaries. At the highest pressure, differences between the fluid model and simu-

lations become more apparent and are likely due to electron temperature and stress

gradients. These differences lead to the fluid model predicting higher values for hl

and al than PIC. As a result, we modify the expression we provide for each quantity

to best represent the PIC observations by adjusting coefficients in the expressions.

The next step in validation for this model is comparison with experimental mea-

surements over the pressure range considered here. The constant source rate used in

our simulations and model represents plasmas where there is a diffuse ionizing pop-

ulation of electrons as in multi-dipole chambers with filament sources and in some

hollow cathode discharges.
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CHAPTER IV

Electron-Field Instability: Excitation of Electron

Plasma Waves by an Ambipolar Electric Field

4.1 Introduction

Macroscopic electric fields that maintain quasineutrality are a common feature

found in plasmas, generating ambipolar flows. Systems with such macroscopic electric

fields include low temperature plasmas like glows and streamers [46, 106, 107], space

plasmas like the ionosphere [108], and fully ionized plasmas like magnetic confinement

fusion devices [109] and the solar atmosphere [110]. Although the primary effect of

ambipolar-strength electric fields is the transport of plasma by currents, they can

also drive instabilities which ultimately cause significant anomalous transport [55,

111, 112, 113]. Currently, electric fields are thought to drive instability by creating

relative drifts between plasma species. This is commonly understood via the Penrose

criterion, which states that drift energy is converted to wave energy when the relative

drift of the streaming populations exceeds a threshold [114]. Here, we use linear theory

and particle-in-cell simulations to show that a fundamentally different mechanism for

driving instabilities is possible in the presence of an ambipolar electric field. In

this “electron-field instability”, electric field energy is converted to wave energy via

an inverse Landau damping process. This process is not described by the Penrose
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criterion. Furthermore, the wave frequency is characteristic of the electron plasma

frequency, ωpe = (e2ne/ϵome)
1/2, which is much larger than the ion plasma frequency,

ωpi = (e2ni/ϵomi)
1/2, that characterizes most current-driven instabilities.

Common examples of kinetic instabilities include the ion-acoustic or Buneman

instabilities, which are driven by a relative drift of electrons and ions, or beam insta-

bilities that are driven by relative drifts between different electron populations [10].

The excitation of each of these instabilities can be described in terms of the shape of

the total velocity distribution function (VDF):

Ftotal = Fe +
∑

i

me

mi

Fi, (4.1)

where Fe is the electron VDF and Fi the VDF of the i-th ion species. Electrostatic

kinetic instabilities can occur when Ftotal has multiple peaks. The Penrose criterion

[114] quantifies this fact and gives a necessary and sufficient condition on the spacing

between and relative height of the peaks for instability. However, we have found that

it is not necessary for the total VDF to have multiple peaks for instabilities to occur

when a macroscopic electric field is present. Instead, a single peaked VDF can be

driven unstable by an ambipolar-strength electric field. Specifically, we show that

an electron plasma frequency (ωpe) instability, which we will call the electron-field

instability, can be excited by the acceleration of electrons in an electric field.

The idea that an ambipolar-strength field can drive instability from a single peaked

distribution is not new. The earliest works on this topic were theoretical and include

studies by Fried et al [115] with follow up work by Fried and Culler [116]. Their linear

stability calculation predicted that electron plasma waves could be driven unstable

by an arbitrarily weak electric field; however, they questioned whether the instability

was physical or a result of their assumptions. Namely, they assumed that the velocity

distribution did not change shape considerably during the growth of the instability
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and questioned if this may violate the self-consistency of the linear stability analysis.

More recent theoretical studies have also predicted that other instabilities can be

driven by electric fields. For example, [117, 118] found that electric fields can drive

ion frequency instabilities (ω ∼ ωpi ≪ ωpe) in sufficiently collisional environments,

where the VDF reaches a non-Maxwellian steady-state due to the balance between

the electric field force and collisional drag. Others have found that an electric field

can drive high frequency electromagnetic instabilities in the solar atmosphere, even

in the presence of Coulomb collisions [119]. These predictions suggest that electric

fields that are present in a variety of systems may excite new classes of instabilities

that are not described by the Penrose criterion. However, at present they exist in

isolation without experimental or simulation based evidence. Specifically, previous

work has predicted instability based on linear dispersion relation and it is not clear

if the instability is present in a fully non-linear context. With this in mind, we have

designed particle-in-cell (PIC) simulations to test the linear-theory based predictions

in [115] and find that the assumptions are consistent with fully non-linear solutions

of the Vlasov equation.

Simulations have been used to study a similar mechanism for electric field driven

instability before. Specifically, Ref. [120] shows results of simulations of plasma in

the presence of the electric field in a low-temperature presheath, showing that ion

frequency waves were excited throughout the presheath. This work applied a hybrid

PIC-fluid model where the electrons were treated as a fluid using the Boltzmann den-

sity relation. This work provided evidence that the type of instabilities first described

in [115] may not be entirely mathematical in nature, but might have some place in

a physical systems. We aim to build on this work by directly studying the electron

instability described in [115] using fully kinetic PIC simulations, which can capture

kinetic instabilities and their influence on plasma dynamics [34, 42]. The electron

plasma wave instability reported here was not possible in the previous simulations
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Figure 4.1: Spatially averaged electrostatic energy density in the fluctuating electric
field for several simulations. (blue) A simulation with no imposed field or flow and
helium ions. (red) A simulation with no imposed field, but an imposed flow of ve =
10vTe over immobile ions. (orange) A simulation with κeλDe = 0.2 and immobile ions.
(green) A simulation with κeλDe = 0.2 and helium ions.

from Ref. [120] because electrons were not treated as particles.

Here we compare predictions of linear theory to 1D periodic particle-in-cell simu-

lations of an electron-ion plasma immersed in a uniform electric field. Together the

theory and simulations illustrate how a single peaked electron VDF and a macro-

scopic electric field can combine to drive the electron-field instability. Predictions of

the instability dispersion are corroborated by the simulations: the linear growth rate

and most unstable wave mode extracted from the simulation compares well with the

linear theory. In addition, simulations with stationary ions mi −→ ∞ confirm that the

instability characteristics do not depend on the ion mass. Finally, we explore how

collisional damping by elastic electron-neutral collisions can restrict the pressures and

fields at which the electron-field instability would be expected to be observed.
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4.2 Simulation setup

Simulations were conducted using the electrostatic PIC-DSMC code Aleph [43].

They used a 1D domain in space, 3D domain in velocity phase-space, and a uniform

mesh. The boundary condition for the particles and electric field was periodic in all

simulations. The simulations were composed of electrons and ions and the electric

field was aligned along the -x direction and had a strength of 800 V/m. This value

was chosen since the growth rate associated with this electric field was relatively

high, allowing for shorter simulations. Weaker electric fields are predicted to drive

the instability and we have confirmed this for a few, more expensive, simulations.

The electric field was imposed by setting the left and right boundaries at different

potentials. Alternatively, simulations with no applied boundary potential, but where

a constant force was added to the solution of Poisson’s equation, showed the same

results. This confirmed that there were no unexpected numerical artifacts from the

application of two distinct voltages to the periodic boundaries.

The density of both electrons and ions was set to 3× 1014 m−3, the electron tem-

perature was 3 eV, and the ion temperature was 0.026 eV. The corresponding electron

Debye length, used for measuring wavenumbers and positions, was λDe = 7.43× 10−4

m. The electron temperature and density remained effectively constant throughout

each simulation leading to an electron Debye length that did not change in time. The

average number of computational particles per cell was 400 for both electrons and

ions. The domain was 1200 λDe in length with 5 cells per λDe. The electric field

caused the electrons to accelerate up to 40vTe by the end of the simulation. A time

step was chosen so that an electron with velocity lower than 40vTe = 40
√
Te/me does

not cross an entire spatial cell in one time step, satisfying a CFL-like condition [36].

In each simulation the cell size was 0.2λDe so that electron heating was absent in the

simulations.

The plasma was assumed to be generated from helium, and to be singly ionized.
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Figure 4.2: (a) Spatial profiles of the absolute value of the electric field for a simulation
with κeλDe = 0.2. (b) Logarithm of the fluctuation energy density (E) for a simulation
with κeλDe = 0.2. The instability grows from the left of the domain and travels to
the right.
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No explicit method, like direct simulation Monte Carlo, was used to model any type

of collisions in the simulations. However, Coulomb collisions occurring over large

enough distances to be resolved by the grid, though very rare, are expected to be

included implicitly in the simulations.

Finally, the figures and accompanying results shown in the following section were

found by averaging 16 separate simulations that shared the same general configura-

tion, but with different initial positions and velocities for the particles. This was done

to further reduce the statistical noise in the field fluctuations at early times.

4.3 Results

The hallmark of an instability is the exponential growth of the electric field re-

sulting from the conversion of particle energy (here derived from the imposed field) to

fluctuating field energy, making the energy of the electric field fluctuations the most

direct diagnostic. The energy of the electric field fluctuations was computed from

E(x, t) = ϵ0
2
[E(x, t)− Ē(x)]2, (4.2)

where Ē(x) is the time-averaged electric field at position x and ϵ0 is the vacuum

permittivity. The time average was taken over the entire simulation duration. The

spatial average of E(x, t) is shown for several simulations in Fig. 4.1, and is denoted

by ⟨E⟩. The spatial average was taken over the whole domain and then divided by

its initial value, ⟨E0⟩. Here, the electric field is measured in terms of the electron

temperature and electron Debye length through the dimensionless quantity

κeλDe ≡ (eE0/Te)λDe, (4.3)
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where E0 is the imposed macroscopic electric field. The simulations clearly show that

the applied electric field excites an instability since the electric field energy increases

drastically in simulations with an imposed field (orange and green lines). Conversely,

simulations without an imposed field show no growth in the field fluctuations (blue

and red lines).

Since an electric field is prescribed on a periodic boundary the electrons and

ions constantly accelerate in opposite directions, leading to large average electron

velocities (ve ∼ 10s vTe) at later times. A relative drift between electrons and ions

is known to drive the ion-acoustic or Buneman instability [10]. To show that the

fluctuations we observed were due to the electron-field instability and not the ion-

acoustic or Buneman instability we also simulated a plasma with an imposed electric

field consisting of electrons and immobile ions (mi −→ ∞). Since the growth rate

of the ion-acoustic and Buneman instabilities scales with me/mi, the simulations

with immobile ions exclude the possibility that they arise. This can also be seen

from Eq. (4.1) and the Penrose criterion, as the total VDF becomes a single-peaked

(electron only) distribution in the limit that mi → ∞. Figure 4.1 shows essentially

no difference between the simulations with mobile (green line) and immobile (orange

line) ions, indicating that the ion-acoustic or Buneman instabilities, if present in our

mobile ion simulation, does not explain the observed instability.

The ion-acoustic or Buneman instabilities are not observed even in the mobile ion

simulations because they occur at a much lower frequency (ωpi) than the frequency of

the electron-field instability (ωpe). Furthermore, their growth rate is at least 10 times

smaller than that of the electron-field instability based on the strength of the imposed

field in the simulations. In fact, a simulation (Fig. 4.1 red line) with immobile ions

where an electron flow (ve = 10vTe) was imposed without an electric field showed no

instability over the simulated timescale of 200ω−1
pe . In all simulations the densities and

temperatures remained essentially constant, owing to the high spatial and velocity
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resolution.

Figure 4.2 (a) shows spatial profiles of E(x, t) at several early times while the

instability is growing in a simulation with a relatively strong electric field (κeλDe =

0.2). At the earliest time (bottom line) a relatively constant electric field is observed.

After about 40 ω−1
pe (green line) some oscillations near the left boundary arise. As

time increases, the instability moves across the domain from left to right (green

and orange lines), which is in the opposite direction of the imposed field. The 83

ω−1
pe profile shows that the instability has a wavelength of ≈ 30λDe. We can also

observe in Fig. 4.2 (a) that the wavelength increases (wavenumber decreases) as time

increases and that the wave profile is not exactly uniform (orange), but with a shorter

wavelength near the front of the wave. The change in wavelength results from the

accelerating electron VDF and is discussed further in section 4.4. Finally, after 125

ω−1
pe (blue), the short wavelength front reaches the end of the domain and reenters

the other end of the periodic box, causing overlap with the longer wavelength back

end of the wave and the nearly monochromatic wave to exhibit beat wave features.

In addition to the change in wavelength, the amplitude of the wave increases between

each profile, which is most noticeable between 1 ω−1
pe and 42 ω−1

pe .

The fact that the instability grows from the periodic node (i.e. the left or right

boundary) instead of from a random position in the domain is somewhat surprising

since the initial state is uniform. We expect the instability to grow from the thermal

noise in the plasma, which should be uniformly distributed in space. However, each

of the simulations shows the instability starting from the periodic boundary node.

This may be caused by the larger error from the field solver (direct, matrix based) on

nodes near the left boundary which would lead to a preference in instability growth

on the periodic node. We note that when the electric field direction is reversed the

instability moves from right to left as excepted by the theory.

Although we can clearly discern the instability from the electric field, it is often
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over the whole domain. Times between 75 and 100 ω−1

pe were fit (red dashed line) to
extract the simulated growth-rate of the instability.
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more useful to look at the non-negative fluctuation energy density, E(x, t). This is

plotted as a function of both position and time in Fig. 4.2 (b) and showcases the

general features seen in the electric field profiles. At early times (before 100 ω−1
pe ) the

phase speed changes in time as the slope between the region without the wave (dark

purple) and with the wave (orange) changes. This continues until the wave makes it

to the right boundary and begins to interact with itself as it enters the opposite end

through the periodic boundary condition (around 100 ω−1
pe ). After 100 ω−1

pe the waves

exhibit significant non-linearity and the peak in the energy density occurs near 150

ω−1
pe .

Figure 4.3 shows ⟨E⟩ as a function of time where kλDe = 0.2 and helium ions

were used (solid blue line). After a short initial period (∼ 35ω−1
pe ), the growth is

exponential (linear on the log-linear plot), as expected for a linear growth regime.

The exponential growth continues until around 150 ω−1
pe , which is the time that non-

linear features develop due to the wave exiting one side of domain and entering the

other. The linear growth rate was obtained by fitting the log-linear plot with an

exponential (red dashed line) during the initial exponential growth period (35-85

ω−1
pe ), providing a value of γfit/ωpe ≈ 1.1 × 10−2. The value predicted by the linear

stability analysis described in Sec. 4.4 is γ/ωpe ≈ 1.2 × 10−2, which is very close to

the measured value.

Finally, a more detailed view of the wave modes excited by the instability is

provided in Fig. 4.4, where the spatial Fourier transform of E is plotted. There is

a clear increase in the spectral energy density in the simulation. Fig. 4.4 shows the

initial growth taking place at about 40ω−1
pe and continuing throughout the simulation.

The Fourier transform more clearly illustrates that the wave mode with the most

energy shifts to lower and lower kλDe (larger wavelength) as the electrons accelerate

in the simulation. The dotted line shows the analytic approximation of the most

unstable mode versus time, which agrees well with the simulations. An additional
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feature highlighted by the Fourier transform data is the lifetime of the excited modes.

For example, we can follow a horizontal line around kλDe = 0.08 from 50 to 200 ω−1
pe

and see that the energy in that mode is effectively constant (same color) meaning that

any damping is not significant on the time scale of the simulation, which is consistent

with the modes being unstable.

4.4 Dispersion relation

The previous section showed PIC simulation results of electron-plasma waves ex-

cited by an electric field. Here, the main features of the simulation results are inter-

preted based on a linear stability analysis of the Vlasov equation including a steady-

state electric field, as was first done in [115]. Since ions are stationary at the timescale

of electron plasma oscillations, it is expected that ions do not contribute significantly

to the dispersion relation, and are therefore excluded. We have checked that including

ion effects in the analysis does not significantly change the results presented below.

Ultimately, analysis of the linear dielectric response of the electrons in the electric

field provides us with expressions of the most unstable wave mode k∗ and growth rate

γ∗ that compare favorably with those observed in the simulations. Furthermore, our

analysis captures the time dependent features of the simulated instability (Fig. 4.4)

and shows the behavior of k∗(t) is related to the change of wavelength of the most

unstable mode as the electrons accelerate.

Starting from the Vlasov equation

(∂t + v · ∂x −
e

me

E · ∂v)fe(x,v, t) = 0, (4.4)

the distribution function is separated into slowly varying and fluctuating components,

fe ≈ fe0(v) + fe1(x,v, t), as is the electric field, E ≈ E0 + E1(x, t). The linearized

equation is then solved along with Poisson’s equation for the linear dielectric function
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ϵ(k, ω)

ϵ(k, ω) = 1 +
∑

s

e2

ϵ0mek2

∫
ω−1
fe k · ∂vfe0d3v, (4.5)

where ω = ωr + iγ, and

ω−1
fe = −i

∞∫

0

exp{i[(ω − k · v)τ − kκeλ
2
De(τωpe)

2/2]}dτ, (4.6)

and κe = eE0/Te is a wavenumber representing the strength of the zero-order electric

field along k (i.e E0 = k̂ · E0). The field and wavevector were assumed anti-parallel

(E0 < 0) and κe was taken to be positive in Eq. (4.6) and all following expressions. The

argument in the exponential of Eq. (4.6) represents the characteristic trajectories of

the particles in the presence of a constant electric field. When E0 = 0, the standard

expressions for ϵ is returned as limE0−→0 ω
−1
fe = 1/(ω − k · v). Furthermore, it is

often the case that the electrons have a nearly Maxwellian VDF with temperature Te

(fMe = n0e exp(−(v− ve)
2/v2Te)/π

3/2v3Te). Making this approximation allows us to

write the linear dielectric as

ϵM = 1− (kλDe)
−2

2(1 + iκe/k)
Z ′

[
(ω − k · ve)/kvTs√

2(1 + iκe/k)

]
, (4.7)

where Z ′(x) is the derivative of the plasma dispersion function.

Figure 4.5 demonstrates the effect of the electric field on the roots (black circles)

of Eq. (4.7), where the red and blue lines represent the roots of the real and imaginary

parts of Eq. (4.7). Panel (a) shows the electron plasma waves with real frequency

near ωr/ωpe ≈ ±1 are stable with γ/ωpe ≈ 0 and two lower frequency modes that are

more strongly damped. The effect of the electric field is to shift one of the roots up

(here the positive-frequency mode) making it unstable, while the negative frequency

mode is made more stable. Finally, panel (c) shows that a strong enough electric field

can drive multiple modes unstable. In such cases where multiple modes are excited,
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Figure 4.5: Roots of Eq. (4.7) for ve = 0 and (a) no imposed electric field κeλDe = 0,
(b) a field value where one mode is unstable κeλDe = 0.2, (c) and a stronger field
where multiple modes are unstable κeλDe = 0.4. All plots are for kλDe = 0.15 and
the black circles designate roots, while the red and blue lines represent roots of the
real and imaginary parts of Eq. (4.7).
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non-linear features may arise more quickly, limiting the applicability of the linear

analysis that follows since it approximates only the most unstable mode.

In the simulations described in the previous section, the average electron velocity

changes at a constant rate due to the electric field (E0). We can calculate how the

average electron velocity changes in time from F = ma for a constant acceleration,

which gives the kinematic equation ve(t) = at. The effect of the accelerating electrons

on the dispersion of the instability is illustrated in Fig. 4.6, where Equation (4.7) was

solved numerically using Matlab’s root finding function fsolve for ve = 0vTe in (a)

and ve = 10vTe in (b). The main effect of the electrons accelerating is to shift ω and

γ to lower values.

In addition to the numerical solutions, we can arrive at a relatively simple analytic

form for the wave dispersion by starting with Eq. (4.5) and expanding for small E0

(κeλDe ≪ 1). An expansion in large phase velocities (v/(ωr/k) ≪ 1) gives a real

frequency of

ωr =
√

ω2
pe + 3k2v2Te − kve, (4.8)

which is the normal electron plasma wave dispersion relation. Equation (4.8) (red

dashed line) is compared to the numerical solution of Eq. (4.7) in Fig. 4.6 for κeλDe =

1/500, where in (a) ve = 0vTe and (b) ve = 10vTe. The two agree well for small ve, but

show some disagreement for larger values of ve as the large phase velocity assumption

breaks down as ωr approaches 0.

Furthermore, assuming the growth rate is small (γ ≪ ω) we can solve Eq. (4.7)

for the growth rate including the effects of the electric field. We find that the lowest

order effect of E0 is to add a term proportional to κe onto the well-known expression

for the Landau damping rate of electron plasma waves [8]:

γ/ωpe =
ω3
r

ω3
pe

(
3kκeλ

2
De −

exp{−3/2− 1/(2k2λ2
De)}√

8/π|kλDe|3

)
. (4.9)

117



Note that in the standard derivation of the Landau damping rate of an electron

plasma wave the real frequency (ωr) in Eq. (4.9) is approximated to first order as

the plasma frequency (ωr ≈ ωpe). Here, we need to account for the Doppler shift in

Eq. (4.8), but since Eq. (4.8) becomes inaccurate for large kve (as ωr → 0) we find

that it is better to approximate ωr/ωpe in Eq. (4.9) with a step function Θ(ωr). The

step function is a better approximation at relatively large kλDe as it is not derived

from the small growth rate approximation. This models the cutoff in k as ωr −→ 0,

which is not captured accurately by the small growth rate approximation. With this

approximation, the final expression for the growth rate is

γ/ωpe = Θ(ωr)

(
3kκeλ

2
De −

exp[−3/2− 1/(2k2λ2
De)]√

8/π|kλDe|3

)
. (4.10)

When Eq. (4.10) is compared with the numerical solutions of Eq. (4.7) we see

very good agreement as shown in Fig. 4.6 (a) and (b) for κeλDe = 1/500. Panel (a)

compares the analytic and numerical solutions for a case where the average velocity of

electrons in the lab frame is 0, while panel (b) compares the two for an average electron

velocity of 10vTe. A non-zero average velocity greatly affects the real frequency as

predicted by Eq. (4.8), while the growth rate is weakly affected. In general, both

Eq. (4.9) and Eq. (4.10) are accurate for kλDe ≪ 1 and κeλDe ≲ 1, following the

assumptions of large phase velocity and weak field.

We can now estimate the exponential growth rate see in Fig. 4.3 by evaluating

Eq. (4.10) at the ve corresponding to the middle of the fit interval (i.e ≈ 60ω−1
pe .

The average velocity over this period is approximately 10vTe and the corresponding

average maximum growth rate is found to be γ/ωpe ≈ 1.2 × 10−2. This compares

favorably with the value extracted from the simulations, shown in Fig. 4.3.

Another important prediction of both Eq. (4.9) and Eq. (4.10), is a maximum k for

the instability when ve > 0. This is associated with the real frequency approaching
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Figure 4.6: Dispersion of electron plasma waves immersed in a constant electric field
of strength κλDe = 1/500. Growth rate (left axis) from Eq. (4.9) (dashed blue)
and numerical (solid blue) solutions to Eq. (4.7). Real frequency (right axis) from
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119



zero: ωr → 0. The range of k for which there is instability can be approximated as

kλDe < vTe/ve. (4.11)

Equation (4.11) is found by setting Eq. (4.8) to 0 and ignoring the 3v2Tek
2 term

since instability only occurs for kλDe ≲ 0.2 making this term small. Equation (4.11)

also predicts the most unstable wavenumber, k∗, since γ is an increasing function of

k. Taking the dimensionless kinematic expression for the average electron velocity

ve/vTe = κeλDeωpet and using this in Eq. (4.11) gives a prediction for how the most

unstable mode changes with time

k∗λDe = (κeλDetωpe)
−1. (4.12)

Equation 4.12 is plotted in Fig. 4.4 as the dashed white line and shows great agreement

with the downshift in k∗ when κeλDe = 0.2.

Finally, Fig. 4.7 shows that the growth-rate has a nearly linear dependence on the

electric field strength (κe) and the most unstable wavenumber (k∗) depends weakly

on κe. The maximum growth rate can be approximated by

γ∗/ωpe ≈ (1/2)(κeλDe), (4.13)

which was found from Eq. (4.10) where k∗λDe ≈ 0.2 and the second term was ignored

since k∗ is the most unstable mode. It is important to note that although the growth

rate can reach very small values in weak fields, physical systems will always have some

sort of collisional dissipation present, suggesting that, in practice, there is a minimum

electric field value at which instabilities will be observed. Such dissipation is not self-

consistently included in our analysis, since it is based on the collisionless Vlasov

equation. Furthermore, comparison of γ∗ and k∗ for stationary electrons (ve = 0vTe,
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solid lines) and drifting electrons (ve = 10vTe, dashed lines) illustrate that the electron

drift slightly lowers the growth rate and further weakens the dependence of k∗ on the

electric field strength.

4.5 Discussion

This section highlights several types of plasmas where the electron-field instability

could be excited based on characteristic parameters. Namely, the pressure at which

electron-neutral collisions will entirely damp the instability is estimated since many

plasmas are partially ionized. Ultimately, we find that the maximum, or cut off,

pressure is lower than the ambient pressure in several systems, implying that the

instability should be present.

An estimate of the electron-neutral collision rate can be calculated for helium

from νen = ngσenv, where ng is the neutral gas density, σen is the electron-neutral

cross section, and v is the relative velocity between an average electron and neutral.

After approximating n [m−3] ≈ 3.25 × 1019p [mTorr], taking σen ≈ 6 × 10−20 m2

[65], and v ≈ vTe the collision frequency becomes νen/ωpe ≈ 2λDep[mTorr]. Equating

the maximum growth rate (Eq. (4.13)) and collision rate (νen/ωpe) gives the cut-off

pressure above which the instability should be entirely damped:

p∗[mTorr] ≈ κe[m
−1]. (4.14)

This predicts, unsurprisingly, that the higher the electric field, the higher the pressure

needed to damp the instability. This is a useful formula for determining at what

conditions the instability can occur.

The following paragraphs review several systems where electric fields develop and

provide estimates for the parameters of the electron-field instability, like field strength,

growth rate, and cut off pressure. The characteristic parameters for each system show
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System κeλDe γ∗/ωpe p∗ [mTorr]

Presheath 1.3× 10−3 5× 10−4 0.34− 34

Positive
column
(DC)

2× 10−3 5× 10−4 10

Mesosphere
streamer
(sprite)

≳ 0.2 1× 10−1 450

Ionosphere 2× 10−5 5× 10−6 fully ionized

Table 4.1: Example systems where large-scale electric fields are present. The dimen-
sionless electric field, maximum growth rate, and cut-off pressure are listed. A range
of cut-off pressures is provided for systems that have a range of densities.

that the electron-field instability is possible in each. Note that the cut off pressure

determined by Eq. (4.14) accounts only for elastic collisions and requires us to know

the actual electric field [V/m] in the system or κe and the electron Debye length.

Often there is a range to the cut-off pressure that is determined by the density and

temperature that are typical of the system.

A weak, but large-scale electric field is generally associated with the presheath

of low temperature plasma systems. The presheath electric field is responsible for

accelerating ions (or electrons near an electron sheath) out of the bulk plasma. In

either case the potential drop across the presheath is on the order of Te and the

presheath length-scale is 100s of λDe often as a result of charged-neutral collisions

[46]. Here we will assume the presheath is 800 λDe. This allows us to estimate

κeλDe ≈ 1/800 for either presheath as shown in the first row of Table 4.1. The

corresponding growth-rate is found from Eq. (4.13) and the cut-off pressure from

Eq. (4.14). However, the cut-off pressure depends on κe and so an estimate of the

Debye length needs to be provided, which depends on the density and temperature of

the plasma. Here we calculate the cut-off pressure for a range of plasma densities (and
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so λDe) ranging from 3× 1014− 3× 1018 m−3. This range of densities represents most

low temperature, low pressure plasmas. As a result, we find that the electron-field

instability may occur at relatively low pressure in relatively high density plasmas, but

at lower densities the pressure cut-off is low enough that it is most likely damped by

collisions.

Another low temperature system is the positive column of a DC glow discharge.

The positive column has a very constant electric field that can be estimated from the

product of the gas pressure (p) and discharge radius (R) [106, 121]. We find that

pR ≲ 0.1 cm Torr since the pressure needs to be low for the instability to be excited.

Choosing pR = 0.01 cm Torr, a radius of R = 10 cm, an operating pressure of p = 1

mTorr, and E/p = 100 V/(cmTorr) from [106] for an argon plasma the electric field

can be estimated as κeλDe = 2.4× 10−3 and the cut off pressure as 10 mTorr. These

results are shown in the second row of Table 4.1. The fact that the cut off pressure

is below the operating pressure we assumed indicates that the instability should not

be totally damped and could be excited. Here the plasma density was assumed to be

1× 1015 m−3, while the electron temperature was taken to be 1 eV.

Plasmas in the upper atmosphere and space provide more opportunities for in-

stability as most are in very low pressure environments. For example, relatively low

pressure streamers can also occur in the mesosphere and are associated with thun-

derstorms at lower altitudes [107, 122]. Although, the electric field can be extremely

non-uniform in these systems there is the possibility for a relatively weak electric field

to form away from the head of the streamer. Here a relatively weak field may be 1

kV/m with an electron temperature of 3 eV and a plasma density of 3×1015 m−3. At

this altitude the neutral gas density is order 3× 1020 m−3, corresponding to a neutral

pressure of about 10 mTorr. We can see in Table 4.1, third row, the electron-field

instability would have a relatively high growth rate and a cut off pressure well above

the ambient pressure.
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Figure 4.8: The logarithm of E0 necessary for a plasma with density n and electron
temperature Te for γ/ωpe = 2× 10−6.

Electric fields parallel to the Earth’s magnetic field are also commonly measured

in the ionosphere, are an important part of auroral processes [108], and have been

shown to affect Alfven wave dispersion [123]. The strength of the field is roughly

0.01 V/m and acts on a diffuse (ne ≈ 3 × 1012 m−3) population of electrons with a

temperature that can be relatively high (10 eV). This leads to a low growth rate on

order of 1×10−5 ω−1
pe that corresponds to milliseconds. However, collisions that might

damp the instability are rare since the ionosphere can be full ionized, especially on

the day side, and so the instability may be present.

In addition to these specific examples, we note that the field required to excite the

instability with a specific growth rate depends on the density and electron tempera-

ture through the Debye length. Figure 4.8 shows the field strength needed to excite

the instability with a growth rate of γ = 2× 10−6 ω−1
pe . This value of the growth rate

was chosen since it is relatively small when compared to the ion plasma frequency,

meaning the instability may not have time to grow in the system. Thus, Fig. 4.8
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effectively illustrates the minimum electric field strength need to weakly excite the

instability. The minimum field is expected to increase when the electron are drifting

since γ decreases for non-zero average electron velocities. As expected, the cooler and

more diffuse the plasma the weaker the field needs to be (bottom left), while hotter

and denser plasmas require stronger fields to be driven unstable (top right).

4.6 Conclusions

This work provides evidence in the form of 1D periodic particle-in-cell simulations

that an electron plasma wave instability, called the electron-field instability, can be

driven by an ambipolar electric field. The mechanism that excites the instability is

different from the normal Penrose criterion, which requires the velocity distribution

to have multiple peaks. Instead, the single peaked distributions can be driven un-

stable. The electric field fluctuations grow at the same wavelengths predicted from

linear theory (≳ 30λDe). The linear theory predicts a growth rate for the instability

that decreases with decreasing electric field strength. The predicted and measured

growth rates agree well. Several well-known low-temperature and space plasmas seem

susceptible to the electron-field instability. In fact, the instability may be excited in

many plasma environments since electric fields are a staple feature in many systems.
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CHAPTER V

Conclusions

The preceding chapters of this thesis have leveraged PIC simulations to extend

the basic theoretical understanding of the presheath and sheath regions to include the

effects of instabilities and collisions. To summarize: ion-acoustic instabilities enhance

the energy exchange rate between electron and ions in low temperature presheaths and

significantly heat the ions there above current predictions; charge-neutral collisions

lower the ion velocity and relative density at the sheath edge in agreement with earlier

theoretical predictions; and the ambipolar electric fields found in presheaths and other

plasmas regions can drive high frequency electron plasma instabilities. Although each

of these projects has furthered the current understanding of the plasma boundary,

they also indicate a need for future studies.

Namely, a direct experimental test linking ion heating and the presence of ion-

acoustic instabilities in the presheath is needed. So far, ion heating and ion-acoustic

instabilities have both been observed experimentally, but not simultaneously. One ex-

perimental setup that would concretely link the two observations as cause and effect,

would be a measurement of the ion temperature at different electron temperatures, ef-

fectively conducting an experimental analog of the simulations in chapter II. However,

this requires attaining a relatively low electron temperature (≈ 0.7 eV), which may

require rather specialized experiment. Showing the enhancement in ion temperature
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experimentally will be especially relevant to future plasma processing techniques if

they require relatively low pressure environments. Furthermore, systems often have

magnetic fields applied near the boundaries. In such cases, do the instabilities develop

and lead to anisotropic heating or a more complicated friction force? PIC simulations

could provide a straightforward avenue for answering such questions.

Secondly, simulations confirm there is a collisional Bohm criterion that has yet to

be measured experimentally. Diagnostic techniques that can span a large range of

pressures are rare as many diagnostics were made with low pressures in mind. How-

ever, it may be possible to confirm the conclusions of the simulations at a relatively

moderate pressure (100s mTorr). Furthermore, the simulations included in this work

did not extend to atmospheric pressure, which is now a popular area for designing

state-of-the-art plasma devices. Extending the PIC method to atmospheric pressure

or leveraging other numerical techniques may be necessary to understand how the

sheath behaves at such pressures.

Finally, when an ambipolar electric field exists in a plasma it has the ability to ex-

cite high frequency electron plasma waves via the electron-field instability. Although

confirmed with first-principles PIC simulations, there is no experimental confirmation.

Furthermore, the effects of such an instability were not explored here, but are needed

to connect the instability to practical systems. For example, does the electron-field

instability affect electron diffusion in low temperature systems like presheaths? In

addition, a theoretical question remains: how does an electric field affect the other

modes of the plasma. Does it modify ion-acoustic instabilities and how does a mag-

netic field affect the results of chapter IV? Such questions could be investigated via

detailed kinetic simulation.
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APPENDIX A

Ion-acoustic Heating in 2D and Hybrid

Simulations

A.1 Ion instability-heating in 2D

Chapter II described simulation results showing that the ions heated significantly

in the presheath and only in the parallel direction corresponding to the 1D of the

simulations. Is the heating still constrained along one dimension if the system has

more than one spatial dimension? If not, the instability-heating may play a more

important role in the context of plasma processing, where the perpendicular ion tem-

perature is key, than the 1D simulations indicated. It seems likely that the extremely

anisotropic heating observed in the 1D simulations was due to the fact that the elec-

tric field was constrained along one dimension and that some heating should occur in

the perpendicular dimensions (i.e. parallel to the wall). Here, 2D simulations with a

specific set of boundary conditions are employed to answer this question. Specifically,

the two new boundaries introduced are opposite one another and totally reflecting

(the dashed boundaries in Figure A.1). The setup is shown in Fig. A.1.
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Figure A.1: The boundary conditions used in the 2D simulations for testing the
effect of the second spatial dimension on the instability-heating observed in Chapter
II. The horizontal dimension will be called the parallel dimension and the other the
perpendicular dimension.

The use of reflecting boundaries makes comparisons with the previous 1D simu-

lations straight forward since no spatial gradients develop along the new dimension.

Specifically, the reflecting boundaries will not generate additional presheaths that

could excite instabilities in addition to those on the left and right boundaries.

A.1.1 Preliminary results

A 2D simulation with the same electron and ion source temperatures, domain

lengths, number of cells (along the parallel dimension), densities, and number of

particles per cell as in the simulation with an electron temperature of 3 eV in chapter

II has been completed. The length of the perpendicular dimension has been chosen to

be several times the wavelength of the most unstable wave mode for the ion-acoustic

instabilities.

Figure A.2 shows the electron density in the 2D domain after the simulation has

reached steady-state. Here, the sheaths are the regions of blue near either of the

absorbing boundaries.

Most importantly, Fig. A.3 shows the ion-temperature Ti = (1/3)(T x
i +T y

i +T z
i ) as

a function of the position along the x dimension. The ion temperature was calculated

along a line from the center of the domain to the right absorbing boundary with a y

coordinate of 0.017 m.
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Figure A.2: Electron density plotted from a 2D simulation where the electron tem-
perature is near 4 eV. The numbers surrounding the domain indicate the positions in
meters.
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Figure A.3: Ion temperatures on a line from x ∈ [0.25, 0.5], y = 0.017 m in the 2D
domain where the electron temperature is≈ 4 eV. The blue curve is the x-direction ion
temperature (the longest dimension), while the orange represents the perpendicular
temperature. The green line represents the ion source temperature (300 K) and the
temperature in the vZ direction. The red dashed line is the sum of the other three
and represents the 3D temperature.
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This simulation clearly exhibits ion heating in the presheath in a similar manner

as the 1D simulations: the ion temperature is determined by the temperature ratio

threshold (Ti ≈ Te/28 ≈ 4/28 ≈ 0.14 eV) and the ions heat near the center of the

domain as well. Furthermore, it shows ion heating in the perpendicular direction (y)

as well. This may indicate that the instability is no longer entirely aligned along x, and

may be cause by reflection from the sheaths and the new perpendicular boundaries.

A.2 Ion Heating in 1D with Boltzmann electrons

Simulations where the electrons are described by the Boltzmann relation (ne(x) =

n0e
e(ϕ(x)−ϕ0)/Te) are quite common and have even been used to solve the warm TL

model [22]. Treating the electrons this way precludes the phenomenon of Landau

damping, which depends on the electrons being particles. Landau damping is neces-

sary for the excitation of the ion-acoustic instabilities and so they are not expected

to be excited in simulations with Boltzmann electrons. However, previous simula-

tions with Boltzmann electrons had identified instabilities non-ion-acoustic [120] as

resulting from the weak electric field in the presheath. These instabilities are at a

much lower frequency than the ion-acoustic instabilities. It is important to know how

these low-frequency instabilities affect the plasma in the hybrid simulations. Specifi-

cally, they may alter the ion temperature from the predictions of a steady-state (not

simulation based) model.

A.2.1 Preliminary results

Figure A.4 shows the ion temperature profiles throughout the presheath in a

simulation with particle electrons (blue) and Boltzmann electrons (orange). The plot

shows two important differences between the two simulation types: (1) no heating

occurs in the center of the Boltzmann domain and (2) the heating seems to be lower

in the Boltzmann domain.
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Figure A.4: Ion temperatures from a simulation with Boltzmann electrons (Te = 6
eV, orange) and particle electrons (Te ≈ 5.5 eV, blue). The horizontal line represents
the ion source temperature (300 K).

The former might be explained by the fact that any fluctuations that could lead

to heating will not be able to reflect from the sheath, since the reflection of electrons

from the sheath is not resolved by the Boltzmann simulations.

The heating observed in the Boltzmann simulations has two possible components:

heating from ions born at different points in the presheath (a warm TL model) and

heating from the low-frequency instabilities described above. At this point, there is

not enough information to determine which is the leading mechanism; however, it is

clear that in either case the heating in the Boltzmann simulations is lower than in

the particle simulations when both have comparable electron temperatures.

Fluctuation spectra (Fig. A.5) have also been calculated from the fluctuations of

the ion density in the Boltzmann simulations. Here the top panel shows the spectrum

from the simulation where the electrons are treated as particles and the bottom panel

that of the Boltzmann electron simulation. In each the white lines represent the

ion-acoustic dispersion relation (Eq. (2.3)). One difference between the two is that

the fluctuation level seems to be higher in the Boltzmann simulation, especially at

frequencies lower than the ion-acoustic dispersion predicts. This may be an indication
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of the low-frequency instabilities that have been previously seen in such simulations.

135



−3 −2 −1 0 1 2 3

Wavenumber kλDe

0.0

0.5

1.0

1.5

2.0

2.5

3.0
F

re
q
u

en
cy

ω
/
ω
p
i

−9.5

−9.0

−8.5

−8.0

−7.5

−7.0

−3 −2 −1 0 1 2 3

Wavenumber kλDe

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

q
u

en
cy

ω
/
ω
p
i

−9.5

−9.0

−8.5

−8.0

−7.5

−7.0

−6.5

−6.0

lo
g

1
0
((δ
n
i /
n
i )(k

,ω
)))

Figure A.5: Ion density fluctuation spectra calculated near the sheath edge in a
simulation with particle electrons (top) and Boltzmann electrons (bottom). The
white lines represent the ion-acoustic dispersion relation (Eq. (2.3)).
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APPENDIX B

Collisional Plasma Equations

B.1 Numerical fluid model

Equations (3.6-3.8) can be rearranged to give a set of three coupled ODE’s for the

variables ϕ,E, and Vi:

dϕ

dx
=− E (B.1)

dE

dx
=
sx

Vi

− eϕ (B.2)

dVi

dx
=
E

Vi

− Vi

x
− λDe,c/λin,c. (B.3)

Here the initial condition is set at the center of the plasma (x = 0) with ϕ = 0, E =

0, Vi = 0. This system of equations can solved using a standard implementation of

the Runge-Kutta (4,5) method, like ode45() in Matlab. However, there are three

difficulties in general to solving this system of ODEs: (1) a forward difference scheme

(which is implemented by ode45()) will only calculate 0’s for the given initial condi-

tion, (2) the position where the solution should end is not defined, and (3) s depends

on λDe,c/λin,c. The first can be avoided by starting the solution a small distance from
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the middle, where the initial condition can be advanced using a backward difference

scheme. To remedy the second, we defined the wall to be the point where the po-

tential had dropped by ∆ϕs/(Te,c/e) as defined by Eq. (3.16). Finally, the value of s

that is consistent with λDe,c/λin,c was found by starting with an initial guess for s and

increasing or decreasing its value based on the value of ne − ni near the first point

in the domain. This was repeated until abs(ne − ni)/nc < 10−4, which effectively

enforces quasineutrality near the center. These are the same methods that have been

previously used to solve a similar fluid model and are described in section 2.1.2 of

[21].

The fact that the fluid model uses a constant source s has the advantage that

Eq. (3.6) can be directly integrated from x = 0 to a point x = ξ. This allows us to

write, in the same dimensionless variables as Eq. (3.6):

nV = sξ or (B.4)

hlal = s(L− ws)/λDe,c, (B.5)

where the second line was evaluated at the sheath edge. If we assume quasineutrality

[n = exp(−ϕ)] we can integrate Eq. (3.7) into the algebraic expressions:

n(V 2 + 1) +
λDe,c

λin,c

s

2
ξ2 = 1 or (B.6)

hl(a
2
l + 1) +

λDe,c

λin,c

s

2

(
L− ws

λDe,c

)2

= 1. (B.7)

Equations (B.5-B.7) could be solved for hl and al in terms of λDe,c/λin,c and ws, but

ultimately we are looking for expressions that depend only on λDe,c/λin,c. In practice,

we found that these expressions for hl and al depended sensitively on the model of

ws and so were less useful than those given in the preceding sections.

However, the low pressure limit of hl can be easily determined from these equations
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by taking λDe,c/λin,c to 0 and setting al = 1, which gives hl = 0.50. Knowing hl

allows us to determine the presheath potential drop from Eq. (3.18) and we find

e∆ϕp

Te,c
= 0.693. Although this is not a new result, it does differ from what might be

expected if one assumed energy is conserved for each ion. In this case the ion starts

at rest in the bulk plasma and is accelerated to the sounds speed a the sheath edge

leading to eϕse + 0.5mic
2
s = 0. This indicates the potential drop is 0.5, and is lower

than the fluid model predicts. This is because the steady-state fluid model conserves

the energy density of the fluid, not the energy of an average ion.

B.2 Collisional Bohm criterion model

Here we develop a model of the collisional Bohm criterion using the generalized

Bohm criterion from [29]. We have extended the original expression in [29] to include

a constant source rate (S) to capture how plasma is sourced in our simulations. The

generalized Bohm criterion includes moments of the velocity distribution function of

(fs) and takes the form

∑

s

qs
qsnsE − nsdTs/dx− dπxx

s /dx−msVsS +Rs

E(msV 2
s − Ts)

≥ 0. (B.8)

Here

Rs = ms

∫
vC(fs)d

3v (B.9)

is the friction force density calculated from the collision operator C, which is due to

electrons or ions colliding with neutrals. Though each of these terms contributes to

the generalized Bohm criterion, several terms are usually negligible. Specifically, as it

was shown in section 3.3, the electric-field and friction terms are found to be the most

important for ions and only the electric-field term in the numerator is important for

the electrons.
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Keeping only the important terms in inequality (B.8), we have:

(Vi/cs,c)
2 ≤ 1− Rin

eEn
, (B.10)

where n is the plasma density at the sheath edge. In general Rin depends on Vi and

the electric field at the sheath edge is not yet specified, so inequality (B.10) is not an

explicit form of the collisional Bohm criterion.

We can model the friction force between ion and neutrals using kinetic theory.

Following the calculation used in [124] based on the Boltzmann collision operator

C(fi, fn) =

∫

v′

∫

Ω

d3v′dΩDu(f̂if̂n − fifn). (B.11)

Here f̂ denotes the distribution evaluated at the post collision velocities and f at the

precollision velocities. The differential cross section is labeled D, u is the relative

velocity coordinate, and dΩ = sin θdθdϕ is the differential solid angle. Using this in

Eq. (B.9) and rearranging the orders of integration gives

Rin = mi

∫
d3u

∫
dΩDu∆u

∫
d3v′fi(u+ v′)fn(v

′). (B.12)

Here ∆u = u[sin(θ) cos(ϕ)x̂ + sin(θ) sin(ϕ)ŷ − 2 sin2(θ/2)ẑ] is the relative velocity

vector rotated by the scattering angle θ.

Assuming the ions are a flowing Maxwellian with average velocity V i and the

neutrals are represented by a stationary Maxwellian (with distinct temperatures),

then the final integral (d3v′) in Eq. (B.12) can be computed analytically. Then the

d3u integral can be converted to spherical polar coordinates and the two angular

integrals may be computed analytically. The friction force can then be written as

Rin = −nimiν̄inV
i (B.13)
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where

ν̄in =
nnmnv̄ina

2
0

2
√
π(mi +mn)(V̄i)3

I(V̄i) (B.14)

is a velocity dependent collision frequency with V̄i = |V i|/v̄in, v̄in =
√
v2T i + v2Tn, and

I =

∞∫

0

ξ2σ̄(1)(ξ)
∑

±

(2ξV̄i ± 1)e−(ξ±V̄i)
2

dξ (B.15)

generalizes the Coulomb logarithm as an integral over relative velocities ξ = u/v̄in,

and

σ̄(1)(ξ) =
2π

a20

π∫

0

(1− cos(θ))D(ξ, θ) sin(θ)dθ (B.16)

is the momentum transfer cross section, measured by the Bohr radius a0.

To proceed further, we chose to implement only the isotropic part of the differential

scattering cross section, as was done in the Aleph PIC simulations. This means D

only depends on the energy of the colliding particles, not the angle at which they

scatter. Using this information in Eq. (B.16) we find that σ̄(1)(ξ) = 2π
a20
D(ξ)

∫ π

0
(1 −

cos(θ)) sin(θ)dθ = 4π
a20
D(ξ). Specifically, the cross section data we are using takes the

form D = (σs(cs,c)/2π)(cs,c/v̄in)ξ
−1, where σs is the total cross section evaluated at

an energy corresponding to cs,c. Using this cross section, the integral in Eq. (B.15)

becomes

I =
2
√
π(V̄i)

3σscs,c
v̄ina20

, (B.17)

and entering this into Eq. (B.14) gives

ν̄in = nnσscs,c. (B.18)

Finally, we arrive at an expression for the ion friction force due to collisions with the

neutrals:

Rin = −miniV
i cs,c
λin,c(cs,c)

(B.19)
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where λin,c(cs,c) = 1/(nnσ(cs,c)) and σ(cs,c) is the total elastic cross section evaluated

at the sound speed. Eq. (B.19) can then be used in Eq. (B.10), which can be solved

for Vi once a model for E is provided. Based on figure 3.6, Ese can be approximated

as a constant. Finally solving Eq. (B.10) gives the same model for the collisional

Bohm criterion that is provided in Eq. (3.12).

B.3 Edge-to-center density model

Here we derive a model for hl in a planar, symmetric plasma with a uniform

source profile. We use the model Eq. (3.6-3.8), but with the added condition that the

plasma is quasinuetral (ni ≈ ne). Making use of the Boltzmann density relation for

the electrons we find that E = −(Te,c/en)
dn
dx

and the model equations become:

d(nV )

dx
= s (B.20)

nV
dV

dx
= −dn

dx
− (λDe,c/λin,c)nV − sV. (B.21)

These can be solved for dn
dx

and dV
dx

giving:

dn

dx
=

−V

1− V 2
[2s+ (λDe,c/λin,c)n] (B.22)

dV

dx
= − 1

n(1− V 2)
{s+ [s+ (λDe,c/λin,c)n]V

2}. (B.23)

Dividing Eq. (B.22) by Eq. (B.23) we have a tractable ODE to solve with the boundary

condition n(V = 0) = 1:

dn

dV
= −nV

[
2s+ (λDe,c/λin,c)n

s+ (s+ (λDe,c/λin,c)n)V 2

]
(B.24)
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Equation (B.24) has the solution

n(V ) =
−s(1 + V 2) +

√
s2(1 + V 4) + 2s(s+

λDe,c

λin,c
)V 2

(λDe,c/λin,c)V 2
. (B.25)

To derive a formula for hl we take the small and large λDe,c/λin,c limits of Eq. (B.25)

and evaluate them at the sheath edge (i.e. where V = al). We solve these equations

for hl in each limit and determine their scaling with λDe,c/λin,c. Finally, we construct

an expression that captures both limits. However, it is important to notice that both

s and V scale with λDe,c/λin,c. The scaling of V is given in Eq. (3.12). We observe,

from our PIC simulation data, that s ≈ 0.0071(1 + 50(λDe,c/λin,c))
−1.

The small λDe,c/λin,c expansion of Eq. (B.25) is

n ≈ 0.50− 6.12(λDe,c/λin,c)− 177(λDe,c/λin,c)
2. (B.26)

The large λDe,c/λin,c expansion of Eq. (B.25) is

n ≈ 0.165− 1.50× 10−3

(λDe,c/λin,c)
+

1.20× 10−3

(λDe,c/λin,c)
. (B.27)

The leading order in both of these expression are captured in the Pade approximate

expression

n ≈ 0.500 + 3.01(λDe,c/λin,c)

1 + 18.3(λDe,c/λin,c)
, (B.28)

where the leading order term in Eq. (B.26) and (B.27) were used to match to the

expansions of (A+Bx)/(1 + Cx).
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